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ABSTRACT Facial medical analysis, including the inspection of the face and inner facial components, has

always been a primary part of the diagnostic method in Traditional Chinese Medicine (TCM). The existing

literature merely focus on detecting or segmenting single face organs such as tongue, eyes, or lips. In this

paper, we make the first attempt to deal with multiple organs simultaneously and develop an end-to-end

hybrid network with context aggregation (named TCMINet) to achieve face parsing for Traditional Chinese

Medicine Inspection (TCMI). Additionally, we construct a new dataset named TCMID to overcome the

lackness of accurate annotated data. In order to verify the generalization ability of TCMINet, we manually

relabel images in two popular face parsing datasets referred to as LFW-PL⋆ and HELEN⋆ for test. The

extensive ablation evaluations and experimental comparisons demonstrate that the proposed TCMINet

outperforms state-of-the-art methods under various evaluation metrics. It runs at 267ms per face (512× 512

image) on Nvidia Titan Xp GPU, being possible to be integrated into engineering solutions.

INDEX TERMS Traditional Chinese medicine inspection, semantic segmentation, face parsing, hybrid

neural networks, context aggregation.

I. INTRODUCTION

Nowadays, Traditional ChineseMedicine (TCM) has become

a global and essential diagnostic approach in the medical

field [1]. In TCM, inspection is a critical diagnostic step to

check the current state of patients with an observation of

the expression, appearance, color, and abnormal changes of

the body, face, and inner facial components (e.g., eyes, lips,

tongue). The face and inner facial components are believed

to reveal signs of various health conditions or even diseases

of the internal body [2]. For instance, people with hepatitis

and other liver issues may have a face or eyes with a yellow

tone [3]. The tongue of HIV-infected patients may be swollen,

and tooth marked [4]. Moreover, the lip color of a person is

considered as a symptom to reflect the physical conditions of

organs in the body [5].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jinjia Zhou .

Generally, as preprocessing, the first step of most computer

vison-aided facial medical analysis techniques consists in

detecting or segmenting face and facial components from

face images. However, the existing literature merely focus

on detecting or segmenting single face organs [6]–[8]. As a

special case of face parsing, face parsing for TCMI amounts

to labeling each pixel with the left eye, right eye, lips, tongue,

face, and background, following the principles of TCM holis-

tic view [9], [10]. Inevitably, some challenging problems

hiding behind this task are as follows. First, the patient opens

the mouth wide with the tongue sticking out, and the lower

lip is partially (or totally) blocked by the tongue. Second,

the tongue color gamut is highly overlapping with lip (face)

color gamut. Third, in addition to the face and target facial

components, obtained face images contain many other non-

target components, such as hair, beard, teeth, and the inner

tissue of the mouth. And fourth, the patient’s tongue color,

facial expression, skin gloss, and other conditions are more
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varied than healthy people. There are abundant pathological

details on the surface of the patient’s tongue, such as tongue

crack, red point, tooth marks and etc. These details are often

with only several-pixel size, which makes parsing more dif-

ficult.

Existing face parsing literature [11]–[13] have illustrated

significant advantages by focusing on individual regions of

interest (ROIs) for inner facial components. However, these

methods [11]–[15] mainly focus on segmenting hair, eye-

brows, and other facial components that are rarely relevant

to TCMI, rather than segmenting the tongue that is essential

for TCMI applications. Face parsing for TCMI is indeed a

new challenging task, and too little work has been devoted

to this area. Accordingly, proposing a new hybrid architec-

ture that follows the TCM diagnostic principles is of great

need. Furthermore, in order to parse face images robustly,

effective contextual modeling [16]–[19] is more demanding.

Inspired by these methods, we propose a novel TCMINet to

estimate masks for each face and each inner facial component

separately, which is shown as Fig.1. Specifically, we first

construct the Inspection Feature Extraction (IFE) module to

complete efficient dense feature extraction with fast com-

putation. Then the hierarchical Facial Inner Components

Segmentation (FICS) structure and Face Segmentation (FS)

structure are used to process the inner facial components (left

eye, right eye, tongue, lips) and the face, respectively. More-

over, we employ context aggregation modules (C1↑↓←→,

C2ցտրւ) to smooth the label prediction map as well as

to refine boundary localization for inner facial components

and the face. The symbol ‘‘arrow’’ indicates ‘‘the sweeping

direction or propagation direction’’. For inner facial compo-

nents, we employ an effective context aggregation module

C1↑↓←→ [21], [22], which uses four recurrent neural net-

works to sweep both vertically and horizontally along both

directions across the image to incorporate the global context.

For the face, we employ an efficient context aggregationmod-

ule (C2ցտրւ) [16], [17], which models semantic contex-

tual dependencies of local representations with four context

propagation directions (southeast, southwest, northwest, and

northeast.

