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Abstract— Long-range dependence has been observed inin the Internet [1, 4]— the majority of flows are found to be
many recent Internet traffic measurements. Previous stud- very short, many are long, and some are very long. How-
ies have shown that there is a close relationship betweeneyer, a number of studies have shown that interesting scal-
heavy-tailed distribution of various traffic parameters and ing properties can arise even when flow lengths raoe

the long-range dependent property. In this paper, we use | . . .
a simple Markov chain model to argue that when the loss highly variable [6, 7). Furthermore, although heavy-tdile

rate is relatively high, TCP's adaptive congestion control [OW lengths are commonly associated with heavy-tailed

mechanism indeed generates traffic with heavy-tailed OFF, file sizes, the authors in [8] and [9] finab strong cor-
or idle, periods, and therefore introduces long-range de- relation between file sizes and transmission times (even
pendence into the overall traffic. Moreover, the degree of though both show heavy tails).
such long-range dependence, measured by the Hurst param-  |n this paper, we study the relationship between TCP’s
eter, increases as the loss rate increases, agreeing withmya  ¢,ngestion control mechanism and traffic self-similarity
previous measurement-based studies. In addition, we 0b- e certain network conditions. By means of Marko-
serve that more variable initial retransmission timeout vd- . . . .
ues for different packets introduces more variable packet vian analysis and NS S|mu!ator [_10]_’ WF_" co.nflrm that.TCP
inter-arrival times, which increases the burstiness of the flows can show a heavy-tailed distribution in packet inter-
overall traffic. Finally’ we show that high loss conditions arrivals under certain conditions. We show that Iarger loss
can lead to a heavy-tailed distribution of transmission times rates bring longer range dependence into the traffic. This
even for constant-sized files. This means that file size vari-is consistent with previous measurement-based studies [3]
ability need not be the only cause of heavy-tailed variabity | addition, we also show in this paper that, because short
in transmission durations. connections do not have enough packet samples to accu-
Keywords— Congestion Control, Long-Range Depen- rately estimate the time they need to wait for acknowledg-
dence, Self-Similarity. ments, the conservatively chosen value can introduce very
large gaps between packets, thus making the traffic gener-
|. INTRODUCTION ated by (short) TCP connections even more bursty.

S ELF-SIMILARITY has been observed in a large num-

ber of Internet traffic measurements (for example, [ eavy-tailed Distribution, Self-Similarity and Long-

ange DependenceHere we briefly review some con-

2, 3]). Self-similarity refers to the condition in which . .
the second-order statistics of traffic decay very slowf:elmS related to fractal property. A more detailed descrip-
on can be found in [11, 12] and references therein.

with increasing the aggregation level, compared to tradi- R . .
g goreg P Most of the distributions shown in this paper have the

tional Markovi -l dels. Self-similarit . . AR
lonal Markovian (memory-less) models. Self-similari ?ér perty of beingheavy-tailed. We say a distribution is

is closely associated with the phenomenon of heavy-tai S . S
L . S . . heavy-tailed if the asymptotic shape of the distribution is
distributions, which are distributions whose tails deglin .
. . ower-law with exponent less than 2 regardless of the be-
via a power law with small exponent (less than 2). The . T
S N avior of the distribution for small values of the random
presence of heavy tails in lengths of individual flows Cavnariable i e
be shown to induce self-similarity in network traffic [4]. T
Heavy-tailed properties have been found in file sizes and PIX >a] ~a @
user thinking time [1], flow (session) duration [5], as well N ’
as packet inter-arrival time [4] distributions in the Intet. The reason that such distributions are called heavy-
To date, the best-accepted hypothesis for the genesisadled is that, compared to those more commonly used
self-similarity on time-scales from seconds to an hour éistributions such as exponential and normal distribigjon
the heavy-tailed distribution that is typical of flow lengtha random variable that follows a heavy-tailed distribution
This work was supported in part by NSF grants CAREER ANIC@N giVe rise to extremely large values with non-negligible
0096045 and MRI EIA-9871022. probability. As a consequence, such random variable

asr - 00,0 < a<?2
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shows infinite variance whem < 2. traffic.

