
University of Nebraska - Lincoln

DigitalCommons@University of Nebraska - Lincoln

CSE Journal Articles Computer Science and Engineering, Department of

2014

TCP Congestion Avoidance Algorithm
Identification
Peng Yang

Juan Shao

Wen Luo

Lisong Xu
University of Nebraska-Lincoln, xu@cse.unl.edu

Jitender S. Deogun
University of Nebraska-Lincoln, jdeogun1@unl.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/csearticles

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of

Nebraska - Lincoln. It has been accepted for inclusion in CSE Journal Articles by an authorized administrator of DigitalCommons@University of

Nebraska - Lincoln.

Yang, Peng; Shao, Juan; Luo, Wen; Xu, Lisong; Deogun, Jitender S.; and Lu, Ying, "TCP Congestion Avoidance Algorithm
Identification" (2014). CSE Journal Articles. 124.
http://digitalcommons.unl.edu/csearticles/124

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/csearticles/124?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors

Peng Yang, Juan Shao, Wen Luo, Lisong Xu, Jitender S. Deogun, and Ying Lu

This article is available at DigitalCommons@University of Nebraska - Lincoln: http://digitalcommons.unl.edu/csearticles/124

http://digitalcommons.unl.edu/csearticles/124?utm_source=digitalcommons.unl.edu%2Fcsearticles%2F124&utm_medium=PDF&utm_campaign=PDFCoverPages


IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014 1311

TCP Congestion Avoidance Algorithm Identification
Peng Yang, Member, IEEE, Juan Shao, Wen Luo, Lisong Xu, Member, IEEE, Jitender Deogun, Member, IEEE,

and Ying Lu, Member, IEEE

Abstract—The Internet has recently been evolving fromhomoge-
neous congestion control to heterogeneous congestion control. Sev-

eral years ago, Internet traffic was mainly controlled by the tradi-

tional RENO, whereas it is now controlled by multiple different
TCP algorithms, such as RENO, CUBIC, and Compound TCP

(CTCP). However, there is very little work on the performance and

stability study of the Internet with heterogeneous congestion con-
trol. One fundamental reason is the lack of the deployment infor-

mation of different TCP algorithms. In this paper, we first pro-

pose a tool called TCP Congestion Avoidance Algorithm Identifi-
cation (CAAI) for actively identifying the TCP algorithm of a re-

mote Web server. CAAI can identify all default TCP algorithms

(e.g., RENO, CUBIC, and CTCP) and most non-default TCP al-
gorithms of major operating system families. We then present the

CAAI measurement result of about 30 000 Web servers. We found

that only of the Web servers still use RENO,
46.92% of the Web servers use BIC or CUBIC, and

of the Web servers use CTCP. Our measurement results

show a strong sign that themajority of TCP flows are not controlled
by RENO anymore, and a strong sign that the Internet congestion

control has changed from homogeneous to heterogeneous.

Index Terms—Heterogeneous congestion control, Internet mea-

surement, TCP congestion control.

I. INTRODUCTION

T HE INTERNET has recently been evolving from homo-

geneous congestion control to heterogeneous congestion

control. A few years ago, Internet traffic was mainly controlled

by the same TCP congestion control algorithm—the standard

Additive-Increase-Multiplicative-Decrease algorithm [2], [3]

which is usually called RENO.1 However, Internet traffic is

now controlled by multiple different TCP algorithms. For

example, Table I lists all the TCP algorithms available in

two major operating system families: Windows family (e.g.,

Windows XP/Vista/7/Server) and Linux family (e.g., RedHat,

Fedora, Debian, Ubuntu, SuSE). Both Windows and Linux

Manuscript received September 25, 2012; revised May 27, 2013; accepted

July 11, 2013; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor S. Fahmy. Date of publication September 09, 2013; date of current

version August 14, 2014. This work was supported in part by the NSF under

Grants CAREER CNS-0644080 and CNS-1017561. Part of this work was

presented at the IEEE International Conference on Distributed Computing

Systems (ICDCS), Minneapolis, MN, USA, June 20–24, 2011.

The authors are with the Department of Computer Science and Engineering,

University of Nebraska–Lincoln, Lincoln, NE 68588-0115 USA (e-mail:

pyang@cse.unl.edu; jshao@cse.unl.edu; wluo@cse.unl.edu; xu@cse.unl.edu;

deogun@cse.unl.edu; ylu@cse.unl.edu).

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2013.2278271

1In this paper, we use RENO to refer to the traditional congestion control

algorithm used in both Reno, NewReno, and SACK.

TABLE I

TCP ALGORITHMS AVAILABLE IN MAJOR OPERATING SYSTEM FAMILIES

users can change their TCP algorithms with only a single line

of command. Linux developers can even design and then add

their own TCP algorithms.

There is, however, very little work [4]–[6] on the performance

and stability study of the Internet with heterogeneous conges-

tion control. One fundamental reason is the lack of the deploy-

ment information of different TCP algorithms in the Internet. As

an analogy, if we consider the Internet as a country, an Internet

node as a house, and a TCP algorithm running at a node as a

person living at a house, the process of obtaining the TCP de-

ployment information can be considered as the TCP algorithm

census in the country of the Internet. Just like the population

census is vital for the study and planning of the society, the

TCP algorithm census is vital for the study and planning of the

Internet.

Question 1: Are the Majority of TCP Flows Still Con-

trolled by Reno?: This is an important question because most

of recently proposed congestion control algorithms, such as

CUBIC [7], CTCP [8], DCCP [9], and SCTP [10], are designed

to perform well when competing with the traditional RENO,

but yet be friendly with the competing RENO traffic (usu-

ally referred to as TCP friendliness). If the majority of TCP

flows are not controlled by RENO anymore, it is necessary to

reevaluate not only the performance but also the design goals

of these congestion control algorithms. For example, if CTCP

becomes the dominating algorithm in the Internet, should new

congestion control algorithms be designed to be friendly to

CTCP instead of RENO?

Question 2: What Percentage of Internet Nodes Use a Spe-

cific TCP Algorithm?: This is an important question for de-

signing new congestion control algorithms and evaluating ex-

isting congestion control algorithms, such as studying interpro-

tocol fairness issues [4], [6] among different TCP algorithms.

More importantly, this is an important question for designing

and dimensioning other Internet components. As an example,

the sizes of router buffers [11] are usually determined by as-

suming that all TCP flows are controlled by RENO, and for in-

stance the well-known rule-of-thumb that sets the buffer size of

a link to its bandwidth delay product directly comes from the

RENO assumption. For an Internet with heterogeneous conges-

tion control, it is important to know the answer to question 2

1063-6692 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

kasyma
Typewritten Text
Pages: 1311 - 1324, DOI: 10.1109/TNET.2013.2278271



1312 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Fig. 1. TCP congestion control components.

in order to determine the sizes of router buffers. As another ex-

ample, the design of Active Queue Management (AQM) mech-

anisms is also highly dependent on the TCP algorithms used by

Internet nodes.

This paper has two main contributions. First, we propose a

tool called TCP Congestion Avoidance Algorithm Identification

(CAAI) for actively identifying the TCP algorithm of a remote

Web server. The reason that we consider Web servers is that

Web traffic comprises a significant portion of the total Internet

traffic (between 16% and 34% in different regions according to

ipoque [24] in 2009, and between 16% and 25.9% in different

regions according sandvine [25] in 2012). CAAI can identify all

default TCP algorithms (i.e., RENO, BIC, CUBIC, and CTCP)

andmost non-default TCP algorithms ofmajor operating system

families and can be used to conduct the TCP algorithm census.

It is very challenging to develop CAAI due to the fact that In-

ternet nodes do not explicitly report their TCP algorithms. With

the population census analogy, it would be very challenging to

gather the population information if people did not tell their in-

formation. After an overview of CAAI in Section III, we de-

scribe the three steps of CAAI in Sections IV–VI, respectively:

1) how to design and emulate some specific network environ-

ments in which different TCP algorithms behave differently;

2) how to extract the unique features of a TCP algorithm from

the collected TCP behavior traces; 3) how to identify the TCP

algorithm of a Web server based on its TCP features.

Second, we demonstrate the potential applications of CAAI

by presenting our measurement results of about 30 000 Web

servers in Section VII. We found that only of

the Web servers still use RENO, 46.92% of the Web servers use

BIC or CUBIC, and of the Web servers use

CTCP. In addition, we found that some TCP algorithms have

several versions, and the early versions are still used by a large

fraction of Web servers. For example, of the

Web servers still use an early version of CTCP. We also found

that someWeb servers use non-default TCP algorithms (such as

HTCP).

II. TCP CONGESTION CONTROL AND RELATEDWORKS

TCP congestion control consists of several important com-
ponents, such as the initial window size, slow start, congestion

avoidance, loss recovery, etc., as illustrated in Fig. 1. The initial
window size could be 1, 2 [26], 3, 4 [27], or even 10 [28]

packets. The slow start algorithm could be the standard slow
start [26], limited slow start [29], hybrid slow start [30], etc.

The congestion avoidance algorithm could be RENO [2],
CUBIC [13], CTCP [8], etc. The loss recovery mechanism

could be Reno [31], NewReno [32], SACK [33], DSACK [34],
etc. Note that, we can create different TCP congestion control

algorithms with different combinations of these components.

For example, CUBIC can be combined with the standard slow
start or the hybrid slow start or other slow start algorithms,

and it can be combined with NewReno or SACK or other loss
recovery mechanisms.

