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Abstract

This paper discusses the use of Explicit Congestion Noti-
fication (ECN) mechanisms in the TCP/IP protocol. The
first part proposes new guidelines for TCP’s response to
ECN mechanisms (e.g., Source Quench packets, ECN
fields in packet headers). Next, using simulations, we
explore the benefits and drawbacks of ECN in TCP/IP
networks. Our simulations use RED gateways modi-
fied to set an ECN bit in the IP packet header as an
indication of congestion, with Reno-style TCP modified
to respond to ECN as well as to packet drops as indi-
cations of congestion. The simulations show that one
advantage of ECN mechanisms is in avoiding unneces-
sary packet drops, and therefore avoiding unnecessary
delay for packets from low-bandwidth delay-sensitive
TCP connections. A second advantage of ECN mech-
anisms is in networks (generally LANs) where the ef-
fectiveness of TCP retransmit timers is limited by the
coarse granularity of the TCP clock. The paper also dis-
cusses some implementation issues concerning specific
ECN mechanisms in TCP/IP networks.

1 Introduction

This paper proposes guidelines for TCP’s response to
ECN (Explicit Congestion Notification) mechanisms,
and explores the effect upon performance of ECN mech-
anisms in TCP/IP networks. The paper discusses some
implementation issues concerning ECN mechanisms,
but does not make specific recommendations concerning
the use of ECN mechanisms in TCP/IP networks.

In current TCP/IP networks, TCP relies on packet
drops as the indication of congestion. The TCP source
detects dropped packets either from the receipt of three
duplicate acknowledgements (ACKs) or after the time-
out of a retransmit timer, and responds to a dropped
packet by reducing the congestion window [J88]. TCP
implementations also respond to ICMP Source Quench
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messages, but Source Quench messages are rarely used,
in part because they can consume network bandwidth in
times of congestion.

The reliance on packet drops as the indication of
congestion is perfectly appropriate for a network with
routers whose main function is to route packets to the
appropriate output port. Most current routers in TCP/IP
networks have no provision for the detection of incip-
ient congestion. When a queue overflows, packets are
dropped. When the TCP source detects this packet drop,
the TCP source infers the presence of congestion in the
network.

Future routers are likely to have more developed
mechanisms for the detection of incipient congestion.
With the DECbit scheme, for example, routers detect in-
cipient congestion by computing the average queue size,
and set the ECN bit in packet headers when the average
queue size exceeds a certain threshold [RJ90]. Recently-
proposed Random Early Detection (RED) gateways
have a similar ability to detect incipient congestion
[FJ93]. Gateways with mechanisms for detecting incip-
ient congestion before the queue overflows are not lim-
ited to packet drops as the method of informing sources
of congestion.

For networks with mechanisms for the detection of in-
cipient congestion, the use of ECN mechanisms for the
notification of congestion to the end nodes prevents un-
necessary packet drops. For bulk-data connections, the
user is concerned only with the arrival time of the last
packet of data, and delays of individual packets are of
no concern. For some interactive traffic, however, such
as telnet traffic, the user is sensitive to the delay of indi-
vidual packets. For such low-bandwidth delay-sensitive
TCP traffic, unnecessary packet drops and packet re-
transmissions can result in noticeable and unnecessary
delays for the user. For some connections, these delays
can be exacerbated by a coarse-granularity TCP timer
that delays the source’s retransmission of the packet.

A second benefit of ECN mechanisms is that with
ECN, sources can be informed of congestion quickly
and unambiguously, without the source having to wait
for either a retransmit timer or three duplicate ACKs to
infer a dropped packet. For bulk-data TCP connections,



the delay for the retransmission of an individual packet is
not generally an issue. For bulk-data TCP connections
in wide-area environments, the congestion window is
generally sufficiently large that the dropped packet is de-
tected fairly promptly by the Fast Retransmit procedure.
Nevertheless, for those cases where a dropped packet is
not detected by the Fast Retransmit procedure, the use
of ECN mechanisms can improve a bulk-data connec-
tion’s response to congestion. If the source is delayed in
detecting a dropped packet, perhaps due to a small con-
gestion control window and a coarse-grained TCP timer,
the source can lie idle. This delay, when combined with
the global synchronization, can result in substantial link
idle time.

An additional motivation for the exploration of ECN
mechanisms in TCP/IP networks concerns the possi-
bility of TCP/IP traffic traversing networks that have
their own congestion control mechanisms (e.g., ATM
networks). With current implementations of TCP, such
networks are limited to packet drops as the only viable
mechanism to inform TCP sources of congestion. Such
networks would benefit from the addition to TCP of more
intelligent ECN-response methods. If this were the case,
then for TCP traffic that travels for all or part of its path
over ATMnetworks, ECN mechanisms could be invoked
at the edge of the ATM network and used to inform TCP
sources of congestion within the ATM network. This
use of ECN mechanisms to inform TCP sources of con-
gestion would be independent of the congestion control
mechanisms within the ATM networks.

This paper explores some of the general advantages
and disadvantages of ECN mechanisms in TCP/IP mech-
anisms, but does not make recommendations for or
against specific ECN mechanisms (e.g., the addition of
an ECN field to IP headers). The results in this paper
are intended to be qualitative, not quantitative. For ex-
ample, while it is clear that the use of ECN can reduce
the packet delay for low-bandwidth delay-sensitive TCP
traffic, the extent of this benefit depends on the exact
network topology, the traffic mix, and the details of the
relevant gateway and transport congestion control algo-
rithms. The simulations in this paper show that the use
of ECN can reduce packet delay, but they do not quan-
tify the expected reduction in packet delay in a particular
network.