It has been shown in [4] that the aggregation of i.i.d. Other studies have argued that the chaotic nature of net-

ON/OFF processes producesf-similar time-series, if ei- work protocols and variability of system conditions ma
ther ON or OFF periods of each process follow a heavg— P y y y

. L . o so contribute to the self-similarity in traffic, espebyadt
tailed distribution. We say a time-series is (asymptoti- ) :
y (asymp smaller time scales. In [15], Deameal. analyze token-

cally) self-similar if the autocorrelation function of the . . ST .
. . . . iRassing networks and attribute self-similarity in traffic t
new time-series produced by aggregating the original time-

S . - rotocol interactions between sources and destinations.
series is (asymptotically) equal to the original autocorr hey show that even in a deterministic network, protocol
lation function. That is, given a stationary time-serieg ’

X = (X, :t =0,1,2,..), we define then-aggregated ynar_nic_s can generate che_lotic behavior, which leads to
R - _ self-similarity in network traffic. A recentwork by Veres
sgrlng . (X k=123, ‘_") by S“mm'”‘-?l the al. [7] illustrates by simulation that under severe network
orlglngl se_nesX oyer_non_—overlappmg blocks of size. . conditions, TCP congestion control protocol indeed shows
Then_ if.X is self-similar, |t_has the same autocorrelgtloghaotic nature, and starts to generate self-similar traffic
fur(m;uonr(k:) - E[(Xt__ X)(Xe4r — X)] as the series However, they only show evidence of such chaotic nature,
Xt for all m, wherg){ = B[X]. and don't explain why it shows up when the network is
As a result, self-similar processes shimag-range de-  highiy congested. In [16], Peha uses simulation to argue
pendence. A process with long-range dependence has gfl; hacket retransmission and congestion control mech-
autocorrelation functiom(k) ~ k= ask — oo, Where anisms could cause self-similarity when congestion does

0 </ < 1. Thus the autocorrelation function of SuChgnnen in the network. However, no theoretical evidence
a process decays hyperbolically (as compared to the fgiven in that paper. More recently, Veres al. [17]

ponential decay exhibited by traditional Markovian traffighserve from real measurements that short TCP connec-

models). tions produce self-similar traffic, which they attribute to

One of the attractive features of using self-similar moghe reaction of TCP congestion control to the self-similar
els for time-series, when appropriate, is that the degreeiR{ckground traffic.

self-similarity of a series is expressed using only a sin-

le parameter called thidurst parametetH = 1 — /2. I :

gle p - . P 8/ Our Contribution: We also conjecture that protocol-
For self-similar series]/2 < H < 1. AsH — 1, the . d ch ld b tributor © work trafi
degree of self-similarity increases. Thus the fundamentgf - c€¢ CNA0S could bE & Contributor to network tratiic

Jfluced ch 2 .
test for self-similarity of a series reduces to the questibn self-similarity. Our work is different from previous work
whetherH is significantly different froml /2.

in that we seek to discover the causes of protocol-induced
chaos based on analytical arguments. More specifically,

Related Work: There has been a large body of workve illustrate in this paper that the exponential-backoff al
attempting to explain the causes of heavy-tails and sg#erithm, used by TCP's congestion control mechanism
similarity in Internet traffic. Broadly, they either at-under severe network congestion conditions, can cause
tribute the causes tpplication/user-level variability (e.g., chaotic behavior. Our analytical model encompasses gen-
[13],[14],[1]) or to systenVnetwork-level complexity (e.g., ©€ral loss conditions, which may be due to contention
[15],[71,[16],[17]). among several TCP connections (as in [7]), or due to self-
Willinger et al. [13] examined Ethernet traffic atSimilar cros_s-traffic (asin [17]). T_hus, we view our \_/vork
the packet level, identified flows between individudl€re @s a first step toward analytically grounded evidence
source/destination pairs, and showed that transmission 47 reasons for self-similarity in TCP packet flows.
idle times for those flows are heavy-tailed. Paxson and
Floyd [14] traced Internet traffic and observed that burst The paper is organized as follows. In Section Il we
sizes in FTP transfers, and TELNET packet inter-arrivakiefly review TCP’s congestion control mechanism. In
times (appearance of “keystroke”) show heavy-tailed diSection 11l we propose a Markovian model to describe its
tributions. In [1], Crovella and Bestavros examine Webehavior under certain network conditions and analytycall
traffic. They observe that file size distributions in Uniexplain why the inter-arrival times of TCP packets follow
systems as well as in Web databases are heavy-taileda llmeavy-tailed distribution. We use simulation to confirm
addition, heavy-tailed distributions are found in HTTP-sesur analysis in Section IV and show that the traffic gen-
sion time and request inter-arrival time (user “thinkingérated by TCP connections is indeed asymptotically self-
time). They propose that these heavy-tailed distributiossnilar. We discuss extensions to our analysis and future
might be the primary causes of the self-similarity in Wetvork in Section V.
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II. CONSERVATIVENATURE OFTCPAND ITS ° ° ecc0 o o ° °
PATHOLOGICAL EFFECT