CAAI proposed in this paper only considers how to identify
the TCP congestion avoidance component of a Web server. The

initial window size and the loss recovery components of a Web
server can be identified by TBIT [35] (described later in this

section). Very few slow start algorithms have been implemented
in major operating systems, and therefore we do not consider

how to identify them in this paper.
Because this paper considers only the congestion avoidance

component of a TCP congestion control algorithm, we use the
term “a TCP congestion avoidance algorithm” or “a TCP algo-

rithm” to refer to the congestion avoidance component of a TCP
congestion control algorithm. For example, when we say that a

TCP algorithm is CUBIC, it means that the congestion avoid-
ance component of the TCP congestion control algorithm is

CUBIC. We first review related works on identifying TCP con-
gestion avoidance components, and then review related works

on inferring other TCP congestion control components.
1) Related Works on Identifying TCP Congestion Avoidance

Components: Because most TCP algorithms listed in Table I
were proposed recently, there are very few papers on identi-

fying them. Oshio et al. [36] propose a cluster analysis-based
method for a router to distinguish between two different TCP al-

gorithms. Feyzabadi et al. [37] consider how to detect whether
the TCP algorithm of a Web server is RENO or CUBIC. Our

proposed CAAI is different from their works in that: 1) CAAI
can distinguish among most TCP algorithms available in major

operating system families, whereas their works consider only
two different TCP algorithms; 2) we have solved many Web

and TCP issues so that we can conduct a large scale of In-
ternet experiments, whereas their works are mainly based on

simulations.
Our early work [38] proposes a method to infer the TCP mul-

tiplicative decrease parameter of a Web server, which is an im-
portant TCP feature for identifying TCP algorithms. This paper

differs from our early work [38] in the following ways: 1) this
paper considers how to distinguish among different TCP algo-

rithms, whereas our early work only considers how to extract a
TCP feature—the TCP multiplicative decrease parameter; and

2) this paper presents, for the first time, the TCP deployment
information of about 30 000 Web servers.

2) Related Works on Inferring Other TCP Congestion
Control Components: There are a large number of papers on

inferring other TCP congestion control components, and they
can be classified into two categories: active measurements [35],

[39]–[41], which actively measure the TCP behaviors of
Internet nodes, and passive measurements [42]–[46], which

measure the TCP behaviors of Internet flows in passively
collected packet traces.

We review the two most relevant works. TBIT [35] is a pop-
ular active measurement tool for inferring TCP behavior of a

remote Web server. It can infer various TCP behaviors such as
the initial window size, the loss recovery mechanisms, conges-

tion window halving, etc. However, it cannot identify the con-
gestion avoidance algorithms, simply because most congestion

avoidance algorithms listed in Table I were proposed after TBIT
was developed. CAAI is implemented by extending the source

code of TBIT. Specifically, CAAI only uses part of the TBIT



YANG et al.: TCP CONGESTION AVOIDANCE ALGORITHM IDENTIFICATION 1313

code to communicate raw TCP packets with a Web server. We
wrote our own code to emulate two network environments, to

extract two TCP features, and to identify the TCP congestion
avoidance algorithm.

NMAP [41] is a popular active measurement tool for infer-
ring the information, such as the operating system, of a remote

Internet node. However, it is hard to infer the TCP algorithm
of a remote Internet node, even if we can detect the operating

system of the node for the following reasons. Even though an
operating system has a default TCP algorithm, a user can easily

change the default algorithm.

III. CAAI OVERVIEW

A. Design Goals

CAAI is designed to actively identify the TCP congestion
avoidance algorithm of a remote Web server.

We have the following design goals for CAAI.
� Design goal 1: It can identify all default TCP algorithms

and most non-default TCP algorithms of major operating
system families.

� Design goal 2: It is insensitive to the operating system of a
Web server, insensitive to network conditions, and insen-

sitive to TCP components other than the congestion avoid-
ance component.

For the first design goal, we consider a total of 14 TCP algo-
rithms: RENO [2], BIC [12], CTCP and CTCP [8], CUBIC

and CUBIC [13], HSTCP [14], HTCP [15], ILLINOIS [17],
STCP [19], VEGAS [20], VENO [21], WESTWOOD+ [22],

and YEAH [23]. RENO is the default TCP of some Windows
operating systems and some Linux operating systems. CTCP

is the default TCP of some Windows operating systems. We
found that there are two versions of CTCP: The earlier one im-

plemented in Windows Server 2003 and XP is referred to as
CTCP , and the later one implemented inWindows Server 2008,

Vista, and 7 is referred to as CTCP . BIC and CUBIC are the de-
fault TCP of some Linux operating systems. Since CUBIC was

included into Linux Kernel in 2006, it has had several major
changes [13]. We consider two major versions of CUBIC: The

one implemented in Linux kernel 2.6.25 and before is referred
to as CUBIC , and the one implemented in Linux kernel 2.6.26

and after is referred to as CUBIC . Finally, among all TCP algo-
rithms listed in Table I, we do not consider two TCP algorithms,

HYBLA [16] and LP [18], because they are not designed for
Web servers. Specifically, HYBLA [16] is primarily designed

for satellite connections, and LP [18] is designed for background
file transfer.

The second design goal enables us to accurately identify the
TCP algorithms of as many Web servers as possible. Insensi-

tivity to the operating system of a Web server is desirable be-
cause the same TCP algorithm can be implemented into dif-

ferent operating systems. Insensitivity to network conditions
(e.g., packet loss, delay, reordering, and duplication) is desir-

able because we have no control of the network condition be-
tween a CAAI computer and a remote Web server. Insensitivity

to TCP components other than congestion avoidance is desir-
able because the TCP behavior of a Web server is controlled

not only by its TCP congestion avoidance component, but also
by many other TCP components (as listed in Fig. 1).

B. TCP Algorithm Features

ATCP congestion avoidance algorithm can be well described
by the following two features.

� Feature 1: Multiplicative Decrease Parameter (denoted
by ), which determines the slow start threshold (i.e., the

boundary congestion window size between the slow start
and congestion avoidance states).

� Feature 2: Window Growth Function (denoted by ),
which determines how a TCP algorithm grows its conges-

tion window size in the congestion avoidance state.
Because this paper considers only the congestion avoidance

component of a TCP congestion control algorithm, we use the
term “window” to refer to the congestion window of a TCP con-

gestion control algorithm. Let denote the window
size just before a loss event or a timeout. In case of a loss event,

TCP usually sets both its slow start threshold and window size
to . In case of a time out, TCP sets its slow start

threshold to , and usually sets its window size to
1 packet. Different TCP algorithms usually have different mul-

tiplicative decrease parameters. For example, RENO sets
; CUBIC sets ; and STCP sets . Some TCP

algorithms have a variable that depends on and
the network environment such as the duration of a round-trip

time (RTT), the minimum RTT, and the maximum RTT. For ex-
ample, BIC sets if , and sets if

; HSTCP sets between 0.5 and 0.9 depending
on ; HTCP sets between 0.5 and 0.8 depending on

the ratio of the minimum RTT and the maximum RTT.
Different TCP algorithms usually have different window

growth functions. The window growth function of a TCP algo-
rithm is usually a function of the elapsed number of RTTs in

the congestion avoidance state (denoted by ) and .
For example, RENO has a linear window growth function

of (i.e., ), and
STCP has an exponential window growth function of (i.e.,

for nondelayed
ACKs). Some TCP algorithms have a window growth function

that depends not only on , but also on the network environ-
ment. For example, the CUBIC function depends on both and

the duration of an RTT, and the CTCP function depends on ,
the duration of an RTT, and the minimum RTT.

Note that different TCP algorithms may show different fea-
tures in one network environment, but show the same features

in another network environment. Therefore, an important part of
CAAI is to emulate some network environments in which dif-

ferent TCP algorithms have different features so that they can
be distinguished from one another.

C. CAAI Steps

CAAI identifies the TCP algorithm of a remote Web server

by analyzing its TCP behaviors in some emulated network en-
vironments. CAAI has the following three steps.

� Step 1: Trace Gathering. CAAI gathers the TCP window
traces of a remote Web server in some emulated network

environments.
� Step 2: Feature Extraction. CAAI extracts the two TCP

algorithm features from the gathered TCP window traces.
� Step 3: Algorithm Classification. CAAI finally identifies

the TCP algorithm by comparing the extracted features to
the training features.

D. Design Challenges

It is very challenging to design CAAI for the following

reasons.



1314 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

1) It might be easy to find a network environment to distin-

guish two TCP algorithms. However, it is nontrivial to find

a small set of network environments to clearly distinguish

a large number of TCP algorithms, like 14 TCP algorithms.

2) We do not have the control of the network condition

between a CAAI computer and a remote Web server. The

condition of the network from a remote Web server to a

CAAI computer greatly influences the TCP data packets

sent from the Web server. The condition of the network

from a CAAI computer to a Web server greatly influences

the TCP ACK packets received by the Web server. There-

fore, it is hard to emulate desired network environments,

measure the TCP window sizes of a Web server, extract

TCP features from the measured window traces, and

identify the TCP algorithm based on the extracted TCP

features.

3) We do not have the control of the content on a Web server,

and most Web pages are very short. Therefore, it is hard to

maintain a TCP connection between a CAAI computer and

a remote Web server long enough so that CAAI can gather

sufficiently long traces of TCP window sizes.