Section 2 discusses some current ECN mechanisms,
such as Source Quench in TCP/IP networks. Section 3
briefly discusses the role of the router in detecting in-
cipient congestion. Section 4 presents our proposal for
guidelines for TCP’s response to ECN; these guidelines
differ from those of current network mechanisms. Sec-
tion 5 discusses the application of these guidelines to
the implementation of Reno-style TCP in our simula-
tor. Sections 6 and 7 present our simulation results of

LAN and WAN environments. Section 8.2 discusses
some of the implications, for the evaluation of ECN
mechanisms, for some of the proposed modifications
to TCP or to gateway scheduling algorithms. Finally,
Section 9 discusses various implementation issues con-
cerning ECN mechanisms in TCP/IP networks. These
include comparisons between Source Quench and ECN
fields in packet headers, possibilities for the incremental
deployment of ECN mechanisms in TCP/IP networks,
a discussion of TCP clock granularity, and a discussion
of IP-level ECN mechanisms for TCP traffic over ATM
networks. Section 10 presents conclusions and open
questions.

2 Current ECN mechanisms

In this section we discuss briefly ECN mechanisms such
as Source Quench messages, DECbit’s ECN bit, and
FECN/BECN proposals for ATM networks. One pur-
pose of this section is to describe the current ECN mech-
anisms in TCP/IP networks. This includes a detailed
explanation of the inadequacies of current implementa-
tions of Source Quench. In this section we also describe
the ECN mechanisms in the DECbit congestion avoid-
ance scheme, partly to motivate the somewhat-different
guidelines that we propose in the following two sections
for ECN in TCP/IP networks. Finally, we provide point-
ers to other discussions of proposed ECN mechanisms
in the literature.

Currently, ICMP Source Quench messages are the
only ECN mechanisms in TCP/IP networks, but in fact
Source Quench is rarely used in the current Internet.
A router or host might send an ICMP Source Quench
message when it receives datagrams at a rate that is too
fast to be processed [S94]. While RFC 1009 [BP87] re-
quired routers to generate Source Quenches when they
ran out of buffers, the current draft on Requirements for
IP Routers [A94] specifies that a router should not origi-
nate Source Quench messages, and that a router that does
originate Source Quench messages must be able to limit
the rate at which they are generated. In the draft, Source
Quench messages are criticized as consuming network
bandwidth, and as being both ineffective and unfair. In
contrast, as discussed in the next section, the use of RED
gateways with Source Quench messages would control
the rate at which Source Quench messages were gen-
erated, while increasing both the effectiveness and the
fairness of these messages.

The guidelines for TCP’s response to Source Quench
predate such TCP congestion control mechanisms as
Fast Retransmit and Fast Recovery [S94]. From the
guidelines in [BP87], TCP implementations should re-
spond to a Source Quench by “triggering a slow start, as



if a retransmission timeout had occurred”. In BSD TCP
implementations, the TCP source responds to a Source
Quench by reducing the congestion control window to
one, initiating Slow-Start. If the Source Quench sig-
nals a dropped packet, and is therefore followed by ei-
ther a retransmit timer timeout or by the Fast Retransmit
procedure, then the timeout recovery code follows the
Source Quench code. In this case the slow start thresh-
old ssthresh ends up being set to one or two segments,
resulting in a very slow reopening of the congestion win-
dow. This use of Slow-Start combined with a small slow
start threshold makes the use of Source Quench particu-
larly unattractive for large-window TCP connections in
high-speed environments. This paper proposes alternate
guidelines for TCP’s response to Source Quench.

In the DECbit congestion avoidance scheme [RJ90],
the gateway uses a congestion-notification bit in packet
headers to provide feedback about congestion in the net-
work. When a packet arrives at the gateway, the gateway
calculates the average queue length. When the average
queue size at the gateway exceeds one, the gateway sets
the ECN bit in the packet header of arriving packets.

The source uses window flow control, and updates
its window once every two roundtrip times. If at least
half of the packets in the last window had the ECN bit
set, then the congestion window is decreased multiplica-
tively. Otherwise, the congestion window is increased
additively. In contrast to the DECbit scheme, for the
ECN mechanism proposed in this paper a single packet
with the ECN bit set is to be interpreted by the transport-
level source as an indication of congestion.

[WRM91] reports on experiments in an OSI testbed
modified to include the congestion-notification bit pro-
posed in [RJ90]. A range of ECN-based rate-based
congestion control schemes have been proposed for use
within ATM networks. These include proposals both for
Forward ECN (FECN) and for Backward ECN (BECN).
An introduction to some of these proposals can be found
in [N94].

3 The role of the router

This section discusses the role of the router in generating
ECN messages. ECN messages could be generated ei-
ther by an IP router or by a boundary router for an ATM
network that carries TCP/IP traffic. This section consid-
ers IP networks with RED gateways, where the gateway
monitors the average queue size and during congestion
uses a probabilistic algorithm to choose which arriving
packets to mark (e.g., to drop, or to set the ECN field in
the packet header).

In our simulations using RED gateways with ECN, the
RED gateways set the ECN field in the packet header; in

the simulations using RED gateways without ECN, the
RED gateways drop the packet instead. In both variants
of RED gateways, the gateway drops a packet when a
packet arrives to a full queue.

It would be possible to add ECN mechanisms to a tra-
ditional Drop-Tail gateway, where the gateway simply
drops arriving packets when the queue buffer is full. For
example, Drop-Tail gateways, after dropping a packet,
could send Source Quench messages to the TCP source.
However, we do not advocate adding ECN mechanisms
to Drop-Tail gateways, and we do not investigate such
schemes in this paper. If ECN mechanisms are added to
a gateway, it makes sense to add at the same time mech-
anisms to monitor the average queue size. We believe
that the use of ECN mechanisms are of most benefit in a
gateway that notifies connections of incipient congestion
before the queue actually overflows. 1

To a first approximation, RED gateways mark (e.g.,
drop) a percentage of arriving packets, where the ex-
act percentage of arriving packets marked should be
just enough to control the average queue size over the
long run. For example, in a LAN environment, where a
TCP connection increases its congestion window quite
rapidly, a non-ECN gateway might have to drop a signif-
icant fraction of arriving packets to control congestion.
For RED gateways with a FIFO queue, if a certain frac-
tion of bulk-data packets have to be dropped to control
congestion, the RED gateway drops the same fraction of
telnet packets.