The objective of TCP congestion control is for each
source to determine how much capacity is available in the
network, so that it knows what rate it can safely send at.
Therefore, the data transfer of TCP starts from a stage,
calledslow-start, in which TCP tries to increase its send- sjow Start Congestion Avoidance  Exponential Backoff
ing rate exponentially, until it encounters the first loss.

At this point, TCP interprets packet loss as an indication Fig. 1. Behavior of TCP congestion control
of reaching the upper limit of the available bandwidth of

the bottleneck link. Thus, from this point on (or follow+raffic characteristics point-of-view, TCP generates more
ing another slow-start period, depending on the implgtaple traffic in this stage than the other two stages (slow-
mentation of TCP), it switches to another stage, callegart and exponential-backoff). Unfortunately, two fac-
congestion-avoidance, in which TCP employs théddi- tors drag TCP away from the congestion-avoidance stage:
tive Increase, Multiplicative Decrease (AIMD) mechanism (1) |nternet measurements [20] show that most flows (both
to slowly adapt to the available bandwidth. TCP and UDP) are short in size (less than 100 packets).
Another important stage of TCP congestion control haps mentioned earlier, TCP’s adaptive control mechanism
pens when the network is heavily loaded, during whialequires a certain period of time to learn the state of the
some of the TCP connections should keep silent so ratwork, such as the round-trip time and average share of
to clear congestion. This stage, referred to in this pthe available bandwidth. Because most of the TCP con-
per asexponential-backoff, is the regime that Karn’s algo-nections are too short to generate enough packet samples
rithm [18] deals with. In this regime, when TCP does ndb obtain such detailed knowledge, most of their packets
receive an acknowledgment for a packet after some tinare sent out at a conservatively estimated rate during slow-
out period, it assumes that this packet is lost, and then s¢art; and2) an even worse situation is that some parts of
transmits that packet and doubles its retransmission tintee current Internet can be highly congested [21, 22], and
out value (RTO) for detecting packet loss. This procesisus the packet loss rate is relatively high. High loss rate
continues until the packet is successfully transmitted anthkes consecutive packet losses possible and retransmis-
acknowledged, up to some upper limit (usually 64 timeson timeouts force many TCP connections to stay in the
the smallest timeout). Essentially, TCP tries to clear coaexponential-backoff stage.
gestion by cutting its sending rate in half (or exponenyiall Under these conditions, a single TCP connection may
decreasing its rate). spend most or all of its time in slow-start or exponential-

Figure 1 shows a schematic view of the TCP congegackoff stages. This is the situation we explore in the next
tion window behavior at different stages (black points osection.
the top indicate packet losses). The value of the conges-
tion window is proportional to the sending rate, which id!!l- M ODELING TCPBEHAVIOR IN SLOW-START AND
roughly equal to the size of the window divided by the EXPONENTIAL-BACKOFF STAGES
round-trip time (RTT). To simplify our analysis, we focus |n this section, we use a discrete-time Markov chain
on the behavior of TCP Tahoe, and we assume that thetg- describe the behavior of TCP in slow-start and
ceiver has an unlimited buffer, so there’s no TCP flow CO@Xponentia|-back0ff stages and exp|ain Why it generates
trol (the upper limit on the window size). We should poinkeavy tails in packet inter-arrival times. To this end, we as
out that all versions of TCP behave the same when packgine that TCP’s window adaptation policy depends only
loss is detected by a retransmission timeout; TCP I’Edumthe last value of the congestion window. We can then
its window to 1 packet and goes to slow-start phase Uraw a Markov chain as shown in Figure 2. We define
til it reaches half the previous window, where it starts thﬁe state of the Markov chain to be the negation of the
congestion-avoidance phase. Some versions of TCP (®i@ary logarithm of the packet inter-departure time, nor-
TCP Reno, New-Reno [19]) attempt to prolong their ognalized by the average round-trip time, for each outgoing
eration in congestion-avoidance, but eventually go backggcket. For example, thel state means the current packet
slow-start on a retransmission timeout. is going to be sent out 2 round-trip times after the previous