IV. CAAI STEP 1: TRACE GATHERING

A. Overview

The first step of CAAI gathers the traces of TCP window
sizes of a remoteWeb server in some emulated network environ-

ments. These network environments are carefully chosen so that
different TCP algorithms have different features and thus they

can be distinguished from one another. Specifically, for each
network environment, we have the following.

� Subtask 1: CAAI creates a TCP connection to a remote
Web server and emulates the network environment.

� Subtask 2: CAAI measures the TCP window sizes of the
Web server in the emulated network environment.

� Subtask 3:CAAI maintains the TCP connection until it has
gathered a sufficiently long trace of window sizes.

B. Emulated Network Environments

CAAI emulates the following two network environments

with parameters and for a Web server.
� Network Environment A: CAAI sends back an ACK packet

to acknowledge each TCP data packet from theWeb server
(i.e., nondelayed ACKs). The TCP data packets sent from

the Web server are not lost until the TCP window size
of the Web server becomes greater than

packets. Then, the packet loss leads to a TCP timeout of the
Web server (i.e., ). After

the timeout, there is again no data packet loss. In addi-
tion, there is always no data packet reordering in the emu-

lated network. The maximum TCP segment size (MSS) is
bytes, and the RTT between CAAI and theWeb server

is always 1.0 s.
� Network Environment B: Same as network environment A,

except that the RTT is 0.8 or 1.0 s as specified in Fig. 2.
Why These Two Network Environments?: Fig. 3 shows the

traces of window sizes of all 14 TCP algorithms in these two net-
work environments. We can see that network environment A or

B alone is insufficient to distinguish among 14 TCP algorithms.
For example, RENO [Fig. 3(a)] and VEGAS [Fig. 3(k)] have the

Fig. 2. RTTs of the two emulated network environments A and B. (a) Before

timeout. (b) After timeout.

same trace in network environment A, and RENO and VENO
[Fig. 3(l)] have very similar traces in network environment B.

Both A and B together with packets
can clearly distinguish among all 14 TCP algorithms. Network

environment A is used to collect the behavior of a TCP algo-
rithm in a network environment with a fixed RTT, in which we

can extract the two TCP features for a fixed RTT. Network envi-
ronment B is used to collect the behavior of the TCP algorithm

in another network environment with a varying RTT, in which
we can extract another two TCP features for a varying RTT.

Before the timeout in network environment B, RTT increases
from 0.8 to 1.0 s after the third RTT, and this is used to check

whether the feature depends on RTT [e.g., ILLINOIS shown
in Fig. 3(i) and VENO shown in Fig. 3(l)]. After the timeout,

RTT increases from 0.8 to 1.0 s after the 12th RTT, and this is
used to check whether the feature depends on RTT [e.g.,

CTCP shown in Fig. 3(d) and YEAH shown in Fig. 3(n)]. As
explained next, is no more than 512 packets,

and therefore TCP has already entered the congestion avoidance
state after 12 RTTs.

Values of : Most TCP algorithms typically
have the same or similar behavior as the traditional RENO for

small window sizes (e.g., CTCP = RENO when their window
sizes are less than 41), and have different behaviors than

RENO for large window sizes. Therefore, window traces ob-
tained with a large can be used to accurately

distinguish among different TCP algorithms. For example,
Fig. 3 shows that two network environments A and B with

packets can be used to clearly distin-
guish among all 14 TCP algorithms. However, window traces

with a very large are hard to obtain because
they require a very long Web page to be downloaded from a

Web server, which is usually time-consuming and sometimes
impossible to find on theWeb server, and because the maximum

achievable window size is affected by many factors such as the
bandwidth-delay product of the network and the service load

of the Web server. CAAI tries four values in
the decreasing order of 512, 256, 128, and finally 64 packets.

This is because traces with greater than 512
are hard to obtain, and traces with less than

64 are almost useless for distinguishing among different TCP
algorithms. We notice that RENO, CTCP , and CTCP have

similar traces when or 128 packets
as illustrated in Fig. 3(o), therefore we do not distinguish

among these three algorithms when or
128 packets.

Values of mss: Since the maximum window size is limited by
the ratio of the bandwidth-delay product to the MSS, we should

set to a smaller value in order to have a higher maximum
window size. CAAI tries four values in the increasing order

of 100, 300, 536, and 1460 B. This is because a large fraction of
Web servers can accept an MSS as low as 100 B, and all Web



YANG et al.: TCP CONGESTION AVOIDANCE ALGORITHM IDENTIFICATION 1315

Fig. 3. Traces of window sizes of all 14 TCP algorithms in network environments A and B measured on our local testbed with a 0% packet-loss rate. (a)–(n) are

obtained with packets, and (o) is obtained with packets. The results remain the same for different values of .

Unless explicitly indicated, the operating system is Linux kernel 2.6.27. We can see that two network environments A and B with packets

can be used to clearly distinguish among all 14 TCP algorithms. (a) RENO. (b) BIC. (c) CTCP (Windows Server 2003). (d) CTCP (Windows Server 2008).

(e) CUBIC (Linux kernel 2.6.25). (f) CUBIC (Linux kernel 2.6.27). (g) HSTCP. (h) HTCP. (i) ILLINOIS. (j) STCP. (k) VEGAS. (l) VENO. (m)WESTWOOD+.

(n) YEAH. (o) RENO, CTCP , and CTCP .

TABLE II

MINIMUM SEGMENT SIZES OFWEB SERVERS IN OUR EXPERIMENTS

servers should accept an MSS of 1460 B. Table II shows the

percentages of about 60 000 Web servers for each value
in our experiments described in Section VII-B. We can see that

most Web servers accept an of 100 B, and there are also a
nontrivial number ofWeb servers that only accept an larger

than 100 B.
Why Emulating an RTT of 1.0 s?: Because we can only emu-

late an RTT longer than the actual RTT between a CAAI com-
puter and a Web server, and because we want to emulate the

same two network environments for all Web servers, the em-
ulated RTT should be longer than all actual RTTs. However,

Fig. 4. CDF of the RTT of 5000 Web servers. Measured in 2010. One RTT per

server.

a very long emulated RTT may cause undesired TCP timeouts

(actual TCP timeouts, not our emulated TCP timeouts). Fig. 4
shows the cumulative distribution function (CDF) of the actual

RTTs of 5000 popular Web servers that we measured in 2010
using Ping, and we can see that almost all actual RTTs are less

than 0.8 s. In addition, the initial TCP timeout period is usually
between 2.5 and 6.0 s [47]. Therefore, we can choose an emu-

lated RTT in the range between 0.8 and 2.5 s, and CAAI chooses
1.0 s.



1316 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Fig. 5. TCP packets between CAAI and a remote Web server.

Value of TCP Receive Window Size: For every ACK packet,
CAAI sets the receive window size field to B and sets

the window scale option field to 14. Therefore, the actual receive
window size is B, which is 1 GB. This is

sufficiently large so that the receive window size does not limit
the rate of a TCP flow. Note that CAAI does not require such

a large amount of memory since it does not save the received
data.

Why Emulating a Timeout (i.e., No ACK Packet Until the
Timeout) Instead of a Loss Event (i.e., Three Duplicate ACK

Packets)? This is because right after a loss event, the window
size depends not only on the congestion avoidance algorithm,

but also heavily on some other TCP components such as
burstiness control in Linux. Linux uses a special burstiness

control [48], [49] to prevent TCP from sending a burst of
packets to the Internet since bursty traffic may cause long

queueing delay and high packet loss. However, the burstiness
control interferes with congestion control on controlling the

TCP window size. For example, for a Linux Web server,
the window size right after a loss event may be far less than

, and therefore it is hard to accurately measure
the two TCP features after a loss event.

Why Not Combining Multiple Network Environments Into
One Longer Network Environment? A longer network envi-

ronment requires a longer Web page to be downloaded from a
Web server, which is usually time-consuming and sometimes

impossible to find. Therefore, we prefer multiple short network
environments rather than a long network environment.

C. Subtask 1: Emulating A Network Environment

Fig. 5 illustrates how a CAAI computer communicates with a
Web server and how it emulates a network environment. CAAI

first establishes a TCP connection to the Web server by sending
a SYN packet (number 1 in the figure). The SYN packet con-

tains a TCP option to set MSS to and another TCP option
to enable the window scaling. After receiving the SYN/ACK

packet (number 2) from the Web server, CAAI defers sending
the first DATA/ACK packet (number 3) for a while so that the

first RTT experienced by theWeb server is equal to the first RTT
of the emulated network environment. This DATA/ACK packet

not only acknowledges the SYN/ACK packet, but also contains
the first few HTTP request messages.

The Web server sends back an ACK packet (number 4)
to acknowledge the DATA/ACK packet, and then sends its

data packets (only the first packet, number 5, is shown in the
figure) that contain HTTP response messages. CAAI again

defers sending the next DATA/ACK packet (number 6) so that
the second RTT experienced by the Web server is equal to

the second RTT of the emulated network environment. This
DATA/ACK packet not only acknowledges the received data

packet (number 5), but also contains the next few HTTP request
messages. CAAI continues acknowledging each received data

packet, until the TCP window size of the Web server is greater
than . Then, CAAI stops sending any packet,

and thus the TCP algorithm of the Web server will finally
time out and retransmit the lost packets. For each data packet

received after the timeout, CAAI sends back a DATA/ACK that
acknowledges all data packets received so far. CAAI finally

stops after the Web server does not send any more packets or
after it has gathered a sufficient long trace.