Current routers generally have a single queue for each
output port. In the future, routers could have separate
queues for separate “classes” of traffic [BCS94]. In this
case, the ECN mechanisms could apply separately to
each queue. As discussed in Section 8.3, this could affect
the motivations for ECN mechanisms.

4 Guidelines for TCP’s response to
ECN

In this section we explain our guidelines for TCP’s re-
sponse to ECN. These guidelines differ from TCP’s cur-
rent response to Source Quench messages, or from the
response of transport protocols to DECbit’s congestion
notification bit. These guidelines provide that the re-
ceipt of a single ECN message serves as a notification
of congestion to the TCP source. At the same time, the
guidelines ensure that the TCP source does not respond
to ECN messages more frequently than necessary.
Guidelines:

TCP’s response to ECN should be similar, over

1As an example, [PP87] suggested that the gateway send Source
Quench messages when the queue size exceeds a certain threshold.



longer time scales, to its response to a dropped packet as
an indication of congestion.

Over smaller time scales (e.g., one or two round trip
times), TCP’s response to ECN can be less conservative
than its response to a dropped packet as an indication of
congestion. In Tahoe and Reno implementations of TCP,
after a packet has been dropped the TCP source stops
sending for a time period on the order of a round trip
time (half a round trip time for Reno implementations),
allowing network queues to dissipate somewhat. This
delay is not necessary as a response to an ECN, which
does not indicate a queue overflow.

For TCP, the receipt of a single ECN (e.g., a single
Source Quench packet, or a single packet with the ECN
bit set) should trigger a response to congestion. This
is unlike the DECbit congestion control scheme, where
the source responds to congestion only if at least half
of the packets in the last window had the ECN bit set
[RJ90]. The decision to allow a single ECN message to
trigger a response to congestion requires a minimum of
overhead. In addition, because the gateway does not set
the ECN field in every arriving packet when the average
queue size is too high, the gateway can use probabilis-
tic algorithms to inform particular sources of congestion
[FJ93]. Because the probability that a connection is no-
tified of congestion is proportional to that connection’s
share of the bandwidth at the congested gateway, these
probabilistic algorithms reduce global synchronization
and improve fairness.

TCP should react to an ECN at most once per
roundtrip time. The TCP source should ignore succeed-
ing ECNs if the source has reacted to a previous ECN
or to a dropped packet in the last roundtrip time. This
also means that if, immediately after reacting to an ECN,
the TCP source receives three duplicate ACKs indicat-
ing a dropped packet, the TCP source should not repeat
the reduction of the congestion window; the packet was
probably dropped before the source reduced its window
in response to the ECN.

TCP should follow the existing algorithms for send-
ing data packets in response to incoming ACKs. The
response to an ECN does not trigger the sending of any
new (or retransmitted) data packets.

TCP should follow the normal procedure after the
timeout of a retransmit timer. That is, after a retransmit
timer timeout the TCP source should slow-start and re-
transmit the dropped packet. However, the TCP source
should not decrease the slow-start threshold ssthresh if
it has been decreased within the last roundtrip time.

5 Implementing ECN in our simula-
tor

In this section we describe the implementation of TCP’s
response to ECN in our simulator. This implementation
of ECN was made to a version of TCP that incorpo-
rates the Fast Recovery congestion control algorithm in
Reno TCP (4.3-reno BSD TCP), as well as the Slow-
Start, Congestion Avoidance, and Fast Retransmit algo-
rithms in the earlier Tahoe TCP (4.3-tahoe BSD TCP
[J88, S94]).

For the simulations in this paper the RED gateways
were given an option to set the ECN bit in the packet
header, rather than dropping the packet, as an indication
of congestion when the buffer had not yet overflowed.
When the TCP receiver receives a data packet with the
ECN bit set in the packet header, the receiver sets the
ECN bit in the next outgoing ACK packet.

First we briefly describe the Slow-Start, Congestion
Avoidance, Fast Retransmit, and Fast Recovery algo-
rithms in TCP. There are two phases to the window-
adjustment algorithm. The connection begins in slow-
start phase, and the current congestion window cwnd is
doubled each roundtrip time until the congestion win-
dow reaches the slow-start threshold ssthresh. Then the
congestion-avoidance phase is entered, and the conges-
tion window is increased by roughly one packet each
roundtrip time. The congestion window is never allowed
to increase to more than the receiver’s advertised win-
dow, which we refer to as the “maximum window”.

In addition to using retransmit timers to detect lost
packets, the source uses the Fast Retransmit procedure
to discover a packet loss. If three duplicate ACK packets
are received acknowledging a previously-acknowledged
data packet, the source infers that a packet has been
dropped.

In the Tahoe version of TCP, the source reacts to a
packet loss by setting the slow start threshold to half
the congestion window, decreasing the congestion win-
dow to one packet, and entering the slow-start phase. In
contrast, with Reno’s Fast Recovery algorithm the TCP
source does not slow-start after inferring that a packet
has been dropped. Instead, the TCP source effectively
waits half a round trip time and halves the congestion
window. The source retransmits the dropped packet and
uses incoming duplicate ACKs to clock additional out-
going packets. The Fast Recovery algorithm is described
in more detail in [S94].2

2The description of the Fast Recovery algorithm in [S94] is quite
good, and is the only complete publicly-available description of this
algorithm that we are aware of. However, we have a caution to readers.
First, the earlier printings (prior to the 4th) do not distinguish between
the Fast Retransmit and the Fast Recovery algorithms. Second, in
the description of the window increase algorithm in the congestion



Following the guidelines in the previous section, upon
receiving an ECN message (e.g., a Source Quench mes-
sage, or an ACK packet with the ECN bit set) at time
when no responses to congestion have been made in
roughly the last roundtrip time, the TCP source halves
both the congestion window cwnd and the slow-start
threshold ssthresh. Because there is no loss of incoming
ACKs to clock outgoing packets and no need for a short
pause to recover from severe short-term congestion, the
TCP source doesn’t slow-start. The TCP source doesn’t
respond to succeeding ECNs until all packets outstand-
ing at time have been acked.