In addition to a high performance network, a good dataset

with high-quality and well-labeled images is also a crucial

component. There are only a few face parsing datasets, such

as the LFW-PL [20] and HELEN [14]. Moreover, most of

the images of [14], [20] are not suitable for this task. To

mitigate this problem, we construct a face parsing dataset

named TCMID, which contains 1500 face images captured

by professional imaging devices under certain conditions (in

a dark chest, not in open-air). In TCMID, each image is pro-

vided with accurate annotation of a 6-category (left eye, right

eye, lips, tongue, face, and background) pixel-level label map.

The contributions of this paper are summarized as follows:

1 We build a face parsing dataset (TCMID) and bench-

mark for training and test. To the best of our knowledge,

it is the first face parsing dataset for TCMI. Furthermore,

we manually relabel some images of HELEN and LFW-

PL datasets named LFW-PL⋆ and HELEN⋆ for test.

Datasets are available at: https://github.com/

FDUXilly/TCMID-face-image-dataset.

2 We propose an effective hybrid architecture to

address the problem of pixel-wise face parsing for

TCMI. We introduce the context aggregation modules

(C1↑↓←→, C2ցտրւ) that can significantly smooth

the label prediction map as well as refine boundary

localization for inner facial components and the face,

respectively.

3 Our network surpasses previous state-of-the-art results

on LFW-PL⋆, HELEN⋆, and TCMID datasets. Besides,

ablation studies and exploratory experiments on TCMID

are carried out to evaluate the hybrid network structure

and important modules of our network. It runs at 267ms

per face image (512× 512) on a GPU, being possible to

be integrated into engineering solutions.

II. RELATED WORK

A. TCMI - FACIAL MEDICAL ANALYSIS

Facial medical analysis is a non-contact, non-invasive diag-

nostic method of TCM [23]. Basically, the first task in the

computer-aided facial medical analysis is to detect and seg-

ment the facial components from face images. In [2], five

facial regions (Forehead, Left cheek, Right cheek, Nose, Jaw)

are segmented using skin detection, facial normalization, and

horizontal position of the mouth, nostril, and eyebrow loca-

tion. Hu et al. [6] adopt Gaussian Mixture Model (GMM) in

lip segmentation. Li et al. [7] propose an end-to-end iterative

tongue image matting network. Rot et al. [8] present a deep

multi-class eye segmentation model build upon the SegNet

architecture. As mentioned before, these methods only take

separate face organs into account, resulting in inaccurate

and biased diagnostic results. In this paper, we propose a

hybrid architecture that can simultaneously detect and seg-

ment multiple facial components based on the principles of

TCM holistic view.

B. SEMANTIC SEGMENTATION

Semantic segmentation is more and more being of interest

for computer vision researchers. FCN [24] is a baseline for

generic images which employs full convolution on the entire

image to extract feature. Mask R-CNN [25] further advances

the cutting edge of semantic segmentation through extending

Faster R-CNN [26] and integrating RoIAlign. Mask Scoring

R-CNN [27] extends Mask R-CNN with MaskIoU Head

and achieves a new state-of-the-art result. However, directly

applying these methods for face parsing may fail to model the

complex yet varying spatial layout across face components,

leading to unsatisfactory results.

1) CONTEXT AGGREGATION

One major group of works focus on context aggregation

dependencies of local regions in the CRF framework [18],
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FIGURE 1. Proposed network structure. Our basic segmentation network essentially consists of two branches (FICS, FS) and four functional modules:
Inspection Feature Extraction (IFE), Component Bounding-box (Bbox) Prediction, Context Aggregation (C1↑↓←→, C2ցտրւ), and feature map
up-sampling (F1,F2).

[19]. Another group of works introduce sub-networks that can

aggregate context inherently [28].

C. FACE PARSING

Face parsing, aiming to assign pixel-level semantic labels

for face images, has attracted much attention due to its wide

application potentials, such as: facial beautification [29], face

image synthesis [30].

1) METHODS

Most existing approaches for face parsing can be categorized

into two branches: global-based methods [31], [32] and local-

based (hybrid) methods [11]–[13], [15]. Global-based meth-

ods predict semantic labels over the whole input image. Wei

et al. [31] design automatically regulating receptive fields in

a deep image parsing network. Zhou et al. [32] propose a

network that employs super-pixel information and the CRF

model jointly. Nevertheless, the accuracy of these kinds of

methods is limited due to the lack of focusing on each individ-

ual part (see Table 10). In contrast, local-based methods train

separated models for various facial components. Zhou et al.

[11] design an interlinked CNN-based architecture which

predicts pixel labels after facial localization. Liu et al. [12]

propose a network that combines hierarchical representations

learned by a CNN, and label propagations achieved by a

spatially variant RNN. Lin et al. [13] propose a novel network

combined with RoI Tanh-warping for face parsing. All of

these approaches focus on general facial parsing tasks but

ignore some relevant facial components that are essential for

TCMI applications.