How to Emulate a Network Without Any Loss or Reordering
of Data Packets Except the Emulated Timeouts?: Since CAAI

defers sending ACK packets, it can detect most lost and re-
ordered packets by checking the sequence numbers of data

packets received from the Web server. In case of packet loss
or reordering, CAAI still sends the correct ACK packets as

if there is no packet loss or reordering. Note that, however,
CAAI cannot guarantee that ACK packets will be successfully

delivered to the Web server, and this is one important reason
for the inaccuracy of CAAI identification results.

How to Deal With Forward RTO-Recovery (F-RTO) [50]?:
The emulated TCP timeout may be detected by a Web server

using F-RTO as a spurious retransmission timeout. In this case,
the Web server does not have a regular slow start after the emu-

lated timeout, which is however required by CAAI to accurately
determine the two TCP features. Therefore, for Web servers

using F-RTO, CAAI sends a duplicate ACK after the emulated
timeout in order to stop the F-RTO recovery and start the con-

ventional TCP timeout recovery.
How to Deal With Slow Start Threshold Caching?: Usually,

the initial slow start threshold of a new TCP connection is set
to infinite. However, a Web server using slow start threshold

caching (as part of TCP auto-tuning) sets the initial slow start
threshold of a new TCP connection to the slow start threshold

of the previous TCP connection of the same Web client. In
this case, if CAAI emulates network environment B immedi-

ately after network environment A, the Web server exits the
slow start state very early and takes a very long time to reach

. Therefore, for Web servers using slow start
threshold caching, CAAI waits for some time (like 10 min) be-

tween emulating network environments A and B.

D. Subtask 2: Measuring the Congestion Window Sizes

We estimate the TCP window size of a Web server by the

number of data packets that it sends in an emulated RTT. There
are two difficulties. 1) After CAAI receives a data packet from

the Web server, how to determine whether it belongs to the pre-
vious RTT or the current RTT? 2) Since a packet may be lost or

duplicated in the Internet, the number of data packets received
by CAAI may not be equal to the number of data packets sent

by the Web server.
The first difficulty can be solved by emulating an RTT long

enough so that the bandwidth-delay product is much larger than
. By doing so, the Web server sends all

data packets belonging to the same emulated RTT in a short time
interval at the beginning of an emulated RTT. After receiving

all corresponding ACK packets in a short time interval at the
beginning of the next emulated RTT, the Web server sends all

data packets belonging to the next emulated RTT in a short time
interval at the beginning of the next emulated RTT. Therefore,

there is a time gap between two consecutive data packets be-
longing to two different emulated RTTs. Considering that the

maximum of CAAI is 512 packets and the
maximum of CAAI is 1460 B, if the bandwidth from a



YANG et al.: TCP CONGESTION AVOIDANCE ALGORITHM IDENTIFICATION 1317

Web server to a CAAI computer is at least 10 Mb/s, an emu-
lated RTT should be longer than s.

All our emulated RTTs (i.e., 1.0 and 0.8 s) are longer than 0.6 s.
If the bandwidth from aWeb server to the CAAI computer is far

less than 10 Mb/s, CAAI only works for very small MSS like
100 B, which is fortunately supported by most Web servers as

shown in Table II. In general, we recommend to run CAAI on
a computer with a fast Internet connection (e.g., 10 Mb/s and

above).
The second difficulty can be solved by using the highest se-

quence number among all data packets that CAAI receives in an
emulated RTT. CAAI measures the window size of the Web

server at RTT as follows: , where is
the highest sequence number among all data packets that CAAI

receives in the th RTT. In this way, as long as CAAI receives
the data packet with the highest sequence number, it can accu-

rately measure the window size. Even if the data packet with the
highest sequence number is lost, CAAI can still reasonably ac-

curately measure the window size as long as it receives the data
packets with the next highest sequence numbers.

E. Subtask 3: Maintaining A TCP Connection

In order to distinguish among different TCP algorithms,
CAAI must gather sufficiently long traces of window sizes.

Because is no more than 512 packets, the
slow start state usually takes no more than 9 RTTs. Therefore,

CAAI gathers 18 RTTs of window sizes after the timeout so
that TCP has usually entered the congestion avoidance state

for at least 9 RTTs, which are sufficient to distinguish among
all 14 TCP algorithms when packets

as shown in Fig. 3. Accordingly, CAAI continuously gathers
a trace until the 18th RTT after the timeout, and we define a

valid trace to be a trace that has 18 RTTs of window sizes after
the timeout.

The difficulty is how to maintain the TCP connection so that
CAAI can gather a valid trace of window sizes. For example,

for network environment A and B with
packets and B, it requires about 379 kB of

data for a Web server with RENO to send a total of 28 RTTs
of data packets (10 RTTs before timeout and 18 RTTs after

timeout). For , 536, and 1460 B, it requires about
1137, 2032, and 5536 kB, respectively. CAAI uses the following

two methods together to solve the problem.
CAAI repeatedly sends the same HTTP request message to

a Web server using HTTP pipelining. By default, CAAI repeat-
edly sends a HTTP request 12 times. One might think that it is

sufficient to repeatedly request the default index.html of a Web
server. However, there are two issues.

1) A considerable fraction ofWeb servers only accept the first
or the first few HTTP requests and discard the remaining

requests. Fig. 6 shows the CDF of the maximum numbers
of repeated HTTP requests accepted by about 60 000 Web

servers in our experiments described in Section VII-B. For
example, about 47% of the Web servers accept only one

HTTP request, and nearly 60% of the Web servers accept
three or less repeated HTTP requests.

2) Some Web servers have a very short default Web page,
such as index.html and index.htm. Fig. 7 shows the CDF of

the default Web page sizes. For example, only about 12%
of the Web servers have a default Web page longer than

100 kB.

Fig. 6. CDF of the maximum numbers of repeated HTTP requests accepted by

the Web servers in our experiments.

Fig. 7. CDF of the sizes of the default Web page and the longest Web pages

found by CAAI.

Fig. 8. Valid trace of window sizes.

Second, CAAI sends repeated HTTP request messages for a

long Web page. We have developed a Web page searching tool
to automatically search a Web server for a long Web page (e.g.,

html files, image files, or executable files). Specifically, for a
Web server, our tool first uses httrack [51] to find as many Web

pages as possible in 5 min (while taking care of http redirec-
tion), uses the dig service to findWeb pages with the same DNS

name server as the Web server, obtains the Web page headers to
find their sizes without actually downloading them, and finally

finds the longest Web pages. It turns out that this is the most
time-consuming part of our experiments, and therefore we run

this tool simultaneously on hundreds of PlanetLab nodes [52].
With the Web page searching tool, we are able to find long Web

pages on a Web server. Fig. 7 shows the CDF for the sizes of
the longest Web pages found by CAAI. Compared to the default

Web pages, the longest Web pages found by CAAI are consid-
erably longer. For example, the Web pages longer than 100 kB

now account for about 48% of the total Web servers, as opposed
to about 12% when we consider the default Web pages.

V. CAAI STEP 2: FEATURE EXTRACTION

This section describes how CAAI extracts the two TCP fea-
tures from a valid trace. Fig. 8 illustrates a valid trace with

window sizes: , where is
the initial window size, is the window size right before the

timeout, is the first nonzero window size after the timeout,
and is the last window size of the valid trace.

In order to extract the two TCP features, CAAI first deter-
mines at which RTT (denoted by , and called the

boundary RTT) TCP leaves the slow start state. That is, the slow
start threshold is . Once the boundary RTT is determined, the

two TCP features can be extracted.



1318 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

A. Determining the Boundary RTT

The determination of the boundary RTT is based on the fact
that the standard TCP slow start is usually the default one, and

the hybrid slow start [30] used by CUBIC behaves the same as
the standard slow start in our emulated network environments A

and B (since the RTTs of the slow start state after the timeout
remain unchanged, and the emulated RTT is relatively long).

That is, a TCP algorithm increases the window size by one for
every received ACK in the slow start state and increases the

window size relatively slowly in the congestion avoidance state.
The challenge is how to check whether the window size of a

Web server is increased by one for every ACK packet when
ACK packets may be lost. To solve this problem, CAAI first

estimates the maximum ACK loss rate in the slow start state,
and then uses it to determine the boundary RTT.

First, at an RTT in the slow start state after the timeout,
CAAI estimates the maximum ACK loss rate (denoted by )

on the path from CAAI to a Web server using

(1)

The equation obtains using the confidence interval of a total
of random variables ,

where denotes the ACK loss rate in RTT . We have
, where the denominator is the total number

of ACKs in RTT , and the numerator is an estimate
of the number of ACK packets lost in RTT . This is because

CAAI sends ACK packets at RTT , and if all of them are
successfully received by the Web server, the window size

at RTT should be . The first and second terms of (1)
are the average and the 95% confidence interval [53] of these

random variables, respectively. To avoid abnormal values,
we limit the maximum to be 60% and the minimum to be

15%.
Next, CAAI detects whether the window size at RTT is

increased by one for every ACK packet by checking whether
or equivalently whether

. Starting from the smallest RTT such that
, CAAI searches for three consecutive RTTs , , and

, for all of which the window size is not increased by one
for every ACK packet. RTT is then the boundary RTT.

