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Tchakaloff polynomial meshes

Len Bos (Verona) and Marco Vianello (Padova)

Abstract. We construct polynomial meshes from Tchakaloff quadrature points for
measures on compact domains with certain boundary regularity, via estimates of the
Christoffel function and its reciprocal.

1. Introduction. A norming set for Pdn(K), the polynomials of degree
not exceeding n restricted to a compact set K ⊂ Rd, is a subset Xn ⊂ K
such that

(1.1) ‖p‖K ≤ Cn ‖p‖Xn , ∀p ∈ Pdn(K),

where ‖f‖Y denotes the sup-norm of a bounded function on the compact
set Y .

Sequences of finite norming sets such that both Cn and card(Xn) grow
algebraically in n are of primary interest in multivariate polynomial ap-
proximation, and are usually called weakly admissible polynomial meshes. If
Cn ≡ C is a constant independent of n, the mesh is termed admissible. No-
tice that necessarily card(Xn) ≥ Nn = Nn(K) = dim(Pdn(K)), since Xn is
determining for Pdn(K) (i.e., polynomials vanishing there vanish everywhere
on K). Admissible meshes with card(Xn) = O(Nn) are termed optimal.

Observe that Nn = O(nβ) with β ≤ d, in particular Nn =
(
n+d
d

)
∼ nd/d!

on polynomial determining compact sets (i.e., polynomials vanishing there
vanish everywhere in Rd), but we can have β < d for example on compact
algebraic varieties, like the sphere in Rd where Nn =

(
n+d
d

)
−
(
n−2+d

d

)
.

In case m ∈ R is not an integer, we will let Pdm(K) denote the space
Pdn(K) for n the largest integer less than or equal to m, and similarly for
Nm etc.
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We recall among their properties that polynomial meshes are invariant
under affine transformations, can be extended by algebraic transformations,
finite union and product and are stable under small perturbations. They
give good discrete models of a compact set for polynomial approximation,
since they are nearly optimal for polynomial least squares, contain extremal
subsets of Fekete and Leja type for polynomial interpolation, and have been
applied in polynomial optimization and in pluripotential numerics; cf., e.g.,
[4, 6, 9, 16, 20, 21, 23, 24].

2. Tchakaloff points and polynomial meshes. In the present paper
we will make use of the notion of Tchakaloff quadrature points to construct
polynomial meshes on compact sets with certain boundary regularity (see
Corollary 2.5 for the details). It is therefore worth recalling the celebrated
Tchakaloff Theorem on the existence of positive algebraic quadrature formu-
las, originally proved in [28] for the Lebesgue measure, and later extended
to general measures (cf., e.g., [25]).

Theorem 2.1. Let µ be a positive measure with compact support in Rd.
Then there are s ≤ Nn = dim(Pdn(supp(µ)) and sets Tn = {tj}sj=1 ⊆ supp(µ)
of points and w = {wj}sj=1 of positive real numbers such that

�

Rd
p(x) dµ =

s∑
j=1

wjp(tj), ∀p ∈ Pdn(supp(µ)).

The set Tn may be termed a set of Tchakaloff quadrature points of de-
gree n for the measure µ.

Assume now that supp(µ) is determining for Pd(K) (the space of d-
variate real polynomials restricted to K; for a fixed degree n, we could even
assume that supp(µ) is determining for Pdn(K)). We recall two functions that
will play a relevant role in our construction. The first is the reproducing
kernel for µ in Pdn(K), namely

(2.1) Kn(x, y) = Kµ
n(x, y) =

Nn∑
j=1

pj(x)pj(y),

where {pj} is any µ-orthonormal basis of Pdn(K), for example that obtained
from the standard monomial basis by applying the Gram–Schmidt orthonor-
malization process (it can be shown that Kn(x, y) does not depend on the
choice of the orthonormal basis). The diagonal of the reproducing kernel,
Kn(x, x), has the important property that

(2.2) ‖p‖K ≤
√

max
x∈K

Kn(x, x) ‖p‖L2
µ(K), ∀p ∈ Pdn(K).

The second function is the reciprocal of Kn(x, x), usually called the
Christoffel function of µ, which has the following relevant characterization:
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(2.3) λn(x) =
1

Kn(x, x)
= min

p∈Pdn(K), p(x)=1

�

K

p2(x) dµ;

see, e.g., [12, 13] for the definition and properties of the Christoffel function
λn(x) and its reciprocal Kn(x, x).