2) DATASETS

Although many face related fields have been well studied

for many years, the existing datasets for face parsing are

still severely limited. This is mainly because pixel-level

annotation is a time-consuming work. The most commonly

used public datasets for face parsing methods are LFW-PL

[20] and HELEN [14]. LFW-PL dataset contains 2,927 face

images. All the images are manually assigned to one of the

hair/skin/background categories. The HELEN dataset con-

tains 2,330 face images with manually labeled facial com-

ponents including eyes, eyebrows, nose, inside mouth, lips,

etc. However, for both datasets, the tongue in each image is

not annotated.

D. RECURRENT NEURAL NETWORK

RNNs have been shown to be effective for modeling short

and long term dependencies in sequential data. For images,

we can apply 1-D RNN to multiple dimensions [21],

[33] or multi-dimensional RNN (MDRNN) [34], [35] such

that each neural node can receive informations from mul-

tiple directions. Visin et al. [21] adopt ReNet, which is a

stacked of 1D-RNN to perform image classification. Based

on ReNet model, an architecture for semantic segmentation

called ReSeg [22] has been proposed. Both of them observe

promising performance gains after incorporating RNNs.

III. THE PROPOSED TCMINET

We use a hybrid solution to estimate masks for face and

inner facial components simultaneously. Given a cropped

face image I , which contains only a single face in the center

of the image, the Inspection Feature Extraction (IFE) module

is deployed to capture dense feature maps F , which are later

shared by Facial Inner Components Segmentation (FICS) and

Face Segmentation (FS) branches. In FICS branch, for each

inner facial component {Ci}
N
i=1 = {left eye, right eye, lips,

tongue} where N is the number of individual component,

the local bounding-box (bbox) {Ri}
N−1
i=1 of each component

Ci is predicted from F . The features of each component

within their bbox are mapped to a fixed resolution through

PrRoI Pooling [36]. Next, C1↑↓←→ is adopted to model

global contexts and reduce computational cost. At the end

of the FICS branch, the segmentation masks {Mi}
N−1
i=1 for

each component are predicted individually.Meanwhile, in the

FS branch, C2 ցտրւ is designed to link pixel-level and

local information of F . Same as the FICS branch, pixel-wise
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FIGURE 2. The architecture of the inspection feature extraction module
IFE. (a) the Entry Flow (EnF), (b) the Middle Flow (MF), (c) the Exit Flow
(ExF). The input image I first goes through the EnF, then through the MF
which is repeated eight times, and finally through the ExF.

segmentation mask Mface is predicted in the end. Finally,

we gather all segmentation masks and form the face parsing

result asM .

As illustrated in Fig.1, we introduce the whole network

with four temporal-consecutive functional modules: IFE,

Component Bounding-box Prediction, Context Aggregation,

and FeatureMapUp-sampling. Next, we introduce eachmod-

ule in detail.

A. IFE MODUEL

The Xception model [37]–[39] has shown promising perfor-

mance with fast computation. We work in the same direction

to modify the Xception model for the task of face parsing.

As illustrated in Fig. 2, max-pooling operations are replaced

by depthwise separable convolutions, which allows efficient

dense feature extraction on any arbitrary resolution. We use

PReLU [40] as the non-linearity rather than ReLU since it

allows negative responses that in turn improves the network

performance (see Table 5). Furthermore, all of 3×3 depthwise

convolution layers and 3 × 3 dilated depthwise convolution

layers are followed by a BN and a PReLU activation.

B. FACIAL INNER COMPONENTS SEGMENTATION (FICS)

BRANCH

1) COMPONENT BOUNDING-BOX PREDICTION MODULE

The semantic label of every inner facial component is explic-

itly defined in our work (e.g., left/right eye). Here we explic-

itly regress the area of each inner facial component instead of

detecting them individually like in a Mask R-CNN-fashion

[25], [27]. The prediction module consists of two convolu-

tional layers followed by a global average pooling and a fully

connected layer. It avoids ambiguities in components and

reduces computation cost. The component prediction module

locates bounding-boxes of the N inner facial components:

{Ri}
N−1
i=1 . The annotated ground truth bounding-boxes are

denoted as {R
g
i }
N−1
i=1 . We adopt the L1 loss for the bounding-

box regression. The regression loss Lreg is defined as:

Lreg =
1

N − 1

N−1
∑

i

‖ Ri − R
g
i ‖1 (1)

It stands to reason that the low accuracy of the regressed

bounding-boxes usually leads to the poor performance of the

segmentation. Through experiments, we observe that some

part of the targets may fall outside the bounding-boxes, espe-

cially for lips. To mitigate this problem, we add paddings out-

side the bounding-boxes to solve the problem. Specifically,

regressed bounding-boxes are padded by 20% the featuremap

size for lips and 10% for other components. The optimized

bounding-boxes yield good hints for predicting high accuracy

masks (see Table 6).