Note that different initial window sizes do not affect the
accuracy of CAAI for the following reasons. Different TCP

algorithms may use different initial window sizes, which is the
window size of a new TCP connection (i.e., ). For example,

the initial window size could be 1, 2 [26], 3, 4 [27], or even
10 [28] packets. After a timeout, TCP algorithms usually

restart the window size from one packet instead of their initial
window sizes [28]. CAAI only uses the window size right

before the timeout and the window sizes after the timeout (i.e.,
) and does not use the initial window size

(i.e., ). Therefore, the accuracy of CAAI does not depend
on the initial window size. In addition, when determining the

boundary RTT, CAAI only checks the relative ratio of two
adjacent window sizes (i.e., whether )

and does not check the absolute values of the window sizes.
Therefore, the accuracy of CAAI does not depend on the first

window size after a timeout (i.e., ) either.

B. Feature 1: Multiplicative Decrease Parameter

Feature can be obtained by where
is the window size at the boundary RTT, and is

the window size right before the timeout (i.e.,
). In most cases, CAAI can find the boundary RTT and then

calculate the value. In these cases, to avoid abnormal values,
we limit the minimum to be 0.5 (the lowest value of all 14

TCP algorithms, except WESTWOOD+), and the maximum
to be 2.0. Sometimes, CAAI could not find the boundary RTT

because the congestion window sizes ,
are always below [e.g., for WESTWOOD+ as illustrated

in Fig. 3(m)]. In these cases, we set to 0.

C. Feature 2: Window Growth Function

The window growth function of a trace can be described
by the window sizes after boundary RTT . Specifically,

we use and to describe the
window growth function of a trace. There are two reasons.

First, we use only two window sizes (i.e., and )
instead of all the window sizes after boundary RTT (i.e.,

. Note that, ).
This is because, within the first few RTTs of the congestion

avoidance state, the window growth functions of these 14 TCP
algorithms can be sufficiently well approximated by two line

segments so that they can still be distinguished from one an-
other. Second, we use the offset window size (i.e.,

and ) instead of the actual window size (i.e.,
and ). This is because, for most TCP algorithms, the offset

window sizes remain the same (or almost same) for traces with
different . For example, of RENO is

always 3 for any , but depends on the specific
.

D. Feature Vector of a Web Server

CAAI emulates two network environments A and B and

gathers two traces from a Web server. All the features of a Web
server can be described by a feature vector as follows:

(2)

Features with superscripts and are for network environ-

ments A and B, respectively. The vector element
is mainly used for VEGAS as illustrated in Fig. 3(k) because

its maximum congestion window size could not reach even
64 in network environment B. We set to 0 if the

in network environment B is below 64, and to 1
otherwise. We can see that a feature vector consists of a total of

seven feature vector elements.

VI. CAAI STEP 3: ALGORITHM CLASSIFICATION

This section describes how CAAI identifies (or classifies) the

TCP algorithm of a Web server based on its feature vector .

The terms “identification” and “classification” are used in-

terchangeably in the paper. The challenge is that we may get

different feature vectors for different Web servers using the

same TCP algorithm or for the same Web sever but at different

times. This is because the window trace gathered from a Web



YANG et al.: TCP CONGESTION AVOIDANCE ALGORITHM IDENTIFICATION 1319

server depends on the network condition, especially the instan-

taneous ACK loss rate on the path from a CAAI computer to

the Web server. To solve this problem, we first create a training

set that contains the feature vectors of all TCP algorithms in

some network conditions (details in Section VII), and then

classify the TCP algorithm of a Web server using a machine

learning algorithm.

We have compared the performance of several machine

learning algorithms including K Nearest Neighbor methods,

Decision Tree methods, Artificial Neural Network methods,

Naive Bayes methods, Support Vector Machine methods, and

Random Forest methods using Weka [54]. Weka is a free

and powerful collection of machine learning algorithms for

data mining tasks and is written in Java by the University

of Weikato. Our Weka results [55] show that random forest

consistently achieves the highest classification accuracy among

all these methods, and therefore CAAI uses random forest to

classify the TCP algorithm of a Web server.

We first explain how random forest [56] grows multiple clas-

sification trees, and then describe how random forest classifies

the TCP algorithm of a Web server.

Random forest grows multiple classification trees using

a training set of feature vectors. Each tree is grown using

the bootstrap aggregation (or bagging) method, which uses a

random subset of the training set by randomly sampling feature

vectors with replacement from the training set. Each node of

a tree is split using the random subspace method, which ran-

domly selects elements from the total of seven elements of a

feature vector, and then chooses the element with the best split

among these feature vector elements. There is no pruning

when growing a tree.

To classify the TCP algorithm of a Web server, random forest

first gets the classification voted by each tree, and then chooses

the classification voted by the most trees as the final classifi-

cation result. Weka also calculates the percentage of the trees

voting for the final classification result as a classification confi-

dence level.

Random forest has two important parameters: 1) the total

number of trees denoted by , and 2) the number of ran-

domly selected feature vector elements at each node denoted by

. According to random forest [56], we can choose as large

as we want because random forest does not overfit. However,

must be much less than the total number of feature vector

elements. We will set the values of these two parameters in

Section VII.

VII. CAAI EXPERIMENTS

In this section, we describe our test-bed and Internet experi-

ment results of CAAI.

A. Testbed Evaluation and Parameter Setting

1) Testbed Setup: We use our lab testbed to collect a training
set of feature vectors for CAAI as illustrated in Fig. 9. The

testbed consists of four computers: one CAAI computer, one
Linux Web server, one Windows Web server, all connected to a

Linux router. The Linux Web server runs Apache, and the Win-
dows Web server runs IIS. We run Netem [57] on the Linux

Fig. 9. Our lab testbed.

Fig. 10. CDF of the measured RTT standard deviations.

router to emulate various network conditions between the CAAI
computer and the two Web servers.

The feature vectors of CTCP are obtained using an IIS
Web server on Windows Server 2003, and the feature vectors

of CTCP are obtained using an IIS Web server on Windows
Server 2008 (dual boot on the Windows Web server). The

feature vectors of CUBIC are obtained using an Apache server
on Linux kernel 2.6.25, and the feature vectors of all other

11 TCP algorithms are obtained using an Apache server on
openSUSE 11.1 with Linux kernel 2.6.27. Note that we use

the feature vectors of RENO only on Linux. This is because
we have obtained the feature vectors of both Linux RENO and

Windows RENO, and they are very similar to each other.
2) Collecting a Training Set of Feature Vectors: To collect

a training set of feature vectors of the 14 TCP algorithms, we
attempt to emulate realistic Internet network conditions on our

testbed. This is because the window trace gathered from a Web
server depends on the network condition, especially the instan-

taneous ACK loss rate on the path from a CAAI computer to the
Web server. As a result, we may get different feature vectors for

different Web servers using the same TCP algorithm or for the
sameWeb sever but at different times. We first describe how we

measure the network conditions between our local CAAI com-
puters and remote Web servers, and then describe the feature

vectors collected on the testbed that emulates the measured net-
work conditions.

We describe the network condition between a local CAAI
computer and a remote Web server by its average RTT, RTT

standard deviation, and packet-loss rate. Since MSS has no im-
pact on the feature vectors, we do not measure the MSS of a net-

work condition. We collected a database of network conditions
by measuring 5000 popular Web servers in 2010 and 2011. The

RTT information is obtained by “pinging” these Web servers
from our local CAAI computers. Ping measures the RTT be-

tween a CAAI computer and a Web server for several times and
outputs the average and standard deviation of RTTs. The CDF

of the average RTTs is shown in Fig. 4, and the CDF of the RTT
standard deviations is shown in Fig. 10. The packet-loss rates

are obtained from a number of PCAP files. Each PCAP file is
generated by TCPdump [58] and contains the packet trace when

we download a Web page from a Web server to a CAAI com-
puter. By analyzing the sequence numbers in the packet trace,

we can calculate the packet-loss rate that is defined as the ratio
between the number of lost packets and the total number of

packets (including the lost packets) in a PCAP file. The CDF
of the packet-loss rates is shown in Fig. 11.



1320 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

TABLE III

IDENTIFICATION ACCURACY (IN PERCENTAGE) PER TCP ALGORITHM OF THE TRAINING FEATURE VECTORS

Fig. 11. CDF of the measured packet-loss rates .

When we emulate a random network environment, we ran-
domly select an average RTT, an RTT standard deviation, and

a packet-loss rate from our network condition database and set
the parameters of Netem accordingly. Specifically, the emulated

RTTs for a network condition follow the normal distribution
whose average and standard deviation are the given average

and standard deviation of RTTs, respectively. For each pair of
14 TCP algorithms and values, we emulate

100 network conditions, each of which randomly selects an av-
erage RTT, an RTT standard deviation, and a packet-loss rate.

Therefore, there are a total of feature vec-
tors in the training set.

As illustrated in Fig. 3(o), RENO, CTCP , and CTCP
behave very similar to each other when is

64 or 128 packets, and consequently, RENO, CTCP , and
CTCP have very similar feature vectors in these cases.

