
IEEE Network • May/June 200138

he modeling of TCP congestion control is an important
task for improving the service provided to Internet
users and the efficiency of network resource utilization.
Its importance is due to the large amount of TCP traffic

in the Internet: 95 percent of total bytes and 85–95 percent of
total packets are of the TCP type [1]. A TCP source controls
the rate of application packets as a function of the way the net-
work treats or reacts to these packets [2]. The main objective of
modeling is to come up with simple expressions of TCP
throughput for a given network reaction. This has two main
advantages. First, it determines the factors influencing the per-
formance of the protocol, which gives people working on TCP
insights on how the congestion control has to be improved. For
example, modeling has shown that in case of drop-tail buffers
and synchronized TCP flows, the throughput of a TCP connec-
tion is inversely proportional to the square of the average
round-trip time (RTT) [3]. This has given an explanation for
and evaluation of the bias of TCP against connections with long
RTTs. Using this result, [4] proposed a modification to the
standard window increase algorithm of TCP in order to improve
the fairness of the protocol. Modeling has also shown that
dropping packets randomly in network routers, as done by ran-
dom early detection (RED) [5], improves the fairness of TCP
by making the throughput of a connection inversely proportion-
al to the average RTT instead of its square [3, 6–8]. Another
possible use of an expression of TCP throughput could be the
study of a change of the parameters of TCP congestion control
to minimize the variations of the window without adding to the
aggressiveness of the protocol. This will be useful for multime-
dia applications using TCP, or possibly a new version of TCP
adapted to such applications.

The second advantage of TCP modeling is that it permits
network designers to improve the reaction of their networks
to incoming packets at the moment of congestion, given the
current control policy of TCP. Important work has been
done in this direction (e.g., [9–13]). The focus was and is
always on the dimensioning of buffers in network routers
and the management of their occupancy. The objectives [5]
are to maximize the utilization of network resources, to pro-
tect the TCP transfers of one to the other, and to minimize
the queuing time in routers so that delay-sensitive applica-
tions (e.g., Telnet, short Web transfers) get better service. A
typical problem of this kind is the tuning of RED parameters
[9, 10, 12]. RED [5] is an interesting buffer management
technique presented as a solution to achieve the above
objectives. For example, using the expression of TCP
throughput calculated in [8], it was shown in [10] that when

the number of TCP connections exceeds a certain threshold,
the RED buffer gets into an unstable regime. This instability
has been explained by the sudden jump in the drop probabil-
ity when the average queue length reaches the maximum
threshold (see [5] for more details on RED parameters).
This has motivated the introduction of a new parameter to
RED (the gentle parameter) in order to avoid such a jump.
Other authors have used the explicit expressions of TCP
throughput to improve other parts of the network as the link
layer on a wireless interface [14].

Recently, a new application of TCP modeling has emerged
[15, 16]. It consists of using the explicit expressions of TCP
throughput to control the rate of real-time flows (e.g., an
audio flow) in a TCP-friendly way. The reaction of the net-
work (e.g., packet drop probability) is averaged over a certain
time interval, and the rate of the real-time flow is set to the
expected throughput of a TCP connection running in the
same network conditions. Clearly, a trade-off exists between
choosing a long averaging time interval to get a smooth varia-
tion of the rate — hence low jitter and good quality — and
choosing short intervals to get a fast reaction to changes in
network conditions.

The modeling of TCP can be seen as a two-step procedure.
First, we model the evolution of TCP window between con-
gestion events as well as at the moment of congestion. This
includes the modeling of some particular mechanisms of TCP
such as timeouts and the limitation of the rate due to the win-
dow advertised by the receiver [2]. Then comes the modeling
of network reaction which consists, directly or after some
transformation, of modeling the process of congestion events.
The TCP connection lifetime can be seen as a succession of
congestion events between which TCP increases its window
and during which it reduces it. As we will see later, a model
for the network also has to describe how the RTT of the con-
nection varies. The variation of the RTT determines the varia-
tion of the window between congestion events. Note that TCP
increases its window by the same amount during an RTT
regardless of its length. An example of congestion events and
window evolution is depicted in Fig. 4.

If the network is well defined (e.g., a single RED buffer),
the modeling of TCP can be achieved with a considerable
degree of accuracy. One can come up with an accurate
model for the network, combine it with a model for TCP,
and solve the overall model for TCP performance. All work
that assumes a single bottleneck router crossed by only TCP
connections is of this type (e.g., [10, 11]). The difficulty aris-
es when we want to approximate the throughput of TCP in

0890-8044/01/$10.00 © 2001 IEEE

TCP/IP Modeling and Validation
Chadi Barakat, INRIA, France

Abstract
We discuss in this article the different issues to be considered when modeling the
TCP protocol in a real environment. The discussion is based on measurements we
made over the Internet. We show that the Internet is so heterogeneous that a simplis-
tic assumption about TCP congestion control or the network may lead to erroneous results.
We outline some of our results in this field, and we present a novel approach for a
correct validation of a model for TCP.