Ideally, TCP would operate in the congestion-avoidanpacket. Notice that for slow start phase (state inkdex0,
stage to efficiently utilize the network resources. From ttieere are more than one (up to the current window Bi2e




BUCS-TR-2000-017 4

“... CHOSOA Lo = . .
= (1-p)? g fork >0 (1)

Exponential Backoff

Slow Start B. Modeling Exponential-Backoff

Packet Inter—departure Time in state k=2 RTT

The other part of the Markov chain is shown in detail in
Fig. 2. Modeling the behavior of TCP congestion control Figure 4. In this stage, TCP tries to retransmit the packet

p p p
packet samples for each state. To simplify our analysis, we
assume that all packets in the window are emitted evenly® * * @ ° t0 °
over the round trip time. Thus each state actually contains ND_/
W mini-states, each of which corresponds to one packet
in the current window, with inter-departure time equals to
1/W round trip time. However, for simplicity, we ignore
the transition between these mini-states, but rather aBaIyOst in the previous round. The window value is kept atl,
the aggregated state with state indeg, W' and TCP employs Karn’s algorithm to estimate the round-
. trip time, or the maximum time it needs to wait for the
A. Modeling Sow-Sart acknowledgment of the retransmitted packet. Instead of
Figure 3 illustrates the Markov chain for TCP slow-stafising the sampled round-trip time, TCP backs off the re-
stage. During this stage, TCP increases its window siggnsmission timeout (RTO) exponentially until the packet
is acknowledged, usually starting from the latest RTT sam-
ple for a new (not-retransmitted) packet. If no RTT sam-
ples have yet been received, RTO is usually set to an initial
default value.
During exponential-backoff, if TCP does not receive the
acknowledgment of the retransmitted packet before RTO
Fig. 3. Markov chain for slow-start expires, either because the packet or its acknowledgment
is lost (with probabilityp), or because the actual RTT is
by one every time it gets an acknowledgment. Therefogeeater than RTO, then TCP doubles RTO and repeats the
essentially TCP doubles its window size every round-trgbove process. The transition probability from staté —
time if none of the packets in the previous window gets) to —k in Figure 4 corresponds to this case.
lost during the previous round-trip time. Assuming loss We can derive the state probabilities from the following
event is independent of the TCP behavior and the loss ratdance equations:
is constanp, then the probability of not losing any packet
is (1—p)", wherelV is the previous round’s window size. T =pr(k-1) fOrk >0
Recall that we define stateto denote a TCP window size
of 2¢, or equivalently a rate df* packets per RTT. Thus,
the probability of transition from stateto (k + 1) equals
to (1 — p)Qk, as shown in Figure 3. On the other hand, .
when packet loss is encountered, TCP reduces its window - k
size to 1, and goes to slow-start adaifihus, the transition = p'm fork >0 ©)
probability from statek to stated is 1 — (1 — p)2".
Denote bym; the probability that TCP is in statk,
then we can write the following balance equations of the Note that in Figure 2, we don't include the congestion-

Fig. 4. Markov chain for exponential-timeout

Therefore, we have:

T—k = PT_(k-1)

C. Comments and Observations on the Analysis

Markov chain: avoidance stage. Our objective here is to matiett TCP
1) connections. Many Internet measurements [5, 20] have
m = (1—p)? Tr—1 fork >0 shown that most of the Internet flows are short-lived. Since

ZNote that in Karn’s algorithm, if a packet has been sent mioaa t
once, the initial RTO for the next packet is set to the RTO ef phe-
vious transmission, not the estimated round-trip time. threowords,
TCP stays in state-k instead of going back to stafe We ignore this
!This is how TCP Tahoe always behaves upon detecting a pasiget | detail to keep our Markovian analysis simple.