We are now ready to state and prove our main result, beginning with
the following lemma.

Lemma 2.2. Suppose that

Xn+m = {x1, . . . , xs} ⊂ K
are the points of a positive quadrature formula of precision 2(n+m) for the
measure µ, i.e., there are positive weights wi > 0, 1 ≤ i ≤ s, such that for
all polynomials p(x) with deg(p) ≤ 2(n+m),

�

K

p(x) dµ =
s∑
i=1

wip(xi).

Then for all polynomials p(x) with deg(p) ≤ n and ξ ∈ K,

|p(ξ)| ≤
√
Kn+m(ξ)λm(ξ) ‖p‖Xn+m .

Proof. Given ξ ∈ K let

q(x) :=
Km(x, ξ)

Km(ξ, ξ)
.

Then q(ξ) = 1 and
�

K

q2(x) dµ =
�

K

Km(x, ξ)Km(x, ξ)

K2
m(ξ, ξ)

dµ

=
Km(ξ, ξ)

K2
m(ξ, ξ)

=
1

Km(ξ, ξ)
= λm(ξ).

Now set r(x) := p(x)q(x) and note that deg(r) ≤ n+m. Then

p2(ξ) = r2(ξ) =
( �
K

Kn+m(x, ξ)r(x) dµ
)2

≤
�

K

K2
n+m(x, ξ) dµ×

�

K

r2(x) dµ = Kn+m(ξ, ξ)×
�

K

r2(x) dµ.

But, as deg(r2) ≤ 2(n+m),

�

K

r2(x) dµ =
s∑
i=1

wir
2(xi) =

s∑
i=1

wip
2(xi)q

2(xi)

≤ ‖p‖2Xn+m
s∑
i=1

wiq
2(xi) = ‖p‖2Xn+m

�

K

q2(x) dµ = ‖p‖2Xn+mλm(ξ).
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Combining these estimates we obtain

p2(ξ) ≤ Kn+m(ξ, ξ)λm(ξ)‖p‖2Xn+m .

Proposition 2.3. Let K ⊂ Rd be a compact set and µ a measure on K
whose support is determining for Pd(K), and fix α > 1. Then the set T2αn
of Tchakaloff quadrature points for µ of degree at most 2αn is a norming
set for Pdn(K), with cardinality not exceeding N2αn and norming constant

(2.4) Cn =
√

max
x∈K

Kαn(x, x) ·max
x∈K

λ(α−1)n(x).

Proof. Let m := (α− 1)n so that n+m = αn and take the set Xn+m =
T2αn which gives a positive quadrature formula for degree 2(n+m) = 2αn
of cardinality at most N2αn. Then the result follows immediately from
Lemma 2.2.

We can now give some corollaries on the construction of Tchakaloff poly-
nomial meshes on compact sets satisfying certain geometric regularity con-
ditions on the boundary. All the asymptotic bounds are intended as n→∞
for fixed d. The first concerns the sphere, where a similar result has been
proved by means of Fekete points (cf. [3, 18]).

Corollary 2.4. Let K = Sd−1 be the unit sphere in Rd. Then the
sequence {T2αn} of Tchakaloff point sets for the standard surface measure
dσ is an optimal admissible polynomial mesh.

Proof. The proof is immediate on recalling that

Nn =

(
n+ d

d

)
−
(
n− 2 + d

d

)
∼ 2nd−1

(d− 1)!

and the well-known property Kn(x, x) = Nn/ωd−1 for every x ∈ Sd−1, where
ωd−1 is the surface area of the sphere (cf. [26]). Then Theorem 2.1 and

Proposition 2.3 give card(T2αn) ≤ N2αn = O(Nn) and Cn =
√
Nαn/N(α−1)n

= O(1).

The following result, which concerns dµ = dx (the Lebesgue measure)
and fat compact sets with some geometric regularity, is substantially based
on the upper and lower bounds for Christoffel functions obtained in [12]; see
also [8] for a general discussion of the functional inequalities involved.