After receiving three duplicate ACKs at time when
no responses to congestion have been made in roughly
the last roundtrip time, the TCP source follows the
Fast Retransmit and Fast Recovery procedures described
above. The source won’t respond to an ECN or to an-
other set of three duplicate ACKs until all packets out-
standing at time have been acked. ([F94] discusses
some of the problems that result if the Fast Retransmit
procedure is invoked more than once for one window of
data.)

After receiving three duplicate ACKs soon after re-
sponding to an ECN (e.g., when some of the packets
outstanding at the time of the response to the ECN have
not yet been ACKed), the source doesn’t reduce ssthresh
or cwnd, since that has recently been done. The source
retransmits the dropped packet. After this, the source
follows Reno’s Fast Recovery procedure, using incom-
ing duplicate ACKs to clock outgoing packets.

6 Simulation results of ECN in
LANs

This section discusses the results of simulations of TCP
with ECN in local-area networks. The simulation sce-
nario consists of five bulk-data TCP connections and ten
telnet connections in a LAN with one congested gate-
way. We compare several sets of simulations. The first
set uses Drop-Tail gateways, and the second set uses
RED gateways that rely on packet drops for the notifi-
cation of congestion. The third set of simulations uses
ECN-capable RED gateways and TCP implementations.

The simulations show that for the networks with ECN,
the throughput of the bulk-data connections is high, and
the telnet packet delay is low, regardless of the buffer
size, the TCP clock granularity, the TCP window size,
or the RED gateway variation. Thus, the simulations

avoidance phase, the earlier printings say that the congestion window
is incremented by 1/cwnd plus a small fraction of the segment size each
time an ACK is received. The inclusion of the “small fraction of the
segment size” is an error in the 4.3 Reno and 4.4 BSD implementations,
and should not be emulated in future TCP implementations.

with ECN are robust, delivering essentially optimal per-
formance over a wide range of conditions.

For the simulations of RED gateways without ECN,
the results depend on the simulation parameters. For
most of the simulations, the telnet packet delay is less
than optimal (though not disastrous). For a few of the
simulations with a coarse TCP clock granularity, the ag-
gregate throughput is also low. The telnet packet delay is
worst for the simulations of Drop-Tailgateways (without
ECN). In general, the simulations show that with ECN
the performance is less sensitive to the network param-
eters, and that the use of ECN can improve both delay
and throughput. However, while the simulations show
the benefits of using ECN, the simulations show that
under proper conditions, it is possible to get reasonable
performance without ECN.

Senders

Gateway Receiver
100 Mbps
10 usec

100 Mbps
10 usec

Figure 1: LAN simulation scenario.

6.1 The LAN simulation scenario

The simulation scenario in Figure 1 consists of five
bulk-data TCP connections and ten TELNET connec-
tions from five sources feeding into a single congested
link. The simulations use a range of switch buffer sizes,
window sizes, gateway variations, and TCP clock gran-
ularities.

The simulations are run for buffer sizes of 60, 120,
180, and 240 kB. In our simulations with RED gate-
ways, the minimum threshold for the average queue size
is set to 1/12-th of the buffer size, and the maximum
threshold is set to three times the minimum threshold.
The RED gateways drop all arriving packets when the
average queue size exceeds the maximum threshold.

The TCP in these simulations uses Reno-style conges-
tion control, with Slow-Start, Fast Retransmit, and Fast
Recovery, modified as described in the previous section
to respond to ECN. One set of simulations uses a TCP
clock granularity set to 0.1 msec, which for this simu-
lation scenario reduces the wait for the retransmit timer
while at the same time avoiding false timeouts.



Another set of simulations uses a TCP clock granular-
ity set to 100 msec, which is closer to values of 500 msec
used by many current TCP implementations. The max-
imum TCP window ranges from 8 kB to 64 kB.

The default parameters are set so that for the first
packet from a TCP connection, before measurements
have been made of the roundtrip time, the retransmit
timer is set to three seconds, regardless of the TCP clock
granularity. For the simulations without ECN, the worst-
case telnet delay is determined mainly by this initial
value for the retransmit timer.

The telnet connections send 40-byte packets at ran-
dom intervals drawn from the tcplib distribution [DJ91].
The ten telnet connections together send several hundred
40-byte data packets in one 15-second simulation. The
bulk-data connections send 1000-byte data packets. The
start times for the bulk-data connections are staggered
over the first second of the 15-second simulation.

In Figures 2 and 3, the graphs illustrate the through-
put and delay performance in the simulations. The three
columns in Figures 2 and 3 show simulations with Drop-
Tail gateways, RED gateways without ECN, and RED
gateways with ECN, respectively. The graphs in the top
row show the effective throughput of the five bulk-data
connections, as a fraction of the total available band-
width in bits per second. The second row of graphs
show the bulk-data connection that receives the smallest
throughput over the 15-second simulation.

The third row of graphs shows the telnet packet with
the highest one-way telnet delay, in seconds. This one-
way delay is the delay from the first time that the packet is
transmitted by the source, until the packet is received by
the receiver. The fourth row shows the average one-way
telnet delay. The fifth row shows the fraction of the telnet
packets that have a one-way delay greater than 100 msec.
(A roundtrip packet delay greater than 100 msec is likely
to be noticeable to the telnet user.) Given the queue sizes
and propagation delays in these simulations, a one-way
packet delay greater than 100 msec is only possible for
a packet that is dropped at the gateway.