2) CONTEXT AGGREGATION MODULE (C1↑↓←→)

In order to parse face images robustly, effective contextual

modeling is more demanding. For inner facial components

{Ci}
N
i=1= {left eye, right eye, lips, tongue}, we first use PrRoI

Pooling [36] to map the features of each component to a fixed

resolution individually. We feed the resulting feature maps

Ei into recurrent layers for fine-tuning. As depicted in Fig.1,

each recurrent layer is composed by four RNNs. Specifically,

we take a feature map Ei of elements e ∈ R
A×B×C , where

A, B and C are respectively the height, width and number of

channels and we split it into K ×L patches pk,l ∈ R
Ap×Bp×C .

First, we sweep the image vertically with two RNNs (o↓ and

o↑). Each RNN reads the next non-overlapping patch pk,l
based on its previous state, emits a projection q

↓
k,l (or q

↑
k,l)

and updates its state r
↓

k−1,l (or r
↑

k+1,l):

q
↓
k,l = o↓

(

r
↓

k−1,l, pk,l

)

, for k = 1, · · · ,K

q
↑
k,l = o↑

(

r
↑

k+1,l, pk,l

)

, for k = K , · · · , 1 (2)

We concatenate projections q
↓
k,l and q

↑
k,l to obtain feature

mapQl. Then we sweep over each of its rows with two RNNs

(o← and o→). With a similar but specular procedure as the

one described before, we obtain a concatenated feature map

Q↔. Each element q↔k,l represents the features of patches pk,l
with contextual information from Ei. To sum up, the context

aggregationmodule sweeps over feature mapsEi horizontally

and vertically, and providing relevant global information.

3) FEATURE MAP UP-SAMPLING MODULE (F1)

All component’s feature map up-sampling modules share the

same network architecture but have independent weights.

Each component segmentation module is built with two 3 ×

3 convolutions each followed by one bilinear up-sampling.

For the obtained N − 1 bounding-boxes, N − 1 light and

parallel feature map up-sampling modules are used to predict
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the masks for each inner facial component. We use the pixel-

wise cross-entropy to measure the component segmentation

accuracy. The segmentation loss Lseg1 is defined as the aver-

aged cross-entropy among all the segmentation networks:

Lseg1 =
1

N − 1

N−1
∑

i=1

CrossEntropy(Mi,M
g
i ) (3)

C. FACE SEGMENTATION (FS) BRANCH

1) CONTEXT AGGREGATION MODULE (C2ցտրւ)

Different from chain-structured sequential data, the connec-

tivity structure of image units are beyond chain. The graphical

representations (e.g., UCGs) that respect the 2-D neighbor-

hood system are more plausible solutions for spatial arrange-

ment of image units. However, due to the loopy structure of

UCGs, RNNs can’t be directly applied to UCG-structured

images. We decompose the UCG U to a set of complimentary

DAGs: U =
∑

Dd . As exemplified in Fig.3, we use the four

context propagation directions (D1 ց, D2 տ, D3 ր and

D4 ւ) to decompose U . The topology of feature maps F

is represented as DAG D = {V, E}, where V = {vi}i=1:N
is the vertex set and E =

{

eij
}

is the arc set. The topology

of the hidden layer hd follows the same topology as D.

Therefore, a forward propagation sequence can be generated

by traversing D. These operations can be mathematically

expressed as follows:

h
(vi)
d = g



Mdx
(vi) +

∑

vj∈PDd
(vi)

Wdh
(vj)
d + bd



 (4)

o
(vi) = k





∑

Dd

Vdh
(vi)
d + c



 (5)

where Md , Vd , and Wd are weight matrices, and bd is bias

vector. Here, xvi , hvi , and ovi are the representations of input,

hidden and output layers located at vi, respectively. PDd
(vi)

is the direct predecessor set of vertex vi in Dd . g and k are

composition functions. We place C2 ցտրւ on top of the

IFE module to capture the rich contextual dependencies over

image regions.

2) FEATURE MAP UP-SAMPLING MODULE (F2)

For the face, we perform several convolutions and up-

sampling operations to generate the mask Mface (M
g
face is the

groundtruth). We also use the cross-entropy loss to constrain

the segmentation accuracy. The segmentation loss Lseg2 is

defined as:

Lseg2 = CrossEntropy(Mface,M
g
face) (6)

Finally, all the resulting segmentation masks are gathered.

We form the final face parsing result, denoted as M . Since

the component segmentation relies on a good component

bounding-box regression, we divide the training process into

two steps. In the first step, we only train the IFE module

and the component bounding-box predictionmodule for good

FIGURE 3. Illustration of context aggregation. (a): Feature tensor for a
face image, and each square denotes one feature vector in the feature
tensor. (b)-(f): The decomposition of U to four complimentary DAGs:
{D1 ց, D2 տ, D3 ր and D4 ւ}. Note that any vertex pair (vi , vj ) can be
mutually communicable in DAGs. For example, local information of the
red vertex can be routed to green vertex via D1, and green vertex can be
routed to red vertex via D4.

component regression accuracy. Here, only Lreg is used for

training. In the second step, we perform joint training by

updating all parameters with Lreg, Lseg1, and Lseg2 together.