We say that K is a UIBC set (satisfies the Uniform Interior Ball Con-
dition) if every point of K belongs to a ball of fixed radius contained in K.
This is equivalent to saying that there is a ball of fixed radius that can roll
along the boundary of K remaining in K. This holds for example on smooth
convex bodies, by the celebrated Rolling Ball Theorem (cf. [15]). We stress
however that such a property does not require convexity or smoothness, for
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example inward corners or even inward cusps are allowed (consider e.g. the
union of two overlapping disks or a cardioid in R2).

On the other hand, K is a UICC set (satisfies the Uniform Interior
Cone Condition) if every point of K belongs to a fixed suitably rotated
cone contained in K. This property is fulfilled on domains with a Lipschitz
boundary and holds for example for any convex body; for such geometric
properties of compact sets we refer the reader, e.g., to [10].

Corollary 2.5. Let K ⊂ Rd be a fat compact set (the closure of a
bounded open set) and {T2αn} a sequence of Tchakaloff point sets for the
Lebesgue measure on K (whose cardinalities do not exceed N2αn = O(nd) by
Theorem 2.1). Then

• if K is a UIBC set, then {T2αn} is a weakly-admissible polynomial mesh
with Cn = O(

√
n);

• if K is a UICC set, then {T2αn} is a weakly-admissible polynomial mesh
with Cn = O(nd/2).

Proof. First, we recall that with the Lebesgue measure, on any com-
pact set we have maxx∈K λn(x) = O(n−d), by [12, Theorem 6.3]. On the
other hand, in [12] it is proved that on compact UIBC sets the bound
maxx∈K Kn(x, x) = O(nd+1) holds, which by Proposition 2.3 gives Cn =√
O(n) = O(

√
n), whereas on compact UICC sets we have maxx∈K Kn(x, x)

= O(n2d), which gives Cn =
√
O(nd) = O(nd/2).

It is worth recalling that the existence of weakly-admissible Tchakaloff-
like polynomial meshes with Cn = O(nd/2) andO(nd) cardinality was proved
in [29] by a fully discrete version of the Tchakaloff Theorem, on any com-
pact set admitting an optimal admissible polynomial mesh. The existence of
optimal polynomial meshes on UICC compact sets is not known in general,
and has been proved only in special cases and conjectured for convex bodies
(cf. [16]).

On the other hand, in some sense the result for UIBC compact sets is
weaker than what is known for example on general smooth compact bodies,
where it is proved constructively that an optimal admissible polynomial
mesh always exists (cf. [20]). However, the effective computation of such
a mesh does not appear to be an easy task, whereas the computation of
Tchakaloff quadrature points is much easier, whenever a starting algebraic
quadrature formula is known (as happens with the Lebesgue measure for
many classes of compact sets). Indeed, the computation of Tchakaloff points
of degree n starting from a known quadrature formula with M > N2αn nodes
can be treated as a quadratic or even as a linear programming problem with
N2αn constraints and M variables, which (taking for example α = 2) can
be solved effectively by standard algorithms at least in low dimension d
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and for moderate degrees n. We refer the reader, e.g., to [22, 27] for the
computational aspects concerning Tchakaloff points.

3. The pluripotential equilibrium measure. For any (regular) com-
pact set K ⊂ C there is a distinguished measure for which the associated
Kn(x, x) (and hence also λn(x)) has a special behaviour. Indeed, it is known
[1, Thm. B] that (under certain conditions), for dµ a probability measure
supported on K,

lim
n→∞

1

Nn
Kn(x, x)dµ(x) = dµK(x) weak-∗,

where dµK is the so-called pluripotential equilibrium measure for K (see e.g.
the monograph [14] for an introduction to this subject). Of special note is
the fact that for K = [−1, 1] ⊂ C, it is known that

dµK =
1

π

1√
1− x2

dx,

the so-called Chebyshev measure.
In particular if dµ is chosen to be the equilibrium measure dµK itself,

then it follows that

(3.1) lim
n→∞

1

Nn
Kn(x, x)dµK(x) = dµK(x) weak-∗,

and hence

lim
n→∞

1

Nn
Kn(x, x) = 1 weak-∗.

