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Abstract— Long-range dependence has been observed in
many recent Internet traffic measurements. Previous stud-
ies have shown that there is a close relationship between
heavy-tailed distribution of various traffic parameters and
the long-range dependent property. In this paper, we use
a simple Markov chain model to argue that when the loss
rate is relatively high, TCP’s adaptive congestion control
mechanism indeed generates traffic with heavy-tailed OFF,
or idle, periods, and therefore introduces long-range de-
pendence into the overall traffic. Moreover, the degree of
such long-range dependence, measured by the Hurst param-
eter, increases as the loss rate increases, agreeing with many
previous measurement-based studies. In addition, we ob-
serve that more variable initial retransmission timeout val-
ues for different packets introduces more variable packet
inter-arrival times, which increases the burstiness of the
overall traffic. Finally, we show that high loss conditions
can lead to a heavy-tailed distribution of transmission times
even for constant-sized files. This means that file size vari-
ability need not be the only cause of heavy-tailed variability
in transmission durations.

Keywords— Congestion Control, Long-Range Depen-
dence, Self-Similarity.

I. I NTRODUCTION

SELF-SIMILARITY has been observed in a large num-
ber of Internet traffic measurements (for example, [1,

2, 3]). Self-similarity refers to the condition in which
the second-order statistics of traffic decay very slowly
with increasing the aggregation level, compared to tradi-
tional Markovian (memory-less) models. Self-similarity
is closely associated with the phenomenon of heavy-tailed
distributions, which are distributions whose tails decline
via a power law with small exponent (less than 2). The
presence of heavy tails in lengths of individual flows can
be shown to induce self-similarity in network traffic [4].
Heavy-tailed properties have been found in file sizes and
user thinking time [1], flow (session) duration [5], as well
as packet inter-arrival time [4] distributions in the Internet.

To date, the best-accepted hypothesis for the genesis of
self-similarity on time-scales from seconds to an hour is
the heavy-tailed distribution that is typical of flow lengths

This work was supported in part by NSF grants CAREER ANI-
0096045 and MRI EIA-9871022.

in the Internet [1, 4]— the majority of flows are found to be
very short, many are long, and some are very long. How-
ever, a number of studies have shown that interesting scal-
ing properties can arise even when flow lengths arenot
highly variable [6, 7]. Furthermore, although heavy-tailed
flow lengths are commonly associated with heavy-tailed
file sizes, the authors in [8] and [9] findno strong cor-
relation between file sizes and transmission times (even
though both show heavy tails).

In this paper, we study the relationship between TCP’s
congestion control mechanism and traffic self-similarity
under certain network conditions. By means of Marko-
vian analysis and NS simulator [10], we confirm that TCP
flows can show a heavy-tailed distribution in packet inter-
arrivals under certain conditions. We show that larger loss
rates bring longer range dependence into the traffic. This
is consistent with previous measurement-based studies [3].
In addition, we also show in this paper that, because short
connections do not have enough packet samples to accu-
rately estimate the time they need to wait for acknowledg-
ments, the conservatively chosen value can introduce very
large gaps between packets, thus making the traffic gener-
ated by (short) TCP connections even more bursty.

Heavy-tailed Distribution, Self-Similarity and Long-
Range Dependence:Here we briefly review some con-
cepts related to fractal property. A more detailed descrip-
tion can be found in [11, 12] and references therein.

Most of the distributions shown in this paper have the
property of beingheavy-tailed. We say a distribution is
heavy-tailed if the asymptotic shape of the distribution is
power-law with exponent less than 2 regardless of the be-
havior of the distribution for small values of the random
variable, i.e.,P [X � x℄ � x��; asx!1; 0 < � < 2

The reason that such distributions are called heavy-
tailed is that, compared to those more commonly used
distributions such as exponential and normal distributions,
a random variable that follows a heavy-tailed distribution
can give rise to extremely large values with non-negligible
probability. As a consequence, such random variable
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shows infinite variance when� < 2.
It has been shown in [4] that the aggregation of i.i.d.