IV. DATASETS

The dataset with diverse images and well-labeled masks is

an important reason for the continuous improvement of face

parsing algorithms, especially for deep learning-based tech-

nologies. To the best of our knowledge, there are only a

few public face parsing datasets, such as the LFW-PL [20]

and HELEN [14], where the hair area is considered as an

essential semantic category for parsing. Especially, images

in both datasets are taken in a random environment, and the

tongue in each image is not annotated. The lack of accurate

annotated datasets becomes a major obstacle in the progress

of face parsing for TCMI. To fill the gap, we construct a novel

dataset named TCMID, inwhich the tongue is regarded as one

of the most critical semantic categories.

A. DATA COLLECTION

We collect 1500 face images in JPG format. The facial image

acquisition system is the same as [5]. Table 1 shows the

composition of our dataset. Besides, each image is provided

with accurate annotation of a 6-category (face, left eye, right

eye, lips, tongue, and background) pixel-level label map sub-

jectively labeled by TCMpractitioners. These images are split

into the training and test sets with 1100 and 400 images,

respectively.

B. IMAGE DIVERSITY

Face images in our dataset display large variations in (fore-

ground) facial complexion, lip color, eye state, etc (see

Table 2). As demonstrated in Fig.4, the patient’s tongue (sub-

stance and coating) color, facial gloss, and other conditions
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TABLE 1. Composition of the TCMID dataset.

TABLE 2. List of image attributes and the corresponding description.

are greatly varied. The tongue substance color is usually

reddish colors, and the tongue coating color is normally

white, gray, or yellow. The tongue color gamut is highly

overlapping with lip (face) color gamut. Fig.5 shows facial

images with different head poses (rotation). As demonstrated

in Fig.6.(c), in addition to the face and target inner facial

components, typical face images inevitably contain many

non-target components, such as hair, beard, teeth, and the

inner tissue of the mouth. The different states (open, half-

open, closed) of the eyes and mouth are shown in Fig.6.(a)

and Fig.6.(b), respectively. Moreover, the patient opens the

mouth wide with the tongue sticking out, and the lower lip is

partially (or totally) blocked by the tongue. We include such

large variations in TCMID to make our model more robust to

challenging inputs.

C. DATA AUGMENTATION

While increasing the number of training images can enhance

the performance of the model, we augment data by: (1) Geo-

metric transformation. We exploit different rotating, resiz-

ing, and flipping to increase the number of training images.

Four rotation angles {−45◦, −20◦, 20◦, 45◦}, four scales

{0.5,0.8,1.2,1.5} (around the center of the cropped face) are

FIGURE 4. Typical complexion (color and gloss) squares with each label
on the bottom. (a) Five typical facial colors. (b) Three facial gloss degrees.
(c) Five typical lip colors. (d) Five typical tongue substance colors.
(e) Three typical tongue coating colors.

FIGURE 5. Head rotation. (a) The pose of the patient’s head is described
in the form of the three rotation angles yaw, pitch, and roll. (b) Sample
images.

used. Horizontal flipping of images with probability 0.5 is

used. (2) Gamma adjustment.We apply four different Gamma

transforms to increase color variation. The Gamma values

are {0.5,0.8,1.2,1.5}. (3) Background replacement. We first

utilize a image matting network [42] to get the foreground

(face) region. Thenwe randomly replace the backgroundwith

non-face images [43], [44] or pure colors (e.g., deep red, light

red, purple, red, white, yellow, gray).

D. OTHER DATASETS

Furthermore, we manually relabel some images of HELEN

and LFW-PL datasets as challenge cases for test. It is worth

noting that only a small number of face images in these

two datasets conform to the TCMI face image-standard: the

patient opens the mouth wide with the tongue sticking out.

We selected face images that meet the standard in HELEN

93074 VOLUME 8, 2020
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FIGURE 6. Typical face image samples with diverse facial component
states or non-target facial component interference. (a) Eyes states (open,
half-open, closed). (b) Mouth states (open, half-open, closed). (c)
Non-target facial component interference. The Interference is indicated
by red arrows.

TABLE 3. Image datasets of face parsing for TCMI.

and LFW-PL datasets to build new test datasets. We refer to

the relabeled test datasets as HELEN⋆ and LFW-PL⋆. LFW-

PL⋆ dataset has 59 images for test. HELEN⋆ dataset has

105 images for test(see Table 3).

V. EXPERIMENTS

In this section, ablation studies and exploratory experiments

on TCMID are carried out to discuss the hybrid network

structure and several important modules of the proposed

architecture. Then we test our network on the HELEN⋆,

LFW-PL⋆, and TCMID datasets. Experimental results show

that our model achieves the best results over other state-of-

the-art methods on three datasets.