For each graph the -axis shows the switch buffer
size in kB. The four lines in each graph correspond
to four different simulation sets, with 8 kB and 64 kB
maximum TCP windows, and with both byte-based and
packet-based gateways. For the (somewhat unrealis-
tic) byte-based gateways, the queue size is measured in
bytes rather than in packets, so that a small 40-byte TEL-
NET packet is less likely to arrive to a full buffer than
is a larger 1000-byte FTP packet. For the packet-based
gateways, the queue size is measured in packets. With
packet-based RED gateways the gateway’s decision to
drop or mark a packet is independent of that packet’s
size in bytes, while with byte-based RED gateways the
probability that a packet is dropped (or marked) is pro-

portional to that packet’s size in bytes.
We ran five simulations for each set of parameters.

The result of each simulations is marked on the graph,
and the lines show the averages of the five simulations.

6.2 Results for LAN simulations

As Figures 2 and 3 show, for all of the simulations of
RED with ECN the effective throughput is high and the
telnet packet delay is low. Without ECN the network
performance can be significantly affected by the TCP
clock granularity, by the level of congestion (as a func-
tion of the TCP maximum window), and by whether the
RED gateway is using a dropping policy that is sensitive
to packet size.

For the simulations in Figure 2 with the TCP clock
granularity set to 0.1 msec, the throughput is high for
all three sets of simulations, Drop-Tail, RED without
ECN, and RED with ECN. However, for the simulations
of packet-based Drop-Tail and RED gateways without
ECN, telnet packets are occasionally dropped, leading
to occasional telnet packets with high delay.

For the simulations in Figure 3 of RED without ECN
with smaller switch buffers, a TCP clock granularity of
100 msec, and small TCP windows, the throughput of
the bulk-data connections suffers. Because of the coarse
TCP clock granularity, a number of connections could
be waiting for a retransmit timer to expire, resulting in
link idle time.

For the simulations with Drop-Tail gateways and
small TCP windows, packets should never be dropped
at the gateway. For the simulations with Drop-Tail gate-
ways, larger TCP windows, and a TCP clock granular-
ity of 100 msec, the overall throughput is high, but the
graph of the “Smallest Bulk-Data Throughput” shows
that there is some unfairness; with smaller buffer sizes,
the throughput of the smallest of the five bulk-data con-
nections is less than optimal. Note that a Drop-Tail
gateway with a certain buffer size cannot be directly
compared to a RED gateway with the same buffer size;
the more appropriate comparison is between a Drop-
Tail gateway and a RED gateway with a similar average
queue size.

These simulations show that the delay for small telnet
packets is much lower with byte-based gateways. These
byte-based gateways might be easy to implement in our
simulator, but they are not typical of current gateways.
In addition, for low-throughput delay-sensitive interac-
tive traffic where the size of individual packets is simi-
lar to the size of bulk-data packets, byte-based gateways
would not improve the performance of the interactive
traffic.
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Figure 2: LAN simulations with a 0.1 msec TCP clock.
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Figure 3: LAN simulations with a 100 msec TCP clock.



7 Simulation results of ECN in
WANS

This section gives results from simulations of ECN and
non-ECN gateways in a wide-area environment. The
throughput for the bulk-data traffic is similar in the sim-
ulations with Drop-Tail gateways, RED gateways with
ECN, or RED gateways without ECN. However, the
packet delay for low-bandwidth telnet traffic is signif-
icantly lower for the simulations with ECN.

Gateway

A B

0.5 msec

100 Mbps

5 msec

1 msec

3 msec

0.5 msec

2 msec

5 msec

1 msec

Gateway

100 Mbps

10 msec

45 Mbps

Figure 4: Simulation scenario for wide-area traffic.

7.1 WAN simulation scenario

The simulation network in Figure 4 has two-way traf-
fic consisting of sixteen TELNET connections in each
direction, occasional FTP connections with a limited
amount of data to transfer (100-300 packets), and a num-
ber of bulk-data connections with an unlimited amount
of data to transfer. For the simulations in Figure 5 of
a moderate traffic load, there are four bulk-data TCP
connections in each direction. For the simulations in
Figure 6 of a heavy traffic load, there are twenty bulk-
data TCP connections in each direction. This is not in-
tended to be a realistic scenario; this is simply intended
to illustrate that the performance of non-ECN gateways
depends in part on the level of congestion.

The roundtrip propagation delays range from 21 to
40 msec. Given 1000-byte packets, the bandwidth-delay
product for a single connection ranges from 118 to 225
packets. Each simulation is run for 10 seconds.

The RED gateways in this simulation have the same
minimum and maximum thresholds for the average
queue size as described in the previous section. How-
ever, as is appropriate for gateways intended for wide-
area traffic, the time constant for the low-pass filter used
to calculate the average queue size has been increased.3

3The “weight” used by the exponential weighted moving average

The graphs in Figures 5 and 6 show three sets of sim-
ulations, as in the previous section. The first row of
graphs shows the aggregate throughput of the bulk-data
connections that go from a source on the left to a re-
ceiver on the right, and the second row of graphs shows
the bulk-data connection from these that has the smallest
throughput. The third and fourth rows of graphs show
the worst-case and the average telnet packet delay for
telnet packets going from left to right. The fifth row of
graphs shows the average throughput of the shorter data
connections with limited data to send.

Note that for several of the graphs, the -axis in Fig-
ure 6 is different from that in Figure 5.

The simulations use TCP connections with a 100 msec
TCP clock granularity. The simulations with TCP con-
nections with a 0.1 msec TCP clock granularity give
similar results, and are not shown here.