ON/OFF processes producesself-similar time-series, if ei-
ther ON or OFF periods of each process follow a heavy-
tailed distribution. We say a time-series is (asymptoti-
cally) self-similar if the autocorrelation function of the
new time-series produced by aggregating the original time-
series is (asymptotically) equal to the original autocorre-
lation function. That is, given a stationary time-seriesX = (Xt : t = 0; 1; 2; :::), we define them-aggregated

seriesX(m) = (X(m)k : k = 1; 2; 3; :::) by summing the
original seriesX over non-overlapping blocks of sizem.
Then ifX is self-similar, it has the same autocorrelation
function r(k) = E[(Xt � X)(Xt+k � X)℄ as the seriesX(m) for all m, whereX = E[X℄.

As a result, self-similar processes showlong-range de-
pendence. A process with long-range dependence has an
autocorrelation functionr(k) � k�� ask ! 1, where0 < � < 1. Thus the autocorrelation function of such
a process decays hyperbolically (as compared to the ex-
ponential decay exhibited by traditional Markovian traffic
models).

One of the attractive features of using self-similar mod-
els for time-series, when appropriate, is that the degree of
self-similarity of a series is expressed using only a sin-
gle parameter called theHurst parameterH = 1 � �=2.
For self-similar series,1=2 < H < 1. As H ! 1, the
degree of self-similarity increases. Thus the fundamental
test for self-similarity of a series reduces to the questionof
whetherH is significantly different from1=2.

Related Work: There has been a large body of work
attempting to explain the causes of heavy-tails and self-
similarity in Internet traffic. Broadly, they either at-
tribute the causes toapplication/user-level variability (e.g.,
[13],[14],[1]) or to system/network-level complexity (e.g.,
[15],[7],[16],[17]).

Willinger et al. [13] examined Ethernet traffic at
the packet level, identified flows between individual
source/destination pairs, and showed that transmission and
idle times for those flows are heavy-tailed. Paxson and
Floyd [14] traced Internet traffic and observed that burst
sizes in FTP transfers, and TELNET packet inter-arrival
times (appearance of “keystroke”) show heavy-tailed dis-
tributions. In [1], Crovella and Bestavros examine Web
traffic. They observe that file size distributions in Unix
systems as well as in Web databases are heavy-tailed. In
addition, heavy-tailed distributions are found in HTTP ses-
sion time and request inter-arrival time (user “thinking”
time). They propose that these heavy-tailed distributions
might be the primary causes of the self-similarity in Web

traffic.

Other studies have argued that the chaotic nature of net-
work protocols and variability of system conditions may
also contribute to the self-similarity in traffic, especially at
smaller time scales. In [15], Deaneet al. analyze token-
passing networks and attribute self-similarity in traffic to
protocol interactions between sources and destinations.
They show that even in a deterministic network, protocol
dynamics can generate chaotic behavior, which leads to
self-similarity in network traffic. A recent work by Vereset
al. [7] illustrates by simulation that under severe network
conditions, TCP congestion control protocol indeed shows
chaotic nature, and starts to generate self-similar traffic.
However, they only show evidence of such chaotic nature,
and don’t explain why it shows up when the network is
highly congested. In [16], Peha uses simulation to argue
that packet retransmission and congestion control mech-
anisms could cause self-similarity when congestion does
happen in the network. However, no theoretical evidence
is given in that paper. More recently, Vereset al: [17]
observe from real measurements that short TCP connec-
tions produce self-similar traffic, which they attribute to
the reaction of TCP congestion control to the self-similar
background traffic.

Our Contribution: We also conjecture that protocol-
induced chaos could be a contributor to network traffic
self-similarity. Our work is different from previous work
in that we seek to discover the causes of protocol-induced
chaos based on analytical arguments. More specifically,
we illustrate in this paper that the exponential-backoff al-
gorithm, used by TCP’s congestion control mechanism
under severe network congestion conditions, can cause
chaotic behavior. Our analytical model encompasses gen-
eral loss conditions, which may be due to contention
among several TCP connections (as in [7]), or due to self-
similar cross-traffic (as in [17]). Thus, we view our work
here as a first step toward analytically grounded evidence
and reasons for self-similarity in TCP packet flows.