Therefore, we have

(k-1)
me = (1-p)? ‘mp
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TCP needs to conservatively adapt to the available band- = ¢~ log(1/pP)

width in the network, it is often the case that short TCP — (et (3)
connections end their transmission before they really en-

ter into the congestion-avoidance stage. Current versiagiserea is the slope (exponent) of the corresponding com-
of TCP try to avoid being too pessimistic when a packglementary cumulative distribution. Also, observe from
loss is encountered. They empltast retransmit and re-  Figure 5 that the window (burst) size distribution in the
covery [19] mechanisms to avoid going to exponentiaklow-start stage isot heavy-tailed distributed as the tail
backoff stage too often. To do this, if the TCP sendef the distribution decays very fast.

receives theK™ duplicate acknowledgment packet be- Willinger et al. [4] have shown that the result of ag-
fore the timer expired, the sender will behave as if agregating many i.i.d. ON/OFF processes, where either the
timeout has occurred and retransmits while remaining @N or OFF period of each process follows a heavy-tailed
congestion-avoidance. However, for short connectionistribution, is a self-similar fractional Gaussian ngise-
since they rarely have a chance to open their window higss, withH = (3 — min(aq, a2))/2, wherea; and
enough to have the fast retransmit mechanism workabig, are the shape parameters of the heavy-tailed distri-
most of their lifetime is spent in exponential-backoff angution for ON and OFF periods respectively, given that
slow-start. Thus, the model in Figure 2 is more suited far < o, as < 2. From equation (3), we can compute the

short TCP connections. shape parameter as:
The steady-state probability distribution function foeth
states in the Markov chain is plotted in Figure 5: o — logg(l) 1= 10g2(i) (4)
P 2p
Throughput Distribution Therefore, we can compute the Hurst parameter of the
1 ‘ ‘ ‘ ‘ ‘ time-series generated by our Markovian modeled pro-
| 8
T cesses as:
01} ' :\; : )
g I f H = (3-0a)/2= (3~ logy(5))/2 (5)
5 001} u , Y
£ . p=0.050 ——T . 1 _
L X | whenl < a < 2, 0r g < p < 3 corresponding to
p = 0.200 - |
0.001} < - | 05 < H < 1.
P = 0400 Notice that whenp increases, the value of the Hurst
0.0001_6 X " 5 0 " . . parameter, or the degree of self-similarity, increases as
log2(rate) well. This conclusion agrees with the actual Ethernet trace

shown in [3]. Finally, as described above, note that the
Fig. 5. State probability with different loss rate exponential backoff algorithm operates between a lower
limit (the current retransmission timeout) and an upper
Observing the part of the curve for the exponentiafiyit. The upper limit is generally 64 times the lower
backoff stage (the left side), whenis large enough (e.9. jimit. When combined with other sources of variability,
p > 12%), the distribution of packet inter-arrival timesihis means that the scaling of packet inter-arrivals due to

from the single TCP source starts to exhibit a tail CoRnjs effect occurs over a range of scales typically spanning
sistent with infinite variance (if it is extended to infingpout 3 decimal orders of magnitude.

ity). This is shown in the following analysis. We have
noticed from equation (2) that_;, = p*ng, wherer_, IV. SIMULATION WITH PATHOLOGICAL TCP
corresponds to the probability of inter-arrival of (retsan CONNECTIONS

mitted) packets equa_ts’C RTT. Denote byI" the random , nooncrate Salf-simil arity by Simulation
variable which describes the packet inter-arrival time in

the exponential-backoff stage, then we have: We have set up a simple experiment with the NS [10]
simulator to validate the above observation. As in many

PrlT =t=2% = =_, other similar studies [7, 22], we simulate the case that TCP

— g connections go through a bottleneck link. However, be-

cause we are interested in the behavior of a single TCP
flow, instead of simulating the case of many TCP flows
3K is usually 3. competing for the bottleneck resource, we simulate only a