7.2 Results for WAN simulations

The results of the WAN simulations show that, while
throughput is similar in all three sets of simulations,
the packet delay for low-bandwidth interactive traffic
is much better for the simulations with ECN.

The results are fairly similar for the two simulation
sets without ECN, those with Drop Tail gateways and
those with RED gateways. However, it would be possi-
ble to construct WAN scenarios, like the LAN simula-
tions earlier in this paper, that illustrate some of the ad-
vantages of RED gateways (with or without ECN) over
Drop-Tail gateways [FJ93, VS94]. This could probably
be the case, for example, for scenarios that exhibit either
global synchronization and/or unfairness with Drop-Tail
gateways.

Note that, for both Drop Tail gateways and RED gate-
ways without ECN, telnet packet delay is worse with
a larger number of bulk-data connections or with TCP
connections with larger windows. In these simulations
with increased demand, an increased number of packet
drops is required from a non-ECN gateway to control
congestion.

For the Drop-Tail gateways, the throughput and delay
performance is particularly good for the simulations with
a smaller number of bulk-data connections, smaller win-
dows, and byte-based gateways. In this case the level of
congestion is fairly low.

For wide-area traffic, even for those cases where the
source has to wait for a retransmit timer to detect a lost
packet, a TCP clock granularity of 100 msec is not a
major problem, and the additional delay to wait for a
retransmit timer has a less significant impact on perfor-

filter to calculate the average queue size has been decreased from 0.002
to 0.001 [FJ93].
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Figure 5: WAN simulations with a 100 msec TCP clock and a moderate number of bulk-data connections.
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Figure 6: WAN simulations with a 100 msec TCP clock and a large number of bulk-data connections.



mance. In this case, the simulations with 100 msec TCP
clocks are similar to those with 0.1 msec TCP clocks.

8 Advantages and disadvantages of
ECN

In this section we discuss further some of the advan-
tages and disadvantages of ECN, both for the current
Internet environment and for various proposed modifi-
cations to that environment. As already discussed in the
introduction, the advantages of ECN include a reduc-
tion in packet drops and packet delay for low-bandwidth
delay-sensitive TCP traffic and a prompt notification to
end nodes of network congestion.

8.1 Disadvantages of ECN

Two disadvantages or potential problems with ECN con-
cern non-compliant ECN connections and the potential
loss of ECN messages in the network.

A non-compliant TCP connection could set the ECN
field to indicate that it was ECN-capable, and then ignore
ECN notifications. Non-compliant connections could
also ignore Source Quench messages. However, for a
network that uses only packet drops for congestion noti-
fication, a non-compliant connection could also refrain
from making appropriate window decreases in response
to packet drops. A non-compliant connection interested
in reliable delivery cannot ignore packet drops com-
pletely, but in the absence of monitoring and controls, a
non-compliant connection could cause congestion prob-
lems in either an ECN or a non-ECN environment.

A problem with ECN messages that has no counter-
part with packet drops is that an ECN message (e.g., a
Source Quench message, or a TCP ACK packet with the
ECN field set) could be dropped by the network, and
the congestion notification could fail to reach the end
node. Thus, neither Source Quench messages nor the
use of ECN fields in packet headers can guarantee that
the TCP source will receive each notification of conges-
tion. However, with RED gateways the gateway does
not rely on the source to respond to each congestion no-
tification. The gateway will continue to set the ECN
field in randomly-chosen packets as long as congestion
persists at the gateway. In addition, a gateway imple-
menting RED algorithms is particularly unlikely to drop
a high fraction of packets. The occasional loss of an
ECN message should not be a serious problem.

8.2 ECN with other versions of TCP

The simulations in this paper use Reno-style TCP algo-
rithms, modified as suggested in this paper to respond

to ECN messages. In this section we discuss the im-
plications of ECN for some proposed modifications to
TCP.

One proposed modification to TCP, the addition of
Selective Acknowledgements, would reduce TCP’s re-
liance on the retransmit timer when multiple packets are
dropped in one roundtrip time. While this would im-
prove somewhat the robustness of the response of bulk-
data TCP connections to packet drops as an indication
of congestion, this would not reduce the ability of ECN
mechanisms to reduce packet delay for low-bandwidth
delay-sensitive TCP connections.

There are several proposed modifications of TCP
[BOP94, WC91, WC92] where the TCP source would
detect incipient congestion from the traffic dynamics of
the connection’s traffic stream. For a network such as
the Internet without admissions control, a TCP source
cannot completely prevent the network from dropping
its packets. Nevertheless, with improved detection by
TCP of incipient congestion, the TCP source could re-
duce congestion and consequently reduce the number of
packets dropped.

However, the possibility of improved congestion de-
tection by the end nodes does not eliminate the need
for improved congestion detection at the gateways. In
particular, in the absence of prior information about
the fixed propagation delay of a path, it is not possi-
ble for end nodes to distinguish between propagation
delay and persistent queueing delay (that is, queueing
delay that existed when the connection was started, and
that has persisted for the duration of the connection).
As the delay-bandwidth product of network connections
increases, the buffer capacity as the gateways will also
increase, and it will become increasingly important that
these large buffers not have persistent large queues.

The detection of persistent large queues is appropri-
ately done in the gateway itself, and the notification to
the end nodes of this congestion requires either packet
drops or ECN. Thus, while proposed modifications of
TCP might decrease the number of packets dropped by
the gateways as a result of buffer overflows, these modi-
fications do not eliminate the need for some form of con-
gestion notification from the gateways to the end nodes.

It seems unlikely to us that modifications of TCP
with newer end-to-end congestion avoidance mecha-
nisms would significantly reduce the usefulness of ECN.