The paper is organized as follows. In Section II we
briefly review TCP’s congestion control mechanism. In
Section III we propose a Markovian model to describe its
behavior under certain network conditions and analytically
explain why the inter-arrival times of TCP packets follow
a heavy-tailed distribution. We use simulation to confirm
our analysis in Section IV and show that the traffic gen-
erated by TCP connections is indeed asymptotically self-
similar. We discuss extensions to our analysis and future
work in Section V.
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II. CONSERVATIVE NATURE OF TCPAND ITS

PATHOLOGICAL EFFECT

The objective of TCP congestion control is for each
source to determine how much capacity is available in the
network, so that it knows what rate it can safely send at.
Therefore, the data transfer of TCP starts from a stage,
calledslow-start, in which TCP tries to increase its send-
ing rate exponentially, until it encounters the first loss.
At this point, TCP interprets packet loss as an indication
of reaching the upper limit of the available bandwidth of
the bottleneck link. Thus, from this point on (or follow-
ing another slow-start period, depending on the imple-
mentation of TCP), it switches to another stage, called
congestion-avoidance, in which TCP employs theAddi-
tive Increase, Multiplicative Decrease (AIMD) mechanism
to slowly adapt to the available bandwidth.

Another important stage of TCP congestion control hap-
pens when the network is heavily loaded, during which
some of the TCP connections should keep silent so as
to clear congestion. This stage, referred to in this pa-
per asexponential-backoff, is the regime that Karn’s algo-
rithm [18] deals with. In this regime, when TCP does not
receive an acknowledgment for a packet after some time-
out period, it assumes that this packet is lost, and then re-
transmits that packet and doubles its retransmission time-
out value (RTO) for detecting packet loss. This process
continues until the packet is successfully transmitted and
acknowledged, up to some upper limit (usually 64 times
the smallest timeout). Essentially, TCP tries to clear con-
gestion by cutting its sending rate in half (or exponentially
decreasing its rate).

Figure 1 shows a schematic view of the TCP conges-
tion window behavior at different stages (black points on
the top indicate packet losses). The value of the conges-
tion window is proportional to the sending rate, which is
roughly equal to the size of the window divided by the
round-trip time (RTT). To simplify our analysis, we focus
on the behavior of TCP Tahoe, and we assume that the re-
ceiver has an unlimited buffer, so there’s no TCP flow con-
trol (the upper limit on the window size). We should point
out that all versions of TCP behave the same when packet
loss is detected by a retransmission timeout; TCP reduces
its window to 1 packet and goes to slow-start phase un-
til it reaches half the previous window, where it starts the
congestion-avoidance phase. Some versions of TCP (e.g.
TCP Reno, New-Reno [19]) attempt to prolong their op-
eration in congestion-avoidance, but eventually go back to
slow-start on a retransmission timeout.

Ideally, TCP would operate in the congestion-avoidance
stage to efficiently utilize the network resources. From the

Slow Start Congestion Avoidance Exponential Backoff

Fig. 1. Behavior of TCP congestion control

traffic characteristics point-of-view, TCP generates more
stable traffic in this stage than the other two stages (slow-
start and exponential-backoff). Unfortunately, two fac-
tors drag TCP away from the congestion-avoidance stage:
(1) Internet measurements [20] show that most flows (both
TCP and UDP) are short in size (less than 100 packets).
As mentioned earlier, TCP’s adaptive control mechanism
requires a certain period of time to learn the state of the
network, such as the round-trip time and average share of
the available bandwidth. Because most of the TCP con-
nections are too short to generate enough packet samples
to obtain such detailed knowledge, most of their packets
are sent out at a conservatively estimated rate during slow-
start; and(2) an even worse situation is that some parts of
the current Internet can be highly congested [21, 22], and
thus the packet loss rate is relatively high. High loss rate
makes consecutive packet losses possible and retransmis-
sion timeouts force many TCP connections to stay in the
exponential-backoff stage.

Under these conditions, a single TCP connection may
spend most or all of its time in slow-start or exponential-
backoff stages. This is the situation we explore in the next
section.