(2k)~ log2(1/p)
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@ 50ms (D) 50ms @ with a slope oR H —2. If the time-series has no long-range
—/ dependence, thelf = 0.5 and the slope should be -1 [23].
Fig. 6. Simulation topology With the Wavelet Analysis_ Method, fo_r a self-similar pro-
cess, the degree of variability, or burstiness, decreanys v
slowly at larger time scales. In Figure 8, this variability
single connection transmitting over a lossy link. The tepois represented by “energy” estimates with 95% quantiles,
ogy is shown in Figure 6. Nodg is the sender, nodR is computed using the tool of Veitch and Abry [24]. The plot
the receiver, the two-way propagation delay betwgamd of energy versus time-scale should be a straight line with
R is set t0200 msec. We put a loss module inside ndde a slope of2H — 1.7 The results of Figure 8 show values
which drops incoming (new or retransmitted) packets uref H that are significantly higher than 0.5, which is again
formly with probabilityp. The packet size is set to be fixedndicative of self-similarity.
at 576 bytes. The link capacity, buffer size and receiver
window size are set to very large values so that only tife Heavy Tailsin Packet Inter-arrivals: How and Why
loss module would affect TCP’s performance. The size OfGreineret al. show in [26] that a renewal process where
each TCP connection is set to be fixed'dbwSize pack- the interarrival times have a power-tail yields self-samil
ets. A terminated connection is immediately replaced bysgaling behavior. Our simulation results, which closely
new connection (with all TCP parameters reset). We Uggatch our analysis in Section Ill, show that packet inter-
Tahoe version of TCP. arrivals under TCP can indeed be heavy-tailed, causing
We have traced the packet arrival event during the sirself-similarity in the overall traffic. Figure 9 shows sim-
ulation both at the upstream linkS, L) and downstream ulation results fop = 0.15 and FlowSize = 15 packets.
link (L, R) of nodeL.> Figure 7 shows four time-series We consider packets whose inter-arrival time is less than
plots of the traffic on the upstream link. The plots are pr@times the packet transmission time (about 1 millisecond
duced by aggregating packet traffic into discrete bins f our simulation) to constitute a burst. Bursts are only
0.2, 2, 20, or 200 seconds. We observe that traffic is burgiyitted in slow-start, so their presence does not affect the
over all time scales shown, and that the variability does neg¢avy tails in our Markov chain model. The probability of
decline rapidly as time scale increases. This is suggestivstater, (k = 1,2, 3) can be thought of as the probabil-
of non-trivial self-similarity in the traffic trace. ity of a burst of size2* in our NS simulation. Therefore,
We use the Aggregated Variance method as well we use two plots to represent the inter-packet arrival be-
the Wavelet Analysis method to test the self-similarity dfavior. Figure 9(a) shows the log-log complementary dis-
the 55-hour packet trace for the simulation with paramgribution (LLCD) plot for those inter-arrival times bigger
tersp = 0.15 and FlowSize = 15 packet® Figure 8 than 1 millisecond, and Figure 9(b) shows the distribution
shows the results. Roughly, with the Aggregated Varianoépacket arrival in bursts. Roughly, Figure 9(a) describes
method, for a self-similar process, the variance of the tinffé€CP behavior in the exponential-timeout stage (and part of
average goes to zero very slowly as the bin size, or dfje slow-start stage), while Figure 9(b) describes the slow
gregation level, becomes larger. In Figure 8, the samsiart stage. Note that Figures 9(a) and (b) are plotted in
variance is plotted versus bin size on a log-log plot. Févgo-log;o andlog,-log, scales, respectively. Also note
a self-similar process, the result should be a straight litigat each burst corresponds to an aggregated state in the
Markov chain (with state indek > 0).

“We also simulated TCP Reno, the most widely used version & TC \\e observe that the inter-arrival time distribution in Fig-
The simulation results are very similar to TCP Tahoe. No® th ;0 g(3) clearly has a tail that shows hyperbolic shape. The
the regime of high and bursty packet losses we are consilrithis function given by the linear least-squares fit has the shape
paper, TCP Tahoe is actually more robust to multiple loslsas TCP
Reno. a = logy 3.33 = 1.74 (implies high variance). The shape

SAll the data shown in this paper are collected at the upstrikn  of the tail matches the value obtained by analysis from
(S, L), i.e., the data includes all packets, including those thatater equation (4) in Section I1I-C.
lost at nodel. Excluding those (eventually lost) packets affects the dis . S . .
tributions (packet inter-arrival times, burst sizes) aafitime scales, The burst size distribution 'n t_he slow-start plo.t |n.F|g—.
but does not affect the tail shape of the distributions, (aelarge time Ure 9(b) also shows a shape similar to our analysis given in
scales). Thus the major conclusions of this paper still lioidpacket Figure 5, where it decreases very fast due to the relatively
traces collected on the downstream lifl, R), for which results are high loss probability.
not shown.