In special cases (see e.g. [5]) it is known that the limit (3.1) is actually
pointwise (for x in the interior of K). Moreover, when K ⊂ Rd is a ball,
simplex or cube, the equilibrium measure is explicitly known, and this can
be exploited to show that for dµ = dµK there are constants C1, C2 > 0 such
that

(3.2) C1Nn ≤ Kn(x, x) ≤ C2Nn, x ∈ K.
From (3.2) and Proposition 2.3 we then immediately obtain

Corollary 3.1. Let K ⊂ Rd be either a ball, a simplex or a cube. Then
the sequence {T2αn} of Tchakaloff point sets for the equilibrium measure
dµK is an optimal admissible polynomial mesh.

We now proceed to prove the bounds (3.2) for K a ball, simplex or cube.

3.1. The ball. Here K = Bd = {x ∈ Rd : ‖x‖2 ≤ 1} and its equilibrium
measure is

dµK = cd
1√

1− ‖x‖2
dx

where the constant cd is chosen so that dµK is a probability measure.
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Lemma 3.2 (cf. [19, Prop. 5.9]). There are constants C1, C2 > 0 such
that (for the equilibrium measure)

C1Nn ≤ Kn(x, x) ≤ C2Nn, x ∈ Bd.

Proof. We will make use of the intimate connection between Bd and the
sphere Sd := {x ∈ Rd+1 : ‖x‖2 = 1}, of which Bd is the principal diameter.
Indeed, any function f : Bd → R can be “lifted” to a function on Sd by
setting, for x ∈ Bd and z ∈ [−1, 1] such that ‖x‖22+ |z|2 = 1, f(x, z) := f(x).
Further, �

Bd

f(x) dµK(x) =
1

2

�

Sd

f(x, z) dσ(x, z)

where dσ is surface area on Sd, normalized to be a probability measure.
Hence, if {p1(x), . . . , pNn(Bd)(x)} is an orthonormal basis, with respect to

the measure dµK , for Pdn(Bd), it is also an orthogonal set, considered as a
subset of Pdn(Sd), with respect to the measure dσ with

‖pj‖L2(Sd) =
√

2.

It follows that, for x ∈ Bd,

Kn(x, x) =

Nn(Bd)∑
j=1

p2j (x) ≤ 2Kn((x, z), (x, z)) = 2Nn(Sd) ≤ 4Nn(Bd)

where, by an abuse of notation, Kn((x, z), (x, z)) denotes the diagonal of the
reproducing kernel for Sd. Hence the upper bound in (3.2) follows with (the
non-optimal) C2 = 4.

The proof of the lower bound is a bit more delicate. We use the optimality
property of Kn,

Kn(x, x) = max
p∈Pdn(K), p(x)=1

1	
K p

2(x) dµ(x)
,

so that, for any particular p ∈ Pdn(K) with p(x) = 1,

(3.3) Kn(x, x) ≥ 1	
K p

2(x) dµK(x)
.

Indeed, by [7, Lemma 3], for every a ∈ Bd and integer n > 0, there exists a
“peaking” polynomial pa(x) of degree at most n with the properties that

1. pa(a) = 1,
2. there is a constant c1 such that maxx∈Bd |pa(x)| ≤ c1,
3. there is a constant c2 such that

|pa(x)| ≤ c2
nd+1

dist(a, x)−(d+1).
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Here, for a, b ∈ Bd, dist(a, b) is the geodesic distance on the sphere Sd

between the lifted points ã := (a,
√

1− ‖a‖22) ∈ Sd and b̃ := (b,
√

1− ‖b‖22)
∈ Sd. Using this pa(x) in (3.3) results in

Kn(a, a) ≥ 1	
Bd p

2
a(x) dµK(x)

=
2	

Sd p
2
a(x) dσ(x)

.

We claim that there is a constant C ′2 such that
�

Sd

p2a(x) dσ(x) ≤ C ′2n−d,

from which the lower bound follows.

Now to see this we split the domain into two parts: where dist(ã, x) ≤ 1/n
and where dist(ã, x) > 1/n. Firstly, we have
(3.4) �

dist(ã,x)≤1/n

p2a(x) dσ(x) ≤ c21 vol({x ∈ Sd : dist(ã, x) ≤ 1/n}) ≤ c3n−d

for some constant c3.