III. M ODELING TCPBEHAVIOR IN SLOW-START AND

EXPONENTIAL-BACKOFF STAGES

In this section, we use a discrete-time Markov chain
to describe the behavior of TCP in slow-start and
exponential-backoff stages and explain why it generates
heavy tails in packet inter-arrival times. To this end, we as-
sume that TCP’s window adaptation policy depends only
on the last value of the congestion window. We can then
draw a Markov chain as shown in Figure 2. We define
the state of the Markov chain to be the negation of the
binary logarithm of the packet inter-departure time, nor-
malized by the average round-trip time, for each outgoing
packet. For example, the�1 state means the current packet
is going to be sent out 2 round-trip times after the previous
packet. Notice that for slow start phase (state indexk > 0,
there are more than one (up to the current window sizeW )
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Fig. 2. Modeling the behavior of TCP congestion control

packet samples for each state. To simplify our analysis, we
assume that all packets in the window are emitted evenly
over the round trip time. Thus each state actually containsW mini-states, each of which corresponds to one packet
in the current window, with inter-departure time equals to1=W round trip time. However, for simplicity, we ignore
the transition between these mini-states, but rather analyze
the aggregated state with state indexlog2W .

A. Modeling Slow-Start

Figure 3 illustrates the Markov chain for TCP slow-start
stage. During this stage, TCP increases its window size

k k+1k−1

(1−p)2k−1 2k

(1−p)

1−
2k

(1−p)
1− (1−p) 2k+1

0

Fig. 3. Markov chain for slow-start

by one every time it gets an acknowledgment. Therefore
essentially TCP doubles its window size every round-trip
time if none of the packets in the previous window gets
lost during the previous round-trip time. Assuming loss
event is independent of the TCP behavior and the loss rate
is constantp, then the probability of not losing any packet
is (1�p)W , whereW is the previous round’s window size.
Recall that we define statek to denote a TCP window size
of 2k, or equivalently a rate of2k packets per RTT. Thus,
the probability of transition from statek to (k + 1) equals
to (1 � p)2k , as shown in Figure 3. On the other hand,
when packet loss is encountered, TCP reduces its window
size to 1, and goes to slow-start again1. Thus, the transition
probability from statek to state0 is 1� (1� p)2k .

Denote by�k the probability that TCP is in statek,
then we can write the following balance equations of the
Markov chain:�k = (1� p)2(k�1)�k�1 for k > 0

Therefore, we have�k = (1� p)2(k�1)�k�11This is how TCP Tahoe always behaves upon detecting a packet loss.

= :::= (1� p)2k(k�1)=2�0 for k > 0 (1)

B. Modeling Exponential-Backoff

The other part of the Markov chain is shown in detail in
Figure 4. In this stage, TCP tries to retransmit the packet

−k −(k−1)−(k+1)

p

1−p
1−p

p

0

p

Fig. 4. Markov chain for exponential-timeout

lost in the previous round. The window value is kept at 1,
and TCP employs Karn’s algorithm to estimate the round-
trip time, or the maximum time it needs to wait for the
acknowledgment of the retransmitted packet. Instead of
using the sampled round-trip time, TCP backs off the re-
transmission timeout (RTO) exponentially until the packet
is acknowledged, usually starting from the latest RTT sam-
ple for a new (not-retransmitted) packet. If no RTT sam-
ples have yet been received, RTO is usually set to an initial
default value.

During exponential-backoff, if TCP does not receive the
acknowledgment of the retransmitted packet before RTO
expires, either because the packet or its acknowledgment
is lost (with probabilityp), or because the actual RTT is
greater than RTO, then TCP doubles RTO and repeats the
above process. The transition probability from state�(k�1) to�k in Figure 4 corresponds to this case.2

We can derive the state probabilities from the following
balance equations:��k = p��(k�1) for k > 0
Therefore, we have:��k = p��(k�1)= :::= pk�0 for k > 0 (2)

C. Comments and Observations on the Analysis

Note that in Figure 2, we don’t include the congestion-
avoidance stage. Our objective here is to modelshort TCP
connections. Many Internet measurements [5, 20] have
shown that most of the Internet flows are short-lived. Since2Note that in Karn’s algorithm, if a packet has been sent more than
once, the initial RTO for the next packet is set to the RTO of the pre-
vious transmission, not the estimated round-trip time. In other words,
TCP stays in state�k instead of going back to state0. We ignore this
detail to keep our Markovian analysis simple.
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TCP needs to conservatively adapt to the available band-
width in the network, it is often the case that short TCP
connections end their transmission before they really en-
ter into the congestion-avoidance stage. Current versions
of TCP try to avoid being too pessimistic when a packet
loss is encountered. They employfast retransmit and re-
covery [19] mechanisms to avoid going to exponential-
backoff stage too often. To do this, if the TCP sender
receives theKth duplicate acknowledgment packet be-
fore the timer expires,3 the sender will behave as if a
timeout has occurred and retransmits while remaining in
congestion-avoidance. However, for short connections,
since they rarely have a chance to open their window big
enough to have the fast retransmit mechanism workable,
most of their lifetime is spent in exponential-backoff and
slow-start. Thus, the model in Figure 2 is more suited for
short TCP connections.