A. PERFORMANCE EVALUATION METRICS

Similar to [11]–[14], we use F-measure for each class as

basic evaluation metrics. Besides, we quantitatively evaluate

and compare our model with existing face parsing meth-

ods and semantic segmentation methods using evaluation

metrics: Accuracy, Precision, Recall, F-measure, and their

corresponding standard deviations. The metrics are defined

as follows:

Accuracy =
TP+ FN

TP+ FN + FP+ TN
(7)

Precision =
TP

TP+ FP
(8)

Recall =
TP

TP+ FN
(9)

TABLE 4. Comparison with global-based and local-based methods on
TCMID.

F = 2×
precision · recall

precision+ recall
(10)

where TP denotes the number of true positive pixels, TN

denotes the number of true negative pixels, FP stands for the

number of false positive pixels, and FN represents the number

of false negative pixels. The F-measure is the harmonic mean

of Precision and Recall.

B. ABLATION STUDY

We quantitatively evaluate and compare our ablation models

using Accuracy and F-measure metrics on TCMID dataset.

The performances are reported in the form of F-measure

for each class, mean F-measure over the five foreground

categories (le, re, lips, tongue, face), and average Accuracy

(Acc.). Herein, le is short for the left eye, re is short for the

right eye, bg is short for the background.

1) IMPORTANCE OF THE HYBRID NETWORK STRUCTURE

We use a hybrid (local-based) strategy to train separated

branches for face and detailed inner facial components. As

explained in Section II.C, global-based methods directly pre-

dict the per-pixel semantic label over the whole face image.

Table4 illustrates the advantages of hybrid structures over

global-based structures in F-measure and average Accuracy.

Experimentally, the accuracy of global-based methods [11],

[14], [31] is limited due to the lack of focusing on each

individual part.

2) IMPORTANCE OF THE IFE MODUEL

We found that the IFE module significantly gets better per-

formance (compared with [24], [37], [38], [41]). As shown

in Table 5, using IFE moduel as feature extractor achieves

the state-of-the-art performance in terms of the highest Acc.

on TCMID dataset. Meanwhile, adopting PReLU [40] as the

non-linearity brings (le:0.23, re:0.25, lips:0.29, tongue:0.26,

face:0.22, bg:0.25,mean:0.25) F-measure score improvement

than using ReLU.

3) IMPORTANCE OF THE COMPONENT BOUNDING-BOX

(BBOX) PREDICTION MODULE

As shown in Table 6, the component bounding-box prediction

brings significant improvement (le:8.22, re:8.16, lips:14.23,

tongue:12.25, face:4.74, bg:3.38, mean:9.52, Acc.:5.22)

score for inner facial components segmentation, especially
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TABLE 5. Comparison with different feature extractors on TCMID.

TABLE 6. Importance of the component bbox prediction module.

TABLE 7. Comparison with different Up-sampling methods on TCMID.

for ‘lips’ and ‘tongue’. In addition, padding (20% the feature

map size for lips and 10% for other components) the regressed

bounding-boxes brings another (le:0.73, re:0.68, lips:1.45,

tongue:1.11, face:1.12, bg:1.50, mean:1.02, Acc.:1.3) score

improvement.

4) IMPORTANCE OF SEPARATED SEGMENTATION MODULES

Different from [25], [27], our segmentation modules do

not share weights. The importance of separated weights

is verified by the results from Table 7. Adopting ‘‘sepa-

rated weights’’ strategy brings (le:0.60, re:0.56, lips:0.79,

tongue:0.70, face:0.09, bg:0.24, mean:0.49, Acc.:0.28)

improvement than using ‘‘weights sharing’’ strategy.

5) IMPORTANCE OF THE CONTEXT AGGREGATION

MODULES

We employ context aggregation modules (C1↑↓←→,

C2ցտրւ) to smooth the label prediction map for inner

facial components and the face. By doing this, con-

texts are explicitly propagated and encoded into feature

maps. As shown in Table 8, adopting PrRoI Pooling [36]

brings (le:0.94, re:0.95, lips:0.48, tongue:1.09, face:0.68,

bg:0.46, mean:0.83, Acc.:0.46) improvement than using

[25]. Experimentally, adding C1↑↓←→, and C2ցտրւ

further improve the score by (le:2.73, re:2.69, lips:3.05,

tongue:3.10, mean:2.85, Acc.:0.10) and (face:1.09, bg:1.25,

mean:0.21, Acc.:0.82), respectively. Some detailed examples

are depicted in Fig.7.

Furthermore, we evaluate three different variants of

our context aggregation module (C1↑↓←→,C2ցտրւ),

TABLE 8. Importance of the context aggregation modules.

FIGURE 7. Context aggregation modules (C1↑↓←→, C2ցտրւ) engage
useful contexts to local features and model long-range dependencies for
segmentation branches Facial Inner Components Segmentation Branch
(FICS), Face Segmentation Branch (FS), respectively. (a)(d): input images,
(b)(e): output masks of proposed method ‘‘Ours(C1,C2)’’, (c): output mask
of ‘‘Ours(C1↑↓←→,—)’’, (f): output mask of ‘‘Ours(—,C2ցտրւ)’’. (best
viewed in color) .