8.3 ECN with proposed modifications to
router scheduling algorithms

Other possible changes in future networks such as the
introduction of priority-based scheduling or of Fair-
Queueing-based scheduling at the gateways could com-
plicate the traffic dynamics of TCP traffic in future net-



works.
As an example of possible changes, the proposed IPng

header [H94] contains a Flow Label with a 4-bit Traffic
Class field identifying seven classes of flow-controlled
(e.g., TCP) traffic, including classes for unattended data
transfer such as email, attended data transfer such as FTP,
interactive traffic such as telnet, and interactive control
traffic such as SNMP. These Flow Labels could facilitate
the use by gateways of separate queues or scheduling
algorithms for the different traffic classes [BCS94, F93].

The use of a separate traffic class for interactive traffic
would reduce packet drops for this traffic during periods
of low demand from the interactive traffic. However, for
both attended data transfer and interactive traffic, some
notification of congestion from the gateways will con-
tinue to be required. Thus, the use of ECN mechanisms
would still improve the promptness and robustness of
congestion notification for data transfer connections, and
reduce unnecessary packet drops for some connections
in the interactive traffic class.

While it is difficult to predict the future internet con-
gestion control environment, and the precise advantages
and disadvantages of ECN mechanisms in that environ-
ment, the basic advantages of ECN mechanisms of re-
ducing unnecessary packet drops for low-bandwidth in-
teractive traffic and of speeding the notification of con-
gestion to bulk data connections seem likely to remain.
Further, in a heterogeneous internet some routers might
find ECN mechanisms useful for ECN-capable TCP con-
nections, without ECN mechanisms being required for
all routers.

9 Implementation issues

9.1 Source Quench messages vs. ECN
fields in packet headers

The guidelines in the paper for the response of TCP
sources to ECN messages are orthogonal to the ques-
tion of the mechanisms for delivering this congestion
notification to the source. In this section we compare
two such mechanisms: Source Quench messages, and
ECN fields in packet headers.

One advantage of using ECN fields in IP packet head-
ers is that the ECN field places no additional load on
the network in times of congestion. If a Drop-Tail
router were to send a Source Quench message for every
packet dropped at the router, the overhead of this Source
Quench traffic in times of congestion could be a signif-
icant problem. However, the use of intelligent gateway
mechanisms such as those in RED gateways would limit
the overhead of the Source Quench traffic. In addition,
in particular environments such as LANs where the over-

head of Source Quench messages would be limited by
the small number of hops on the return paths, the use of
Source Quench messages could be quite justifiable.

An advantage of Source Quench messages (or other
forms of “backward ECN”) over “forward” ECN mech-
anisms such as ECN fields in packet headers is that with
Source Quench messages, the notification of congestion
arrives at the source as quickly as possible. Although
we have not explored the dynamics of backward ECN
mechanisms such as Source Quench in our simulations,
this promptness in the notification of congestion would
be an advantage in congestion control schemes.

Another practical advantage of Source Quench mes-
sages is that Source Quench messages could be used im-
mediately in appropriate networks, given modified TCP
implementations with the response to Source Quench
messages proposed in this paper. The use of an ECN
field in TCP/IP networks would depend on the presence
of the ECN field in IPng headers. Even if the evidence
were sufficiently compelling to motivate such an addi-
tion, it could be years before such headers were fully
deployed.

As already mentioned, both Source Quench messages
and TCP acknowledgement packets with the ECN field
set could be dropped by a gateway, with the result that
the TCP source node might never receive the congestion
notification. If the network drops a data packet that has
the ECN bit set, the TCP source will still infer conges-
tion when it detects the dropped data packet. However,
if the network drops an ACK packet that has the ECN
bit set, and the TCP source later receives an ACK packet
without the ECN bit set that acknowledges a subsequent
data packet, then the TCP source will never receive the
notification of congestion. Thus, neither Source Quench
messages nor ECN fields ensure reliable delivery of con-
gestion notification.

9.2 Incremental deployment of ECN-
capable TCP

One concern regarding ECN fields in IP packet head-
ers is with the incremental deployment of ECN-capable
TCP implementations. If a gateway sets the ECN field
in a packet header, how does the gateway know that the
transport-level protocol is capable of responding appro-
priately? For an ECN field with two bits, one bit could
be used to indicate whether or not the transport protocol
could respond to ECN, and the second bit could be used
to indicate congestion. For an ECN field with only one
bit, these two functions would have to be combined with
a single bit.

For an ECN field that consists of a single bit, one
value, say the “OFF” value, could indicate “ECN-
capable Transport Protocol”, and the “ON” value, could



indicate “either Non-ECN Transport Protocol or Con-
gestion Notification”. For packets from transport-level
sources that are not capable of ECN response, the ECN
field could be set to ON (the default value). For packets
from transport-level sources capable of ECN response,
the ECN field could be set to OFF. Non-ECN-capable
gateways would ignore the ECN field, simply dropping
packets to indicate congestion. ECN-capable gateways,
seeing packets with the ECN field OFF, would know that
the corresponding transport protocol was ECN-capable,
and could set the ECN field to ON for appropriate pack-
ets during times of congestion.

For arriving packets with the ECN field ON, the ECN-
capable gateway would not know whether that packet
came from a non-ECN-capable transport protocol, or
whether the ECN field had been set by a previous gate-
way. In either case, if the gateway wanted to notify a
TCP source about congestion, the gateway would drop
the packet. This method of incremental deployment with
a single-bit ECN field would mean that for packets from
ECN-capable transport protocols, that packet would be
dropped by a second router attempting to set the ECN bit.
This can only happen for packets that pass through mul-
tiple congested gateways, where both gateways choose
that packet for notifying the source of congestion.

Thus, ECN fields could be deployed in a heteroge-
neous environment where only some of the TCP imple-
mentations were ECN-capable, and where only some of
the routers have procedures for setting the ECN field.

Note that this description of a single-bit ECN field
assumes a TCP connection with one-way traffic, where
all of the data packets travel in one direction and ACK
packets travel in the other. For a TCP connection with
two-way data transfer, a second bit would be needed in
the ECN field, or some additional mechanism would be
needed to return an indication of congestion from the
receiver to the source.