The steady-state probability distribution function for the
states in the Markov chain is plotted in Figure 5:
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Fig. 5. State probability with different loss rate

Observing the part of the curve for the exponential-
backoff stage (the left side), whenp is large enough (e.g.p > 12%), the distribution of packet inter-arrival times
from the single TCP source starts to exhibit a tail con-
sistent with infinite variance (if it is extended to infin-
ity). This is shown in the following analysis. We have
noticed from equation (2) that��k = pk�0, where��k
corresponds to the probability of inter-arrival of (retrans-
mitted) packets equals2k RTT. Denote byT the random
variable which describes the packet inter-arrival time in
the exponential-backoff stage, then we have:Pr[T = t = 2k℄ = ��k= pk�0= (2k)� log2(1=p)�03K is usually 3.

= t� log2(1=p)�0= t�(�+1)�0 (3)

where� is the slope (exponent) of the corresponding com-
plementary cumulative distribution. Also, observe from
Figure 5 that the window (burst) size distribution in the
slow-start stage isnot heavy-tailed distributed as the tail
of the distribution decays very fast.

Willinger et al: [4] have shown that the result of ag-
gregating many i.i.d. ON/OFF processes, where either the
ON or OFF period of each process follows a heavy-tailed
distribution, is a self-similar fractional Gaussian noisepro-
cess, withH = (3 � min(�1; �2))=2, where�1 and�2 are the shape parameters of the heavy-tailed distri-
bution for ON and OFF periods respectively, given that1 < �1; �2 < 2. From equation (3), we can compute the
shape parameter� as:� = log2(1p)� 1 = log2( 12p) (4)

Therefore, we can compute the Hurst parameter of the
time-series generated by our Markovian modeled pro-
cesses as:H = (3� �)=2 = (3� log2( 12p))=2 (5)

when 1 < � < 2, or 18 < p < 14 corresponding to
0:5 < H < 1.

Notice that whenp increases, the value of the Hurst
parameter, or the degree of self-similarity, increases as
well. This conclusion agrees with the actual Ethernet trace
shown in [3]. Finally, as described above, note that the
exponential backoff algorithm operates between a lower
limit (the current retransmission timeout) and an upper
limit. The upper limit is generally 64 times the lower
limit. When combined with other sources of variability,
this means that the scaling of packet inter-arrivals due to
this effect occurs over a range of scales typically spanning
about 3 decimal orders of magnitude.

IV. SIMULATION WITH PATHOLOGICAL TCP
CONNECTIONS

A. Demonstrate Self-similarity by Simulation

We have set up a simple experiment with the NS [10]
simulator to validate the above observation. As in many
other similar studies [7, 22], we simulate the case that TCP
connections go through a bottleneck link. However, be-
cause we are interested in the behavior of a single TCP
flow, instead of simulating the case of many TCP flows
competing for the bottleneck resource, we simulate only a



BUCS-TR-2000-017 6

S RL
50ms 50ms

Fig. 6. Simulation topology

single connection transmitting over a lossy link. The topol-
ogy is shown in Figure 6. NodeS is the sender, nodeR is
the receiver, the two-way propagation delay betweenS andR is set to200 msec. We put a loss module inside nodeL,
which drops incoming (new or retransmitted) packets uni-
formly with probabilityp. The packet size is set to be fixed
at 576 bytes. The link capacity, buffer size and receiver
window size are set to very large values so that only the
loss module would affect TCP’s performance. The size of
each TCP connection is set to be fixed atFlowSize pack-
ets. A terminated connection is immediately replaced by a
new connection (with all TCP parameters reset). We use
Tahoe version of TCP.4

We have traced the packet arrival event during the sim-
ulation both at the upstream link(S;L) and downstream
link (L;R) of nodeL.5 Figure 7 shows four time-series
plots of the traffic on the upstream link. The plots are pro-
duced by aggregating packet traffic into discrete bins of
0.2, 2, 20, or 200 seconds. We observe that traffic is bursty
over all time scales shown, and that the variability does not
decline rapidly as time scale increases. This is suggestive
of non-trivial self-similarity in the traffic trace.