TABLE 9. Variant experiments of the context aggregation module.

i.e., (C2ցտրւ,C1↑↓←→), (C1↑↓←→,C1↑↓←→), and

(C2ցտրւ, C2ցտրւ) on the TCMID dataset. As the

result shows in Table 9, our context aggregation module

(C1↑↓←→,C2ցտրւ) gets the best performance.

C. COMPARISON WITH STATE-OF-THE-ART METHODS

We perform a thorough comparison between our model and

existing state-of-the-art (face parsing and semantic segmen-

tation) methods on LFW-PL⋆, HELEN⋆, and TCMID. In our

task, the foreground (le, re, lips, tongue, face) regions are

much more important than the background region, so we

calculate the mean F-measure over five foreground cate-

gories. As Table 10 shows, our model achieves the best

results in F-measure over other state-of-the-art (face pars-

ing and semantic segmentation) methods on three datasets

(all categories). The average Accuracy, Precision, Recall,

F-measure, and their corresponding standard deviations
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TABLE 10. The performance results of different methods on various datasets. The performances of each category, together with the mean F-measure over
the five foreground categories are listed. Specifically, ’’mean’’ indicates the mean F-measure score over the 5 foreground categories ( le, re, lips, tongue,
face).

TABLE 11. The performance results of different methods on three datasets. Average performance metrics (Accuracy, Precision, Recall, F-measure) and the
corresponding standard deviations are reported (Average ± Standard Deviations).

metrics for all the methods on three datasets are displayed

in Table 11.

1) COMPARISON WITH FACE PARSING METHODS

As mentioned before, existing face parsing methods

[11]–[14], [31] mainly focus on segmenting hair, eyebrows,

and other facial components that are rarely relevant to

TCMI, rather than segmenting the tongue required for TCMI

applications. The F-measure scores of six categories, and

the mean F-measures over five foreground categories on

three test datasets are presented in Table 10. Our TCMINet

achieves the best results over other methods on all cat-

egories. As far as the TCMID dataset is concerned, our

model achieves the best F-measure of (le:95.91, re:95.89,

lips:93.46, tongue:96.98, face:97.95, bg:98.27, mean:96.04),

outperforming the state-of-the-art face parsing method [13]

by (le:3.02, re:2.96, lips:2.83, tongue:–, face:1.58, bg:–,

mean:2.83) score (see Table 10). Table 11 demonstrates

further performance comparisons of the proposed method

with other existing face parsing approaches. As observed,

our method gets the best result on three test datasets

in terms of Accuracy, Precision, Recall, and F-measure,

which demonstrate the effectiveness of the proposed

TCMINet.

2) COMPARISON WITH SEMANTIC SEGMENTATION

METHOD

We directly compare the proposed TCMINet with seman-

tic segmentation methods, including FCN [24], CRFasRNN

[18], CNN-CRF [19], DeeplabV2 [28], Mask R-CNN [25].

As listed in Table 10, the proposed TCMINet yields a mean

F-measure of 96.04, while the mean F-measure of the five

competing semantic segmentation methods is 80.59 [24],

81.10 [18], 83.30 [19], 83.42 [28] and 86.72 [25], respec-

tively on TCMID. Futhermore, TCMINet still yields good

performance on LFW-PL⋆, HELEN⋆ datasets, which demon-

strate the robustness of the proposed TCMINet (see Table10

and Table11). Experimentally, these semantic segmentation

methods [18], [19], [24], [25], [28] can’t distinguish left

and right eyes. As these methods misclassified instances

that share similar appearance but have different semantic

labels. To be specific, our TCMINet gets larger improve-

ment compared with existing approaches [25], [28] by reduc-

ing misclassification errors. In TCMINet, the bounding-box

prediction module is more straight-forward but effective for

parsing inner facial components. As exemplified in Fig.8,

directly applying the region proposal network Mask R-CNN

[25] in face parsing causes misclassification problems: the

left eyes are recognized as the right eyes.
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FIGURE 8. Directly applying Mask R-CNN [25] in face parsing causes
misclassification problems. (a)(e): input images, (b)(f): groundtruth, (c)(g):
output masks of our method, (d)(h): output masks of Mask R-CNN.
Misclassification problems are indicated by green arrows. (best viewed in
color).

D. QUALITATIVE RESULTS

1) LFW-PL⋆ AND HELEN⋆

We evaluate our approach on LFW-PL⋆ and HELEN⋆

datasets. Experimentally, our model shows a good generaliza-

tion ability on these two challenging datasets (see Table 10).

Fig.9 and Fig.10 show the qualitative parsing results on LFW-

PL⋆ and HELEN⋆ dataset, respectively. The ground truth

label maps are also shown.

2) TCMID

Ourmodel is robust to challenging inputs. As shown in Fig.11

and Fig.12, the proposed TCMINet is suitable for segmenting

face and inner facial components with varying appearances

(e.g., tongue substance color, tongue coating color, lip color,

facial gloss, and face color) or states (e.g., head rotation,

mouth state, eye state, and interference).