This is because CTCP [8] is designed to be very friendly to
RENO. Therefore, when or 128, we

do not distinguish among RENO, CTCP , and CTCP , and
we call them together as RC-small. We refer to RENO with

or 512 as RENO-big, refer to CTCP
with or 512 as CTCP -big, and refer

to CTCP with or 512 as CTCP -big.
3) Cross Validation and Parameter Setting: We use the

10-fold cross validation to evaluate the accuracy of the random
forest of CAAI. That is, we evenly and randomly divide the

total of 5600 feature vectors into 10 groups, and then we run the
validation for 10 rounds. In each round, one group is selected

for validating random forest and the remaining nine groups are
used for training random forest. In all 10 rounds, each group

has one and only one chance to be selected for validation.
Finally, the accuracy is measured by the percentage of correctly

identified feature vectors in all 10 rounds.
Fig. 12 shows the percentage of correctly identified feature

vectors, as we vary the two random forest parameters: that
is the number of trees, and that is the number of randomly

Fig. 12. Percentage of correctly identified feature vectors in the 10-fold cross

validation.

selected feature vector elements from the total of seven feature

vector elements at each node of a tree. We can see that the ac-
curacy improves as parameter increases, and when ,

the accuracy remains almost the same. Therefore, CAAI sets pa-
rameter to 80. That is, CAAI grows 80 trees in random forest.

We can also see that the accuracy does not change much as pa-
rameter changes, except for very big values such as 5.

Therefore, CAAI sets parameter to 4, which is the default
value of the Weka random forest parameter (specifically by

default Weka sets ).
Now we take a deeper look at the identification accuracy.

When CAAI sets parameter to 80 and parameter to 4, the
overall identification accuracy of the 10-fold cross validation

is 96.98%. Table III shows the individual identification accu-
racy of each TCP algorithm (called the confusion matrix). A

value at row X and column Y represents the percentage of the
feature vectors of TCP algorithm X being classified as TCP al-

gorithm Y. For example, among all CUBIC feature vectors,
97.75% are correctly identified as CUBIC , but 0.25% and 2%

are mistakenly identified as BIC and HTCP, respectively. As
another example, among all RC-small feature vectors that con-

tain all RENO, CTCP , and CTCP with
or 128 feature vectors, 99.16% are correctly identified as

RC-small, but 0.17%, 0.5%, and 0.17% are mistakenly identi-
fied as HSTCP, VENO, and WESTWOOD+, respectively. We

can see that random forest can reasonably accurately identify
each individual TCP algorithm.

B. Internet Measurement

We used CAAI to identify the TCP algorithms of 63 124 pop-
ular Web servers (using the Alexa traffic rank [59]) in Spring

and Summer 2011. For a Web server, we first run our Web page
searching tool (described in Section IV-E) on a PlanetLab node

to find a long Web page on the Web server, and then run CAAI
on our lab computers to download the Web page and to identify



YANG et al.: TCP CONGESTION AVOIDANCE ALGORITHM IDENTIFICATION 1321

Fig. 13. Invalid trace without any timeout. Because the congestion window

size of the Web server is always below .

the TCP algorithm of the Web server. If a Web server has mul-

tiple IP addresses, we only test one of them. A short message
is added into the header of every HTTP request message to in-

dicate our contact information and the research purpose of our
experiments.

Our lab computers that we used to run CAAI are connected
to the Gigabit campus network that is then connected to the

Internet through a 10-Gb/s link. Note that the lab computers we
used to measure the network conditions for Figs. 4, 10, and 11

are the same as the lab computers that we used to run the CAAI
experiments of the Web servers. This eliminates the potential

identification inaccuracy (if any) caused by location-dependent
network condition measurements.

1) Web Server Information: In this section, we provide
some basic information of the Web servers measured in our

experiments.
The Web servers exhibit good geographical diversity and are

located all around the world. Among all the Web servers, 0.54%
are located in Africa, 21.46% are located in Asia, 0.83% are

located in Australia, 43.28% are located in Europe, 31.92%
are located in North America, and 1.97% are located in South

America.
From the headers of HTTP response messages, we obtain the

information ofWeb server software. Among all theWeb servers,
70.20% use Apache, 11.13% use IIS, 12.85% use Ngnix, 1.36%

use LiteSpeed, and 4.46% use other software.
Note that if aWeb server uses a TCP proxy (such as a load bal-

ancer) that splits the end-to-end TCP connection between CAAI
and the Web server, then the TCP algorithm identified by CAAI

is actually the TCP algorithm used by the TCP proxy instead of
the Web server. This is one possible reason that for about 15%

of IISWeb servers in our experiments, the TCP algorithms iden-
tified by CAAI are not RENO, CTCP , or CTCP .

2) Web Servers With Invalid Traces: For 53% of the
Web servers (i.e., about 33 000 Web servers), CAAI could

not gather valid window traces (i.e., 18 RTTs of window
sizes after a timeout, as described in Section IV-E) even

with packets. The major reasons are:
1) CAAI could not find a sufficiently long Web page on a

Web server; and 2) a Web server accepts only one HTTP
request or very few repeated HTTP requests in the same TCP

connection. Intuitively, the file transfer of these Web servers
is mainly controlled by the TCP slow start algorithm, and

thus it is not necessary to identify their congestion avoidance
algorithms. Some other reasons are: 1) the congestion window

size of a Web server is always below , and
thus CAAI does not emulate a timeout. Fig. 13 shows such

an example; 2) the congestion window size of a Web server
reaches , but somehow the Web server does

not respond to the emulated timeout.
3) Web Servers With Valid Traces: For 47% of the

Web servers (i.e., about 30 000 Web servers), CAAI

Fig. 14. Valid trace with “Remaining at 1 Packet.” That is, the window size

remains at 1 packet after the timeout.

TABLE IV

IDENTIFICATION RESULTS (IN PERCENTAGE) OFWEB SERVERS

successfully gathered valid traces as summarized in

Table IV. As described in Section IV-B, CAAI starts with
packets. If not successful, CAAI

tries , 128, and finally 64 packets.
Each column of Table IV shows the information of the Web

servers gathered with a , and the last column
shows the overall information. We can see that for 63.84%,

14.02%, 14.24%, and 7.92% of the Web servers with valid
traces, CAAI successfully gathered window traces with

, 256, 128, and 64 packets, respec-
tively. In the remaining part of this section, we consider only

the Web servers with valid traces (i.e., about 30 000 Web
servers), and the percentage is calculated with respect to these

Web servers.
After manually checking these valid traces, we notice that

there are four special cases of valid traces measured in the In-
ternet experiments, which we do not observe in our testbed

experiments.
1) After the timeout, the window size of aWeb server remains

at 1 packet for a very long time. We call this case “Re-
maining at 1 Packet” in Table IV, and Fig. 14 shows such

an example.
2) In the congestion avoidance state, the window size of a

Web server never increases (i.e., always less than or equal
to ). We call this case “NonincreasingWindow.” Fig. 15

shows such an example.



1322 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

Fig. 15. Valid trace with “Nonincreasing Window.” That is, the window size

never increases in the congestion avoidance state.

Fig. 16. Valid trace with “Approaching .” That is, the window size

increases and slowly approaches .

Fig. 17. Valid trace with “Bounded Window.” That is, the window size is

bounded by some upper bound.

3) In the congestion avoidance state, the window size of a
Web server initially increases quickly, and then increases

slowly as it approaches to . We call this
case “Approaching .” Fig. 16 shows such an

example.
4) In the congestion avoidance state, the window size of

a Web server increases beyond , and then is
bounded by some upper bound. One possible reason is

that the window size is bounded by some factors, such as
the TCP send buffer size of a Web server. We call this case

“Bounded Window.” Fig. 17 shows such an example.
Except these special valid traces, CAAI uses theWeka imple-

mentation of random forest to classify the rest of the valid traces.
In addition to the final classification result, Weka also outputs a

confidence level that is the percentage of the trees voting for the
final classification result among all random forest trees. CAAI

does not report the classification result of random forest if the
confidence level is lower than 40% (that is, less than 40% of

all random forest trees vote for the final classification result).
Table IV shows that 4.32% of Web servers are labeled as “Un-

sure TCP” because their confidence levels are lower than 40%.
Fig. 18 shows such an example. There are some possible rea-

sons for the low confidence levels. First, aWeb server uses some
TCP algorithm different from all 14 TCP algorithms considered

in this paper. Second, the trace of a Web server is not smooth
possibly due to some network and Web server factors, such as a

very high packet-loss rate or a very busy Web server.
We can see that only of Web servers still

use the traditional RENO. The reason for the range is that
we do not distinguish among RENO, CTCP , and CTCP

when or 128 (called RC-small in
Section VII-A). Specifically, of Web

servers use RENOwhen or 256 (called
RENO-big in Section VII-A), and of

Fig. 18. Valid trace with “Unsure TCP.” That is, CAAI could not identify its

TCP algorithm due to the low confidence level of random forest.

Web servers use RC-small when

or 64. Thus, at least 3.31% of Web servers and at most
of Web servers still use the traditional

RENO.
We can see that of Web servers use

CTCP (the early version of CTCP), and only
of Web servers use CTCP (the later version of CTCP).

Overall, of Web servers use the Windows
default TCP algorithms—CTCP (including both CTCP and

CTCP ). We can also see that a significant percentage (i.e.,
) of Web servers use the

Linux default TCP algorithms—BIC/CUBIC (CUBIC includes
CUBIC and CUBIC ), and among them, BIC (developed

earlier than CUBIC and CUBIC ) has the largest number of
Web servers.