We use the Aggregated Variance method as well as
the Wavelet Analysis method to test the self-similarity of
the 55-hour packet trace for the simulation with parame-
tersp = 0:15 andFlowSize = 15 packets.6 Figure 8
shows the results. Roughly, with the Aggregated Variance
method, for a self-similar process, the variance of the time
average goes to zero very slowly as the bin size, or ag-
gregation level, becomes larger. In Figure 8, the sample
variance is plotted versus bin size on a log-log plot. For
a self-similar process, the result should be a straight line4We also simulated TCP Reno, the most widely used version of TCP.
The simulation results are very similar to TCP Tahoe. Note that in
the regime of high and bursty packet losses we are considering in this
paper, TCP Tahoe is actually more robust to multiple losses than TCP
Reno.5All the data shown in this paper are collected at the upstreamlink(S;L), i.e., the data includes all packets, including those that are later
lost at nodeL. Excluding those (eventually lost) packets affects the dis-
tributions (packet inter-arrival times, burst sizes) at small time scales,
but does not affect the tail shape of the distributions (i.e., at large time
scales). Thus the major conclusions of this paper still holdfor packet
traces collected on the downstream link(L;R), for which results are
not shown.6For different simulation setups, the packet trace containshundreds
of thousands to few millions of packets transmitted over theupstream
link.

with a slope of2H�2. If the time-series has no long-range
dependence, thenH = 0:5 and the slope should be -1 [23].
With the Wavelet Analysis Method, for a self-similar pro-
cess, the degree of variability, or burstiness, decreases very
slowly at larger time scales. In Figure 8, this variability
is represented by “energy” estimates with 95% quantiles,
computed using the tool of Veitch and Abry [24]. The plot
of energy versus time-scale should be a straight line with
a slope of2H � 1.7 The results of Figure 8 show values
of H that are significantly higher than 0.5, which is again
indicative of self-similarity.

B. Heavy Tails in Packet Inter-arrivals: How and Why

Greineret al: show in [26] that a renewal process where
the interarrival times have a power-tail yields self-similar
scaling behavior. Our simulation results, which closely
match our analysis in Section III, show that packet inter-
arrivals under TCP can indeed be heavy-tailed, causing
self-similarity in the overall traffic. Figure 9 shows sim-
ulation results forp = 0:15 andFlowSize = 15 packets.

We consider packets whose inter-arrival time is less than
2 times the packet transmission time (about 1 millisecond
in our simulation) to constitute a burst. Bursts are only
emitted in slow-start, so their presence does not affect the
heavy tails in our Markov chain model. The probability of
a state�k (k = 1; 2; 3) can be thought of as the probabil-
ity of a burst of size2k in our NS simulation. Therefore,
we use two plots to represent the inter-packet arrival be-
havior. Figure 9(a) shows the log-log complementary dis-
tribution (LLCD) plot for those inter-arrival times bigger
than 1 millisecond, and Figure 9(b) shows the distribution
of packet arrival in bursts. Roughly, Figure 9(a) describes
TCP behavior in the exponential-timeout stage (and part of
the slow-start stage), while Figure 9(b) describes the slow-
start stage. Note that Figures 9(a) and (b) are plotted inlog10-log10 andlog10-log2 scales, respectively. Also note
that each burst corresponds to an aggregated state in the
Markov chain (with state indexk > 0).

We observe that the inter-arrival time distribution in Fig-
ure 9(a) clearly has a tail that shows hyperbolic shape. The
function given by the linear least-squares fit has the shape� = log2 3:33 = 1:74 (implies high variance). The shape
of the tail matches the value obtained by analysis from
equation (4) in Section III-C.