The second part is more delicate, yet completely elementary. We use
spherical coordinates with “north pole” at ã and let φ ∈ [0, π] denote the
angle between x ∈ Sd and the axis through the pole, so that

dist(ã, x) = φ with cos(φ) = ã · x.
We claim that there is a constant c4 such that�

dist(ã,x)≥1/n

p2a(x) dσ(x) ≤ c4n−d.

To see this, first notice that, by property 3 of pa(x) it is sufficient to prove
that �

ε≥dist(ã,x)≥1/n

p2a(x) dσ(x) ≤ c4n−d

for any fixed ε > 0. Then, as dσ(x) = sin(φ)d−1dσ′(θ), where dσ′(θ) repre-
sents the part of dσ(x) coming from the angles other than φ,

�

ε≥dist(ã,x)≥1/n

p2a(x) dσ(x) ≤ c4
1

n2d+2

ε�

1/n

1

φ2d+2
φd−1 dφ

= c4
1

n2d+2

ε�

1/n

φ−(d+3) dφ

= c4
1

n2d+2

1

d+ 2
{nd+2 − ε−(d+2)} ≤ c4n−d

(where the meaning of c4 changes slightly on the last line).
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3.2. The simplex. Here K = T d = {x ∈ Rd : xi ≥ 0,
∑d

i=1 xi ≤ 1}
and its equilibrium measure is

dµK = cd
1√

x1 · · ·xd(1−
∑d

i=1 xi)
dx

where the constant cd is chosen so that dµK is a probability measure.
This case is also intimately related to the sphere Sd by setting, for x ∈ T d,

x̃ :=
(√

x1, . . . ,
√
xd,

√
1−

d∑
i=1

xi

)
∈ Sd

and its inverse, for x̃ ∈ Sd ⊂ Rd+1,

x = (x̃21, x̃
2
2, . . . , x̃

2
d) ∈ T d.

We remark that the equilibrium measure for T d is just the pullback of surface
area on Sd under the mapping x 7→ x̃.

Lemma 3.3. There are constants C1, C2 > 0 such that (for the equilib-
rium measure)

C1Nn ≤ Kn(x, x) ≤ C2Nn, x ∈ T d.
Proof. To see the upper bound just note that if {p1(x), . . . , pNn(T d)(x)}

is an orthonormal basis for Pdn(T d) with respect to the measure dµK , and
we define

qj(x̃) := pj(x) = pj(x̃
2
1, . . . , x̃

2
d),

then {q1(x̃), . . . , qNn(T d)(x̃)} is an orthogonal set, considered as a subset of

Pd+1
2n (Sd), with respect to the measure dσ with norm a certain dimensional

constant. It follows that, for x ∈ T d,

Kn(x, x) =

Nn(T d)∑
j=1

p2j (x) =

Nn(T d)∑
j=1

q2j (x̃) ≤ cK2n(x̃, x̃) = cN2n(Sd) ≤ c′Nn(T d)

for some constant c′. Here, by an abuse of notation, K2n(x̃, x̃) denotes the
diagonal of the reproducing kernel for Sd.

The proof of the lower bound is very similar to the proof of the case
of the ball. Indeed, [7, Lemma 4] provides, for each a ∈ T d, a “peaking”
polynomial pa(x) with the same properties as for the ball. We suppress the
details.

3.3. The cube. Here K = [−1, 1]d for which the equilibrium measure
is the product measure

dµK(x) =
1

πd

d∏
i=1

1√
1− x2i

dx.
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Lemma 3.4. There are constants C1, C2 > 0 such that (for the equilib-
rium measure)

C1Nn ≤ Kn(x, x) ≤ C2Nn, x ∈ [−1, 1]d.

Proof. This follows easily from the fact that

d∏
i=1

Kn/d(xi) ≤ Kn(x, x) ≤
d∏
i=1

Kn(xi)

where Km(xi) denotes the univariate kernel of degree m for the univariate
equilibrium measure for [−1, 1].

Remark 3.5. It is an interesting problem to determine for which com-
pact sets K the property (3.2) holds. Given the weak convergence indicated
in (3.1) we suspect that it holds for quite a general class of K. Indeed, Kroó
and Lubinsky [17, Lemma 5.2] show that it holds locally in the interior for
quite general K. We would also mention that (3.2) holds trivially for the
sphere when one considers it as a compact subset of its complexification,
in which case the equilibrium measure is just normalized surface area (cf.
Corollary 2.4).
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