A concern with incremental deployment also exists
for Source Quench messages. If a gateway wants to
use Source Quench messages, the gateway would not
know whether the TCP implementation was a old im-
plementation with a fairly drastic response to Source
Quench messages, or a newer implementation with the
responses recommended in this paper. However, in this
case the problem with older implementations would not
be that they would ignore Source Quench messages en-
tirely, but that they would back off for too long in re-
sponse to a Source Quench message. This would be an
incentive for users to upgrade to newer TCP implemen-
tations, given an environment with routers using Source
Quench messages.

9.3 Improving the TCP clock granularity?

In the simulations in this section, the advantages of ECN
mechanisms in TCP/IP networks are most pronounced
for LAN traffic with TCP implementations limited by a
coarse-granularity TCP clock. This coarse-grained TCP
clock limits the granularity of TCP’s measurements of
current roundtrip times, used to determine the value for
the retransmit timer. The simulation results in this pa-
per, along with other results [RF94], argue in favor of
improving the granularity of TCP clocks.

Unfortunately, even if there were no hardware con-
siderations, and TCP designers could set the TCP clock
granularity to the optimal value, it is not obvious what
that optimal value should be. It seems clear (to us) that a
TCP clock granularity of 100 msec (or slightly smaller)
would be more appropriate for current networks than the
TCP clock granularity of 500 msec in many current TCP
implementations.

However, in the current algorithms for setting the TCP
retransmit timer, the coarse granularity for the TCP clock
is deliberately used as a low-pass filter to filter out com-
mon traffic variations [J88]. This filtering implicitly
accounts for common traffic dynamics such as interac-
tions between local and long haul traffic. Changing to
an arbitrarily-fine-grained TCP clock (e.g., considerably
smaller than 100 msec) would remove this filtering, re-
sulting in false retransmits in many scenarios. If a fine-
grained TCP clock were used, this filtering would have
to be replaced by a substantially more sophisticated es-
timation process. The addition of ECN mechanisms to
TCP/IP networks has the advantage of reducing the im-
portance of the TCP clock granularity, thereby increas-
ing the general robustness of the network.

9.4 TCP over ATM

The investigation of ECN in this paper concerns only
TCP/IP networks; we are not considering the various
proposals for ECN in ATM networks. In particular, we
are not considering the congestion control strategies that
might be used inside the ATM networks.

We do, however, consider a scenario of TCP/IP traf-
fic where part or all of the path might consist of ATM
networks. The ATM network needs mechanisms to in-
form TCP connections of congestion. At the moment,
the only viable mechanism is for the ATM network to
drop TCP/IP packets, either inside or at the boundaries
of the ATM network.

If IP-level ECN mechanisms (e.g., Source Quench,
ECN fields in IP packet headers) were available for ATM
networks to inform TCP sources about congestion, the
ATM networks could invoke these mechanisms at the
boundary of the ATM networks where frame segmenta-



tion and reassembly occur. For example, for a TCP/IP
network where some of the TCP sources were ECN-
capable, the ATM boundary router could drop TCP/IP
packets to indicate congestion to non-ECN-capable TCP
sources, and invoke ECN mechanisms for packets from
ECN-capable TCP sources.

10 Conclusions and Future Work

We have proposed specific guidelines for TCP’s re-
sponse to Source Quench messages or to other ECN
mechanisms. We would propose that these guidelines
be used to modify TCP’s response to Source Quench
messages. If TCP implementations had a more clearly-
defined response to Source Quench messages, then net-
works such as ATM LANs could consider whether or
not to use Source Quench messages as a controlled noti-
fication of congestion to TCP/IP connections traversing
that network.

For a wide-area network the overhead of Source
Quench messages makes their use problematic. How-
ever, the logistical difficulties of adding ECN fields to
IP packet headers makes the use of ECN fields problem-
atic as well. The proposed IPng packet header [H94] has
no space allocated for an ECN field, and it is not clear if
IPng options, with a minimum length of 8 octets, would
be an appropriate place for an ECN field.

The simulations in this paper suggest the ECN mech-
anisms would give a clear, if modest, benefit in TCP/IP
networks. However, we see this research as a prelimi-
nary investigation of the advantages and disadvantages
of ECN mechanisms in TCP/IP networks.

A main advantage of ECN mechanisms is in avoiding
unnecessary packet drops, and therefore avoiding un-
necessary delay for packets from low-bandwidth delay-
sensitive TCP connections. This advantage will be most
pronounced in a highly-congested network where a high
frequency of packet drops is required to control conges-
tion.

A second advantage of ECN mechanisms is in net-
works (generally LANs) where the effectiveness of TCP
retransmit timers is limited by the coarse granularity of
the TCP clock. With ECN, the congestion notification is
promptly received by the TCP source, and the connec-
tion does not remain idle, waiting for a TCP retransmit
timer to expire, after a packet has been dropped. While
to some extent the over-coarse granularity of the TCP
clock could be corrected, and the TCP retransmit timer
algorithms suitably modified, the use of ECN mecha-
nisms, by reducing the number of packet drops, reduces
the dependence on the retransmit timer.

One disadvantage of ECN mechanisms discussed ear-
lier in the paper is that ECN messages (e.g., Source

Quench messages, or TCP ACK packets with the ECN
field set) could be dropped by the network before reach-
ing the TCP source. For a TCP connection, packet drops
are a reliable (if sometimes slow) indication of conges-
tion. Preliminary simulations of a wide-area scenario
with two-way traffic and multiple congested gateways,
some with Drop-Tail gateways and some with ECN-
capable RED gateways, do not show performance prob-
lems from dropped ECN messages. In addition, the
number of dropped ECN messages should be small in
a network with ECN mechanisms and RED-style gate-
ways.
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