The burst size distribution in the slow-start plot in Fig-
ure 9(b) also shows a shape similar to our analysis given in
Figure 5, where it decreases very fast due to the relatively
high loss probability.7Note in Figure 8(b), the “dip” in the Wavelet plot reflects thestrong
correlation introduced by the network round-trip time (of 200 msec.
here), as explained in [25].
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Fig. 7. Traffic burstiness over four orders of magnitude
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Fig. 8. LRD analysis on packet trace with loss rate = 15%
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Fig. 9. The inter-arrival time and burst size distribution of TCP in (a) exponential-timeout (CDF), (b) slow-start stage (pdf)

C. Effect of Loss Rate

We also vary the loss ratep in our simulation experi-
ments. Figure 10 plots the Wavelet analysis and the inter-
arrival time distribution forp = 0:1 andp = 0:2. Observe
that the slopes of the linear least-squares fit obtained by
simulation closely match those obtained by analysis (cf.
equation (4)).

When the loss rate is relatively low, the self-similarity
exhibited by the time-series is less significant. This is be-
cause the tail of the inter-arrival time (or the OFF period)
distribution is less heavy and thus at larger time scales,

the traffic starts to show less variance. On the contrary,
with higher loss rate, the tail of the OFF periods is heav-
ier and the statistical self-similarity is more significant.
Recall that in our analysis (cf. equation (5)), we requirep > 1=8 so that the tail of the OFF period distribution
is heavy enough to introduce self-similarity in the overall
traffic (i.e.H > 0:5). However, in our simulation, we ob-
serve reasonably high variability at a lowerp of 0.1. That
indicates that our analysis may underestimate the degree
of self-similarity or long-range dependence that may be
present. The reason is due to the variability in the initial
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Fig. 10. Simulation with loss ratesp = 0.1 (a,b), andp = 0.2 (c,d)

timeout values for different packets that we observe in our
simulation, and that we do not capture in our analytical
model. This variability causes the traffic to have a high
variance at large time scales even for values ofp smaller
than 1/8. Section IV-D discusses in more detail the effect
of variability in initial timeout values.

Our analysis in Section III-C estimates the Hurst pa-
rameterH from the shape parameter� (cf. equation (5)).
However, the Wavelet method shows a different Hurst
value for some values of loss rate. For example, whenp = 0:15 and � = 1:74, our analysis yieldsH =(3 � 1:74)=2 = 0:63, whereas the Wavelet method yieldsH = 0:795. However, when the loss rate is high, our anal-
ysis gives a better estimation. For example, whenp = 0:2
and� = 1:32, we obtainH = 0:84, which is very close toH = 0:808 obtained using the Wavelet method. We con-
jecture that when the loss rate is low, the effect of variable
initial retransmission timeout values for different packets
is more significant in determining the Hurst parameter.

D. The Variability of Initial Retransmission Timeout Value

There are two reasons to have variable initial timeout.
The first is brought by variable queueing delays. TCP in-

cludes the variance of the RTT in its RTT estimate, which
is then used to compute the retransmission timeout value.
The second factor, which is more significant in our model,
is that for the first packet, the initial timeout value is set
to a default value because TCP does not have any packet
sample to estimate the round-trip time. This default value
is suggested to be 3 seconds in [27], and is set to 6 sec-
onds by default in the NS simulator. Recall that the two-
way propagation delay in our simulation is 0.2 second, so
if TCP had enough packet samples to accurately estimate
the round-trip time, the initial retransmission timeout value
would have been set to a value close to 0.4 second.8 This
huge difference (about 15 times) results in some packet
inter-arrival times to be as high as64 � 6 = 384 seconds,
if the transmission of a packet fails 6 times. The effect of
the default initial timeout value is less significant in two
cases: when its value is closer to the estimated value, and
when the connection size is large. For these two cases, we
conducted the following two experiments.

8Observe that Figure 9 shows a minimum packet inter-arrival time of
0.2 second.
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Fig. 11. Simulation with file sizesFlowSize = 63 (a,b), andFlowSize = 65535 (c,d)

D.1 Effect of File (Flow) Size

We compare the packet traces generated from send-
ing different file sizes over TCP. We fix the loss rate at
15%. Figure 11 shows both the Wavelet analysis on the
packet trace and the packet inter-arrival time distribution
for FlowSize = 63 packets and65; 535 packets.