Table IV shows that a nontrivial percentage of Web servers
use those non-default TCP algorithms (i.e., TCP algorithms

other than RENO, BIC, CUBIC, and CTCP). For example,
4.89% of Web servers use HTCP. While some of them may be

identification errors, we find that there are indeed some Web
servers using non-default TCP algorithms. One possible reason

for the Web servers to use HTCP is that HTCP is recommended
by some Linux TCP tuning Web sites [60], [61] for high-speed

data transfer.

C. Discussion

Our CAAI measurement results show a strong sign that the

majority of TCP flows are not controlled by RENO anymore,
and a strong sign that Internet congestion control has already

changed from homogeneous to heterogeneous.
When evaluating a new congestion control algorithm, it is

important to study whether the new algorithm can achieve good
performance when competing with not only the traditional

RENO, but also other new dominating algorithms such as BIC,
CUBIC, and CTCP. This is especially important for delay-based

congestion control algorithms because a delay-based algorithm
whose parameters are tuned for competing with RENO may

achieve poor performance when competing with more aggres-
sive algorithms such as BIC and CUBIC.

When designing a traffic generator to generate realistic In-
ternet traffic, it is important to consider not only traditional

traffic characteristics such as packet sizes, packet interarrival
times, RTTs, connection durations, connection establishment

rates, but also new traffic characteristics such as congestion con-
trol algorithms.

When determining the sizes of router buffers, it is impor-
tant to consider the distribution of TCP congestion control al-

gorithms. The router buffer sizes are usually determined by as-
suming that all TCP flows are controlled by RENO, and for in-

stance the well-known rule-of-thumb that sets the buffer size
of a link to its bandwidth delay product directly comes from the

multiplicative decrease parameter of RENO [11]. Because quite
a few TCP congestion control algorithms, such as BIC, CUBIC,



YANG et al.: TCP CONGESTION AVOIDANCE ALGORITHM IDENTIFICATION 1323

HSTCP, HTCP, and STCP, use multiplicative decrease param-
eters different from that of RENO, the rule-of-thumb may not

hold true.
Finally, note that this paper focuses on the congestion avoid-

ance component of TCP algorithms, and this is because Internet
traffic heavily depends on the congestion avoidance compo-

nent. A large portion of Internet flows such as Web flows and
peer-to-peer (P2P) flows are mice flows that have short sizes and

thus mainly depend on the slow start component of a TCP al-
gorithm, whereas a small portion of Internet flows are elephant

flows that have long sizes and thus mainly depend on the con-
gestion avoidance component of a TCP algorithm. However,

because of the heavy-tailed distribution of Internet flow sizes,
a significant portion of Internet traffic [62] including Web and

P2P traffic is generated by elephant flows, and thus heavily de-
pends on the congestion avoidance component.

VIII. CONCLUSION

In this paper, we proposed a tool called CAAI for identi-
fying the TCP algorithm of a remote Web server and presented

our measurement results of the TCP deployment information of
about 30 000 Web servers.

There are some limitations of the current work. The current
CAAI does not consider some other TCP congestion control

algorithms, such as FAST [63], which is not available in any
operating system but has been used by some Web servers, and

does not consider XCP [64], VCP [65], and PERT [66], which
have recently been proposed but not yet incorporated into any

operating system. We plan to add the feature vectors of more
operating systems (e.g., FreeBSD, OpenBSD, Mac OS X, and

Solaris) into our training set, so that we can more accurately
identify their TCP algorithms.

REFERENCES

[1] P. Yang,W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP congestion avoid-

ance algorithm identification,” in Proc. IEEE ICDCS, Minneapolis,

MN, USA, Jun. 2011, pp. 310–321.

[2] V. Jacobson, “Congestion avoidance and control,” in Proc. ACM SIG-

COMM, Stanford, CA, USA, Aug. 1988, pp. 314–326.

[3] D. Chiu and R. Jain, “Analysis of the increase/decrease algorithms for

congestion avoidance in computer networks,” J. Comput. Netw. ISDN,

vol. 17, no. 1, pp. 1–14, Jun. 1989.

[4] A. Tang, J. Wang, S. Low, and M. Chiang, “Equilibrium of hetero-

geneous congestion control: Existence and uniqueness,” IEEE/ACM

Trans. Netw., vol. 15, no. 4, pp. 824–837, Aug. 2007.

[5] K. Munir, M. Welzl, and D. Damjanovic, “Linux beats Windows!—Or

the worrying evolution of TCP in common operating systems,” inProc.

PFLDNet, Marina Del Rey, CA, USA, Feb. 2007, pp. 1–6.

[6] M. Weigle, P. Sharma, and J. Freeman, “Performance of competing

high-speed TCP flows,” in Proc. NETWORKING, Coimbra, Portugal,

May 2006, pp. 476–487.

[7] I. Rhee and L. Xu, “CUBIC: A new TCP-friendly high-speed TCP

variant,” in Proc. PFLDNet, Feb. 2005, pp. 1–6.

[8] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP ap-

proach for high-speed and long distance networks,” in Proc. IEEE IN-

FOCOM, Barcelona, Spain, Apr. 2006, pp. 1–12.

[9] E. Kohler, M. Handley, and S. Floyd, “Datagram congestion control

protocol (DCCP),” RFC 4340, Mar. 2006.

[10] R. Stewart, “Stream control transmission protocol,” RFC 4960, Sep.

2007.

[11] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router

buffers,” in Proc. ACM SIGCOMM, Portland, OR, USA, Aug. 2004,

pp. 281–292.

[12] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion (BIC)

control for fast long-distance networks,” in Proc. IEEE INFOCOM,

Hong Kong, Mar. 2004, pp. 2514–2524.

[13] S. Ha, I. Rhee, and L. Xu, “CUBIC: A new TCP-friendly high-speed

TCP variant,” Oper. Syst. Rev., vol. 42, no. 5, pp. 64–74, Jul. 2008.

[14] S. Floyd, “Highspeed TCP for large congestion windows,” RFC 3649,

Dec. 2003.

[15] R. N. Shorten and D. J. Leith, “H-TCP: TCP for high-speed and long-

distance networks,” in Proc. PFLDNet, Argonne, IL, Feb. 2004, pp.

1–6.

[16] C. Caini and R. Firrincieli, “TCP-Hybla: A TCP enhancement for het-

erogeneous networks,” Int. J. Satell. Commun. Netw., vol. 22, no. 5,

pp. 547–566, Sep. 2004.

[17] S. Liu, T. Basar, and R. Srikant, “TCP-Illinois: A loss and delay-based

congestion control algorithm for high-speed networks,” in Proc. VAL-

UETOOLS, Pisa, Italy, Oct. 2006, Art. no. 55.

[18] A. Kuzmanovic and E.W. Knightly, “TCP-LP: A distributed algorithm

for low priority data transfer,” in Proc. IEEE INFOCOM, San Fran-

cisco, CA, USA, Apr. 2003, pp. 1691–1701.

[19] T. Kelly, “Scalable TCP: Improving performance in highspeed wide

area networks,”Comput. Commun. Rev., vol. 33, no. 2, pp. 83–91, Apr.

2003.

[20] L. Brakmo, S. O’Malley, and L. Peterson, “TCP Vegas: New

techniques for congestion detection and avoidance,” Proc. ACM

SIGCOMM, pp. 24–35, Aug. 1994.

[21] C. Fu and S. Liew, “TCP Veno: TCP enhancement for transmission

over wireless access networks,” IEEE J. Sel. Areas Commun., vol. 21,
no. 2, pp. 216–228, Feb. 2003.

[22] C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP

Westwood: Bandwidth estimation for enhanced transport over wireless

links,” in Proc. ACM MobiCom, Rome, Italy, Jul. 2001, pp. 287–297.

[23] A. Baiocchi, A. Castellani, and F. Vacirca, “YeAH-TCP: Yet another

highspeed TCP,” in Proc. PFLDNET, Los Angeles, CA, USA, Feb.

2007, pp. 1–6.

[24] Ipoque, Leipzig, Germany, “Internet study 2008/2009,” 2009 [Online].

Available: http://www.ipoque.com/en/resources/internet-studies

[25] Sandvine, Inc., Waterloo, ON, Canada, “Global Internet phenomena

report,” 2012 [Online]. Available: http://www.sandvine.com/news/

global_broadband_trends.asp

[26] M. Allman, V. Paxson, and W. Stevens, “TCP congestion control,”

RFC 2581, Apr. 1999.

[27] M. Allman, S. Floyd, and C. Partridge, “Increasing TCP’s initial

window,” RFC 3390, Oct. 2002.

[28] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, A.

Jain, and N. Sutin, “An argument for increasing TCP’s initial conges-

tion window,” Comput. Commun. Rev., vol. 40, no. 3, pp. 27–33, Jul.

2010.

[29] S. Floyd, “Limited slow-start for TCPwith large congestion windows,”

RFC 3742, Mar. 2004.

[30] S. Ha and I. Rhee, “Hybrid slow start for high-bandwidth and long-

distance networks,” in Proc. PFLDNET, Manchester, U.K., Mar. 2008,

pp. 1–6.

[31] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” RFC

5681, Sep. 2009.

[32] S. Floyd, T. Henderson, and A. Gurtov, “The newreno modification to

TCP’s fast recovery algorithm,” RFC 3782, Apr. 2004.

[33] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective

acknowledgment options,” RFC 2018, Oct. 1996.

[34] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An extension to

the selective acknowledgement (SACK) option for TCP,” RFC 2883,

Jul. 2000.