SFor different simulation setups, the packet trace conthingdreds  “Note in Figure 8(b), the “dip” in the Wavelet plot reflects tteong
of thousands to few millions of packets transmitted overupstream correlation introduced by the network round-trip time (&f2msec.
link. here), as explained in [25].
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C. Effect of Loss Rate the traffic starts to show less variance. On the contrary,
with higher loss rate, the tail of the OFF periods is heav-

i??r and the statistical self-similarity is more significant
. : N ecall that in our analysis (cf. equation (5)), we require
arrival time distribution fop = 0.1 andp = 0.2. Observe ysis ( R (5)) 9

that the slopes of the linear least-squares fit obtained b > 1/8 so that the tail of the OFF period distribution

Y, . oo
) . . . eavy enough to introduce self-similarity in the overall
simulation closely match those obtained by analysis (é? cavy 19 introduce sef-simiarity 1 v
equation (4)) raffic (i.e. H > 0.5). However, in our simulation, we ob-

When the | is relatively | h f-similari serve reasonably high variability at a loweof 0.1. That
en the loss rate is relatively low, the self-similarnity, yoieq that our analysis may underestimate the degree

exhibited by the time-series is less significant. This is bgg self-similarity or long-range dependence that may be
cause the t;ul of the inter-arvival time (or the O_FF PEMNOGesent. The reason is due to the variability in the initial
distribution is less heavy and thus at larger time scales,

We also vary the loss rate in our simulation experi-
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Fig. 10. Simulation with loss ratgs= 0.1 (a,b), ang = 0.2 (c,d)

timeout values for different packets that we observe in oaludes the variance of the RTT in its RTT estimate, which
simulation, and that we do not capture in our analytica then used to compute the retransmission timeout value.
model. This variability causes the traffic to have a highhe second factor, which is more significant in our model,
variance at large time scales even for valueg smaller is that for the first packet, the initial timeout value is set
than 1/8. Section IV-D discusses in more detail the effetct a default value because TCP does not have any packet
of variability in initial timeout values. sample to estimate the round-trip time. This default value
Our analysis in Section IlI-C estimates the Hurst pas suggested to be 3 seconds in [27], and is set to 6 sec-
rameterH from the shape parameter(cf. equation (5)). onds by default in the NS simulator. Recall that the two-
However, the Wavelet method shows a different Hurstay propagation delay in our simulation is 0.2 second, so
value for some values of loss rate. For example, wh&nTCP had enough packet samples to accurately estimate
p = 0.15 anda = 1.74, our analysis yieldsH = theround-trip time, the initial retransmission timeoulu&
(3 — 1.74)/2 = 0.63, whereas the Wavelet method yieldsvould have been set to a value close to 0.4 se€oftis
H = 0.795. However, when the loss rate is high, our anahuge difference (about 15 times) results in some packet
ysis gives a better estimation. For example, wphen 0.2 inter-arrival times to be as high &4 x 6 = 384 seconds,
anda = 1.32, we obtainH = 0.84, which is very close to if the transmission of a packet fails 6 times. The effect of
H = 0.808 obtained using the Wavelet method. We corthe default initial timeout value is less significant in two
jecture that when the loss rate is low, the effect of variabd@ses: when its value is closer to the estimated value, and
initial retransmission timeout values for different patske when the connection size is large. For these two cases, we
is more significant in determining the Hurst parameter. conducted the following two experiments.

D. TheVariability of Initial Retransmission Timeout Value

Th(_':‘re are two reasons to have Var_iable initial timeo_UtJSObserve that Figure 9 shows a minimum packet inter-arrina of
The first is brought by variable queueing delays. TCP in:2 second.
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D.1 Effect of File (Flow) Size way propagation delay from 0.2 second to 1 second. In
the second experiment, we reduce the default initial time-

%gl't value from 6 seconds to 0.5 second. Figure 12 shows

15%. Fi 11 sh both the Wavelet s ¢ he Wavelet analysis of the time-series produced by the
o. Flgure SNows bo . © ayee _ana ygs_on_ cetptured packet traces fdflowSize = 15 packets and
packet trace and the packet inter-arrival time distributio

. p = 0.15.
F = . . .
for FlowSize = 63 packets an@5, 535 packets . As the variance of the timeout values becomes smaller,