VI. DISCUSSION

A. SIMULTANEOUS SEGMENTATION OF MULTIPLE FACE

ORGANS

Facial medical analysis is a non-invasive, non-contact diag-

nostic method of TCM. Generally, segmenting facial skin

facial and sensory organs from face images is the first step in

computer-aided facial medical analysis. According to related

literature, there have been a large number of researches focus

on detecting and segmenting single face organ or facial skin.

For instance, Pang et al. [46] proposed the Bi-Elliptical

Deformable Contour (BEDC) model for automated tongue

area segmentation. In our previous work [45], we proposed

a real-time tongue image segmentation method for remote

diagnosis (see Fig13.(b)). Zhao et al. [2] develop a facial

region segmentation method to partition the facial skin into

five specific regions (see Fig13.(c)). In [48], four facial skin

blocks in TCM are automatically extracted from each half-

face image (see Fig13.(d)). In [47], a cheek region extraction

method has been proposed for face diagnosis. (see Fig13.(e)).

FIGURE 9. Visualizing the results on the LFW-PL⋆ dataset. (a): input
images and corresponding attributes, (b): groundtruth, (c): output mask
of the TCMINet. (best viewed in color).

FIGURE 10. Visualizing the results on the HELEN⋆ dataset. (a): input
images and corresponding attributes, (b): groundtruth, (c): output mask
of the TCMINet. (best viewed in color).

These methods mainly focus on exploring the important role

of facial skin regions in reflecting the health status of patients

93078 VOLUME 8, 2020



X. Li et al.: TCMINet: Face Parsing for TCM Inspection via a Hybrid Neural Network With Context Aggregation

FIGURE 11. Visualization results on challenging images. (a) (c) (e) (g) (i) (k) (m) (o): input images and corresponding attributes, (b) (d) (f) (h) (j)
(l) (n) (p) : output mask of the TCMINet. (best viewed in color).

FIGURE 12. Visualization results on challenging images (Head rotation, Interference). (a) (c) (e) (g) (i) (k) (m) : input images, (b) (d) (f) (h) (j) (l)
(n) : output mask of the TCMINet. (best viewed in color).

VOLUME 8, 2020 93079



X. Li et al.: TCMINet: Face Parsing for TCM Inspection via a Hybrid Neural Network With Context Aggregation

FIGURE 13. Facial medical segmentation methods. (a): Input image.
(b): Result of [45]. (c): Result of [2]. Partition of facial skin into five
specific regions. (d): Result of [48]. A facial image with four located key
blocks. (e): Result of [47]. Two specific regions of facial cheek. (f): output
mask of the TCMINet.

while ignoring the criticality of inner facial components (e.g.,

eyes, lips, tongue). Our work is the first attempt to deal with

face and multiple inner facial components simultaneously

based on the principles of TCM holistic view (see Fig.13.(f)).

B. FACE PARSING FOR TCMI

As mentioned in SectionI, previous face parsing methods

mainly focus on segmenting hair, eyebrows, and other facial

components that are rarely relevant to TCMI. In TCMI,

the human face and facial sensory components are believed to

reveal signs of various constitutions. The tongue among them,

as the primary organ of gustation, conveys abundant valuable

information about the diseases of the internal body. In our

work, face parsing for TCMI amounts to labeling each pixel

with the left eye, right eye, lips, tongue, face, and background

following the principles of TCM holistic view. Experimen-

tally, our proposed TCMINet outperforms state-of-the-art

methods on LFW-PL⋆, HELEN⋆, and TCMID datasets under

different evaluation metrics.

C. LIMITATIONS AND FUTURE WORKS

(1) In-the-wild and multi-face conditions: as shown

in Table 10 and Table11, our model achieves better per-

formance on the TCMID than on LFW-PL⋆ and HELEN⋆.

Although our proposed model is suitable for segmenting

faces and inner facial components with varying appear-

ances or states, it cannot deal with multiple faces in field

conditions. In future work, we will further extend our archi-

tecture to handle different face instances under various envi-

ronments. (2) Multiple facial specific regions: our proposed

model achieves simultaneous segmentation of the face and

inner facial components. However, based on the principle

of TCM, the human face can be roughly partitioned into

multiple specific regions by connecting specific landmarks.

Different regions can reflect the health status of different

internal organs. In the future, we plan to explore the multi-

task learning architecture to achieve multiple facial specific

regions partition.

VII. CONCLUSION

In this paper, we propose an effective hybrid network of face

parsing for TCMI with context aggregation. Ablation studies

show the effectiveness of our hybrid structure and important

modules. The superior performances on LFW-PL⋆, HELEN⋆,

and the proposed TCMID datasets show the ability of the

proposed TCMINet to handle the problem of face parsing for

TCMI. Most importantly, our TCMINet can handle faces and

all the inner facial components with various appearances, e.g.,

color, and states, e.g., head rotation, providing new insights

into TCMI research and development.
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