TT

IEEE Network • May/June 2001 39

the real Internet. Some assumptions are then required to
model the reaction of this huge and heterogeneous environ-
ment. The difficulty of the analysis as well as the accuracy
of the modeling change with the assumptions we make. For
any given assumption we may expect our results to hold on
some Internet paths while not on others. The results may
hold due to the correctness of our modeling on these partic-
ular paths. They may also hold due to another phenomenon
that we observed during our work: the cancellation of errors
introduced by the different blocks of a model for TCP. A
good model for TCP must have all its blocks validated sepa-
rately, and these blocks must work well on a wide range of
Internet paths.

We address in this article the problem of TCP modeling in
its general form. We focus mainly on the modeling of TCP in
a real network rather than a particular environment as a sin-
gle drop tail buffer or a RED buffer. Based on measurements
we conducted over the Internet, we discuss the different issues
to be considered for correct modeling of TCP. We outline the
different approaches in this domain, and show the need for a
general approach that copes with the heterogeneity of net-
work reaction we observed. We will see how the heterogeneity
of the Internet can change the performance of a model from
one path to another, and even from one hour to another on
the same path. We introduce the notion of separate validation
of each block of a model for TCP instead of overall model
validation. We also discuss some issues related to the use of
throughput expressions in practice, particularly in TCP-friend-
ly applications.

In the next section, we present our measurement testbed to
which we will refer in the course of the article. We then dis-
cuss the issues related to the modeling of TCP window evolu-
tion. The issues related to network modeling are also
discussed. At the end, we explain our technique for the valida-
tion of a model for TCP, and then conclude the article. We
refer a reader to [17] for more details.

Measurement Testbed
Our testbed consists of three long-life TCP connections run
over the Internet between a machine at INRIA Sophia
Antipolis in the south of France and three other machines
(Fig. 1). The first machine is located at ESSI next to INRIA.
The second machine is located in Paris about 800 km from
INRIA. The third machine is located at the University of
South Australia. These can be considered as short-distance,
medium-distance, and long-distance connections, respectively.
Henceforth, we use the terms SD, MD, and LD to distinguish
between the three connections. The source is located at
INRIA and runs the NewReno version of TCP [18]. NewReno
is a recent version of TCP able to recover from multiple pack-
et losses without timeout and with only one division of the
window by two. The source of our connections is fed by a sim-
ple application that always has data to send. The connections
were run for many hours on different days during the month
of January 2000. We developed and ran a tool at INRIA that

looks at the trace of every connection (packets and ACKs)
and makes a number of statistical calculations on the connec-
tion, such as the total number of packets acknowledged, total
number of retransmissions, moments at which the window is
reduced, and temporal variation of window size and round-
trip time. We accounted for all the mechanisms of NewReno
when developing our tool, particularly the fact that a
NewReno source can recover from multiple packet losses in
the same window of data. We stored the statistics at fixed
time intervals in separate files. We chose these intervals to get
enough data in each file. We shall assume that the network
conditions are approximately the same during each interval.
These time intervals are set to 20 min for the SD connection,
40 min for the MD connection, and 60 min for the LD con-
nection.

Modeling TCP Window Evolution
Most of the effort on TCP modeling [3, 6–8, 11, 12, 19] is
devoted to long transfers, namely to the congestion avoid-
ance mode of TCP [2]. The slow start phase [2], due to its
fast increase of window size and short duration, is often
ignored. The window is assumed to increase linearly with
time between congestion events and to decrease to half its
size upon congestion. The moments of congestion are
determined by the underlying model for the network. These
are the moments at which the source detects the loss of a
packet and decides to reduce its window. Ideally (this is
what the new versions of TCP try to approximate [18]),
these must be the moments of detection of the first loss of
data packets in a window.

TCP is known to increase its window size in congestion
avoidance mode in a linear manner but as a function of RTT
number rather than time. This increase is approximately equal
to 1/b packets/RTT, where b is the number of packets covered
by an ACK [8]. For the linear increase with time to hold, the
RTT is often supposed to be constant or to vary independent-
ly of window size, so it is substituted in the analysis by its
average during the transfer [3, 7, 8].