We observe that as the file size increases, the time-series
shows less variations at larger time scales; this is apparent
from the less heavy tail of the LLCD plot and the Wavelet
plot bending down at large time scales. Note that the high
value ofH = 0:832 in Figure 11(c) is misleading as the
linear least-squares fit does not match quite well the en-
ergy curve. Indeed, the time-series produced by transmit-
ting large files is no longer self-similar.We attribute this
reduced variability to the more accurate information TCP
learned from increased packet samples and better rate es-
timation (through congestion-avoidance).

D.2 Effect of Default Initial Timeout Value

We conducted two experiments to reduce the difference
between the default initial timeout value and the normal
timeout value. In the first experiment, we increase the two-

way propagation delay from 0.2 second to 1 second. In
the second experiment, we reduce the default initial time-
out value from 6 seconds to 0.5 second. Figure 12 shows
the Wavelet analysis of the time-series produced by the
captured packet traces forFlowSize = 15 packets andp = 0:15.

As the variance of the timeout values becomes smaller,
the long-range dependence in the time-series becomes less
significant.9 In [7], the authors show that when 40 TCP
connections are squeezed into a small pipe (on average,
each connection can transmit less than one packet in one
round-trip time), the time-series produced by each connec-
tion shows long-range dependence. We can explain this
phenomena here based on the above observations. First
of all, a highly congested network brings higher packet
losses (indeed, [7] considers a loss rate of around 16%).
Secondly, in this case, queueing delays bring more vari-
ability to the initial retransmission timeout values for dif-
ferent packets. We observe that it is these two factors that
contribute to heavy-tailed packet inter-arrival times, orthe9This observation agrees with [16], in which Peha observes that for
larger or more random timeouts, self-similar behavior is observed at
larger time scales.
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Fig. 12. Reducing the difference between timeout values: (a) increase round-trip propagation delay to 1 second, (b) decrease

default timeout value to 0.5 second.
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Fig. 13. Validation of heavy-tailed transmission time,FlowSize = 15,p = 15%

“chaotic” nature of the TCP congestion control.

E. Network Dynamics and Heavy-tailed Transmission
Times

In [8], the authors noted that the omnipresence of heavy-
tails in file size distribution in the majority of file systems
is not the only reason behind the heavy-tailed distribution
of HTTP file transfers. They pointed out that the network
condition is also important by observing that there isno
strong correlation between file transmission time and file
size. However, that paper made no attempt to explore al-
ternate reasons for heavy-tailed transmission times.

We observe that in addition to these reasons, TCP’s
adaptive congestion control mechanism in the presence of
severe network conditions can be another major contrib-
utor to heavy tails. We run simulations on both the NS
simulator and the Markov chain described in Section II
to validate this observation. Figure 13 shows the LLCD
plot of the transmission time distribution for transferring
a 15-packet file over a lossy channel with 15% loss rate.

The stair-step shape of the plot is due to the small file size
(15 packets) leading to a small set of possible packet-loss
events and thus transmission times. Nonetheless it shows
an approximate power-law shape (the general trend apart
from the stair-stepping) that is indicative of heavy tails in
transmission times. Larger files would presumably show
a smoother curve. This surprising effect means that un-
der certain network conditions, heavy-tailed transmission
times can occur even in the absence ofany variability in
file sizes.10

V. CONCLUSION AND FUTURE WORK

The principle of TCP congestion control is to avoid
overloading the network while still maintaining network
usage efficiency. The TCP control algorithm is simple but
effective. However, this simplicity does not come for free.
The behavior of TCP becomes less predictable or even10This high variability in file transmission times is consistent with
that observed in [6].
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chaotic when the network condition is out of TCP’s con-
trol. In this paper, we have demonstrated that when a TCP
connection is going through a highly lossy channel and
the loss condition is not affected by this single TCP con-
nection’s behavior, TCP starts to produce packet trains that
show self-similarity. We used a simple Markovian model
to demonstrate why heavy-tails show up in packet inter-
arrival times and file transmission times. We believe that
our analysis sheds some light on the relationship between
TCP conservative control mechanism and heavy-tailed dis-
tributions observed in Internet traffic.

Our future work includes extending our analytical
model to consider the variability in round-trip time estima-
tion, and verifying our analytical model in more complex
network settings. We also plan to study possible improve-
ments to TCP congestion control mechanism under severe
network conditions. We are also planning to investigate
the relationship between network-level self-similarity and
application-level self-similarity (especially for network-
aware adaptive applications).
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