[35] J. Padhye and S. Floyd, “On inferring TCP behavior,” in Proc. ACM

SIGCOMM, San Diego, CA, USA, Aug. 2001, pp. 287–298.

[36] J. Oshio, S. Ata, and I. Oka, “Identification of different TCP versions

based on cluster analysis,” in Proc. IEEE ICCCN, San Francisco, CA,

USA, Aug. 2009, pp. 1–6.

[37] S. Feyzabadi and J. Schonwalder, “Identifying TCP congestion con-

trol algorithms using active probing,” presented at the PAM, Zurich,

Switzerland, Apr. 2010, Poster.

[38] P. Yang, W. Luo, and L. Xu, “Towards measuring the deployment in-

formation of different TCP congestion control algorithms: The mul-

tiplicative decrease parameter,” in Proc. IEEE GLOBECOM, Miami,

FL, USA, Dec. 2010, pp. 1–5.

[39] D. Comer and J. Lin, “Probing TCP implementations,” in Proc.

USENIX Summer Conf., Boston, MA, USA, Jun. 1994, p. 17.

[40] A. Medina, M. Allman, and S. Floyd, “Measuring the evolution of

transport protocols in the Internet,” Comput. Commun. Rev., vol. 35,

no. 2, pp. 37–52, Apr. 2005.

[41] “Network Mapper (NMAP),” [Online]. Available: http://nmap.org/

[42] V. Paxson, “Automated packet trace analysis of TCP implementa-

tions,” in Proc. ACM SIGCOMM, Cannes, France, Sep. 1997, pp.

167–179.



1324 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 22, NO. 4, AUGUST 2014

[43] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the character-

istics and origins of Internet flow rates,” in Proc. ACM SIGCOMM,

Pittsburgh, PA, USA, Aug. 2002, pp. 309–322.

[44] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, “Infer-

ring TCP connection characteristics through passive measurements,”

in Proc. IEEE INFOCOM, Hong Kong, Mar. 2004, pp. 1582–1592.

[45] S. Rewaskar, J. Kaur, and F. Smith, “A performance study of loss de-

tection/recovery in real-world TCP implementations,” in Proc. IEEE

ICNP, Beijing, China, Oct. 2007, pp. 256–265.

[46] F. Qian, A. Gerber, Z. Mao, S. Sen, O. Spatscheck, and W. Willinger,

“TCP revisited: a fresh look at TCP in the wild,” in Proc. ACM IMC,

Chicago, IL, USA, Nov. 2009, pp. 76–89.

[47] N. Seddigh and M. Devetsikiotis, “Studies of TCP’s retransmission

timeout mechanism,” in Proc. IEEE ICC, Helsinki, Finland, Jun. 2001,

pp. 1834–1840.

[48] P. Sarolahti and A. Kuznetsov, “Congestion control in Linux TCP,” in

Proc. FREENIX Track: 2002 USENIX Ann. Tech. Conf., Berkeley, CA,

USA, Jun. 2002, pp. 49–62.

[49] D. Wei, S. Hegdesan, and S. Low, “A burstiness control for TCP,” in

Proc. PFLDNet, Feb. 2005, pp. 1–6.

[50] P. Sarolahti, M. Kojo, K. Yamamoto, and M. Hata, “Forward RTO-

recovery (F-RTO): An algorithm for detecting spurious retransmission

timeouts with TCP,” RFC 5682, Sep. 2009.

[51] “HTTrack website copier,” 2013 [Online]. Available: http://

www.httrack.com/

[52] PlanetLab, “An open platform for developing, deploying, and

accessing planetary-scale service,” 2002 [Online]. Available:

http://www.planet-lab.org/

[53] H. Perros, “Computer simulation techniques—The definitive

introduction,” 2003 [Online]. Available: http://www.csc.ncsu.

edu/faculty/perros/simulation.pdf

[54] The University of Waikato, Hamilton, New Zealand, “Weka 3: Data

mining software in Java,” 2013 [Online]. Available: http://www.cs.

waikato.ac.nz/ml/weka/

[55] J. Shao, “Identification of TCP algorithms,” Master thesis, Department

of Computer Science and Engineering, University of Nebraska–Lin-

coln, Lincoln, NE, USA, Dec. 2012.

[56] L. Breiman, “Random forests,” Mach. Learning, vol. 45, no. 1, pp.

5–32, 2001.

[57] S. Hemminger, “Network emulation with NetEm,” in Proc. 6th Aus-

tralia’s Nat. Linux Conf., Apr. 2005, pp. 1–9.

[58] “Tcpdump,” 2010 [Online]. Available: http://www.tcpdump.org/

[59] Alexa Internet, Inc., “Top 500 global sites,” 2013 [Online]. Available:

http://www.alexa.com/topsites

[60] Department of Energy, Energy Sciences Network, Berkeley, CA, USA,

“Linux tuning,” 2012 [Online]. Available: http://fasterdata.es.net/host-

tuning/linux/

[61] TestMy Net, LLC, “How to setup a speed test server,” 2013 [Online].

Available: http://testmy.net/make-a-speed-test

[62] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and M. Arlitt, “A

comparative analysis of Web and peer-to-peer traffic,” in Proc. WWW,

Beijing, China, Apr. 2008, pp. 287–296.

[63] C. Jin, D. X. Wei, and S. H. Low, “Fast TCP: motivation, architecture,

algorithms, performance,” in Proc. IEEE INFOCOM, Hong Kong,

Mar. 2004, pp. 2490–2501.

[64] D. Katabi, M. Handley, and C. Rohrs, “Congestion control for high

bandwidth-delay product networks,” in Proc. ACM SIGCOMM, Pitts-

burgh, PA, USA, Aug. 2002, pp. 89–102.

[65] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman, “One more

bit is enough,” in Proc. ACM SIGCOMM, Philadelphia, PA, USA, Aug.

2005, pp. 37–48.

[66] S. Bhandarkar, A. Reddy, Y. Zhang, and D. Loguinov, “Emulating

AQM from end hosts,” in Proc. ACM SIGCOMM, Kyoto, Japan, Aug.

2007, pp. 349–360.

Peng Yang (M’11) received the Bachelor’s degree in

computer science and technology and Master’s de-

gree in computer application technology from Cen-

tral China Normal University,Wuhan, China, in 2004

and 2007, respectively, and is currently pursuing the

Doctoral degree in computer science at the Univer-

sity of Nebraska–Lincoln, Lincoln, NE, USA.

His research interests include wireless communi-

cation, transmission control protocols, utility-based

rate control, and peer-to-peer networks.

Juan Shao received the Bachelor degree in computer

science from An Hui University, Hefei, China, in

1997, and the Master’s degree in computer science

from the University of Nebraska–Lincoln, Lincoln,

NE, USA, in 2012.

She joined the Holland Computing Center, Uni-

versity of Nebraska–Lincoln, Lincoln, NE, USA, in

2013. Her research interests are in the areas of net-

work Qos, TCP/IP protocols, and high-performance

networking.

Wen Luo received the Bachelor of Science degree

in mathematics and computer science double major

with honors from the University of Nebraska–

Lincoln, Lincoln, NE, USA, and is currently pur-

suing the master’s degree in financial engineering at

Cornell University, Ithaca, NY, USA.

He worked with Dr. Lisong Xu’s team in his senior

year at the University of Nebraska–Lincoln for un-

dergraduate academic research experience program.

Lisong Xu (M’04) received the B.E. and M.E.

degrees from the University of Science and Tech-

nology Beijing, Beijing, China, in 1994 and 1997,

respectively, and the Ph.D. degree from North

Carolina State University, Raleigh, NC, USA, in

2002, all in computer science.

He joined the University of Nebraska–Lincoln

(UNL), Lincoln, NE, USA, in 2004 and is currently

an Associate Professor in computer science and

engineering.

Dr. Xu is a recipient of the NSF CAREER Award

in 2007 and the UNLCSE Student Choice Outstanding Teaching Award in 2006,

2007, 2008, 2010, and 2011.

Jitender Deogun (A’86–M’05) received the B.S.

(Hons.) degree from Punjab University, Chandi-

garh, India, in 1967, the M.Sc. degree from Delhi

University, New Delhi, India, and the M.S. and

Ph.D. degrees from the University of Illinois at

Urbana–Champaign, Urbana, IL, USA, in 1974 and

1979, respectively.

He is a Full Professor of computer science and en-

gineering with the University of Nebraska–Lincoln,

Lincoln, NE, USA. His research interests include op-

tical networking, optical switch design, data center

architectures, ontologies for mental health, bioinformatics, design and analysis

of algorithms, and structural and algorithmic graph theory.

Ying Lu (M’05) received the B.S. degree from the

Southwest Jiaotong University, Chengdu, China, in

1996, and the M.CS. and Ph.D. degrees in from the

University of Virginia, Charlottesville, VA, USA, in

2001 and 2005, respectively, all in computer science.

Since 2005, she has been with the University of

Nebraska–Lincoln, Lincoln, NE, USA, where she is

an Associate Professor with the Department of Com-

puter Science and Engineering. Her research interests

include cluster and cloud computing, real-time sys-

tems, autonomic computing, and Web systems. She

has done significant work on feedback control of computing systems.


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	2014

	TCP Congestion Avoidance Algorithm Identification
	Peng Yang
	Juan Shao
	Wen Luo
	Lisong Xu
	Jitender S. Deogun
	See next page for additional authors
	Authors


	untitled