We observe t_he_\t asthefile Siz€ Increases, the_t'me'seﬂ?eglong-range dependence in the time-series becomes less
shows less variations at larger time scales; this is appars@nificant.g In [7], the authors show that when 40 TCP
from the less heavy tail of the LLCD plot and the Wavel onnections are squeezed into a small pipe (on average,

plot bending down at large time scales. Note that the h'glach connection can transmit less than one packet in one

value of i = 0.832 in Figure 11(c) is misleading as theround-triptime), the time-series produced by each connec-

linear least-squares fit dpes not'match quite well the &bn shows long-range dependence. We can explain this
€rgy curve. Ind_eed, the tlme-serle_s produced b_y trans_ Kenomena here based on the above observations. First
ting large fllgs Is no longer self-5|m|Iar.We attrlbyte thi f all, a highly congested network brings higher packet
reduced varla_blllty to the more accurate information TCl%sses (indeed, [7] considers a loss rate of around 16%).
I_earn_ed from increased pgcket se_lmples and better rate§§éondly, in this case, queueing delays bring more vari-
timation (through congestion-avoidance). ability to the initial retransmission timeout values fof-di
ferent packets. We observe that it is these two factors that
contribute to heavy-tailed packet inter-arrival timesttoe

We compare the packet traces generated from se
ing different file sizes over TCP. We fix the loss rate

D.2 Effect of Default Initial Timeout Value

We conducted two 'e>.(per|r.nents to reduce the dIﬂerenceThis observation agrees with [16], in which Peha observasftr
petween the default |.n|t|al t'm_eOUt value. and the normglger or more random timeouts, self-similar behavior isaed at
timeout value. In the first experiment, we increase the twiasger time scales.
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Fig. 13. Validation of heavy-tailed transmission tilddpwSize = 15,p = 15%
“chaotic” nature of the TCP congestion control. The stair-step shape of the plot is due to the small file size

_ . o (15 packets) leading to a small set of possible packet-loss
E. Network Dynamics and Heavy-tailed Transmission eyents and thus transmission times. Nonetheless it shows

Times an approximate power-law shape (the general trend apart

In [8], the authors noted that the omnipresence of heafjom the stair-stepping) that is indicative of heavy tails i
tails in file size distribution in the majority of file systemgransmission times. Larger files would presumably show
is not the only reason behind the heavy-tailed distributighsmoother curve. This surprising effect means that un-
of HTTP file transfers. They pointed out that the networ#er certain network conditions, heavy-tailed transmissio
condition is also important by observing that therenis times can occur even in the absenceany variability in
strong correlation between file transmission time and fifée sizes™
size. However, that paper made no attempt to explore al-
ternate reasons for heavy-tailed transmission times. V. CONCLUSION AND FUTURE WORK

We observe that in addition to these reasons, TCP’ . . . .

. . . he principle of TCP congestion control is to avoid

adaptive congestion control mechanism in the presence o

" i % erloading the network while still maintaining network
severe network conditions can be another major contri = aqe efficiency. The TCP control algorithm is simple but
utor to heavy tails. We run simulations on both the Ng 9 Y- g P

. . . . . ffective. However, this simplicity does not come for free.
simulator and the Markov chain described in Section Ehe behavior of TCP becomes less predictable or even
to validate this observation. Figure 13 shows the LLC P

plot of the tra.nsmiSSion time diStribUtior_‘ for transfegin 1075 high variability in file transmission times is consistavith
a 15-packet file over a lossy channel with 15% loss rateat observed in [6].
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chaotic when the network condition is out of TCP’s con-
trol. In this paper, we have demonstrated that when a TCP
connection is going through a highly lossy channel amty)
the loss condition is not affected by this single TCP con-
nection’s behavior, TCP starts to produce packet trairts ties]
show self-similarity. We used a simple Markovian model
to demonstrate why heavy-tails show up in packet inter-
arrival times and file transmission times. We believe th t4]
our analysis sheds some light on the relationship between
TCP conservative control mechanism and heavy-tailed dis-
tributions observed in Internet traffic.
Our future work includes extending our analytical
model to consider the variability in round-trip time estima16]
tion, and verifying our analytical model in more complex
network settings. We also plan to study possible improve-

ments to TCP congestion control mechanism under SEVRFR A. veres, Zs. Kenesi, S. Modm, and G. Vattay, “On the Propaga-

[15]

network conditions. We are also planning to investigate
the relationship between network-level self-similarityda
application-level self-similarity (especially for netws
aware adaptive applications).
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