For the multiplicative decrease factor, it is indeed equal to
one half when the source receives three duplicate ACKs for
congestion detection and when the fast recovery phase suc-
ceeds [18]. If this is not the case, a timeout occurs, the win-
dow is set to one packet, and slow start is called to quickly
reach the slow start threshold [2]. Some authors [6, 8] keep
the decrease factor in the case of timeout equal to one half,
while others [19] set the window to one packet and assume a
linear increase from this low value. We believe that there will
be no difference between the two approaches in the future
given the expected low probability of timeout with the new
enhancements proposed to TCP congestion control [20]. Our
measurements showed that on the LD connection, most of the
losses are detected with timeout; this is due to the small size
of the TCP window. The same result is noticed in [8]. On the
SD and MD connections, the window is large and the timeout
phenomenon is absent. In our work on TCP modeling [6], we
set the multiplicative decrease factor to a constant value v (v
< 1) for both kinds of congestion detection methods. This
factor v, together with the general window increase rate a we
considered, permits our results to be used for the study of
other congestion control policies.

Clearly, the above model is simple since it only accounts for
the linear-increase multiplicative-decrease part of TCP con-
gestion control. Other issues have to be considered for better
modeling of TCP. We will enumerate those that are the most
important in the following sections and explain when possible
how they can be introduced into the above model.

■ Figure 1. The measurement testbed.

ESSI-Sophia Antipolis

INRIA-Sophia
Antipolis

SD MD

ENST-Paris

LD

University of
South Australia

IEEE Network • May/June 200140

The Dependence between Window Size and RTT
On paths where the window of the TCP connection is small
compared to the bandwidth-delay product and packets cross
multiple congested routers, one should expect that the
assumption on the linearity of the window increase will hold.
Indeed, on such paths the connection does not contribute to
the queuing time in network routers, and congestion is mostly
caused by other aggressive connections. The RTT then varies
independently of the window size and can be substituted in
the analysis by its average [8], resulting in time-linear window
growth at rate 1/(bRTT), with RTT being the average rtt and b
the number of packets covered by an ACK. However, this
independence is not expected to hold on paths where the win-
dow of the connection is large compared to the bandwidth-
delay product. The increase in the window in this latter case
will result in an increase in the RTT, which in turn will result
in a sublinear increase in the window with time [3]. One
should expect that, in the presence of a linear model for TCP
window evolution which uses the average RTT for the calcula-
tion of the window slope, this sublinearity will
result in an overestimation of the real
throughput.

To understand such dependence, we plot
the variation of the RTT as a function of the
window size on our LD and SD connections
(Figs. 2 and 3). The LD connection is a typi-
cal example of the first connection, whereas
the SD connection is a typical example of the
second one. We measure the RTT for one
packet per window of packets and note the
window size during this measurement. We
then average the RTTs obtained for close
window sizes. This gives the thick line in both
figures. We see clearly how, on the LD con-
nection, the RTT is on average constant and
independent of window size. However, it is an
increasing function of the window size on the
SD connection, and a sublinear window
increase should be seen on this connection.
Indeed, Fig. 4 shows this sublinear behavior
well. We plot in this latter figure the variation
of the real window on the SD connection for
some seconds. The straight line corresponds
to the expected window evolution if the RTT

were independent of the window size. This
line is given by the time-linear model for
TCP window evolution.

The problem with the sublinearity of win-
dow increase is that it complicates the analy-
sis and makes it difficult (if not impossible)
to obtain simple explicit expressions for TCP
throughput. The literature that considers
such sublinearity (e.g., [11, 12]) gives the
throughput as a solution of some implicit dif-
ferential equations. Only the work consider-
ing linear models (e.g., [6, 8]) succeeds in
finding closed-form expressions for TCP
throughput. Moreover, it is not clear at the
moment how such sublinearity can be mod-
eled in so complicated a network as the
Internet. The importance of the sublinearity
depends on many factors, such as the intensi-
ty of exogenous traffic sharing the path with
the TCP connection, the buffering capacity
in network routers, and the available band-
width on the path. In a real environment,
one must look at the traces of RTT and win-

dow size, and try to infer from these traces some model for
the dependence between RTT and window size. In previous
work [11, 12], this inference was not necessary since the con-
tent of the network was well defined (e.g., a single RED
buffer with given bandwidth and propagation delay); hence,
the variation of the RTT as a function of the window size was
well known. The model for RTT, together with that for win-
dow evolution and that for network reaction, provide the
required information for the calculation of TCP throughput.
For example, one can use the models developed in [12, 21]
for such calculation.

A Model for RTT Variation — Using the traces of our SD con-
nection, we propose a technique for the inference of the
dependence between window size and RTT. First, we have to
define a model for the variation of the RTT. Then we have to
use some fitting technique to infer the parameters of such a
model from the traces of the connection. It seems that the
most appropriate model for RTT variation is the one used in

■ Figure 2. The LD connection: RTT vs. window size.

20000

Ro
un

d-
tr

ip
 t

im
e

(s
)

Window size (bytes)

INRIA-Australia (day)

0.5

0.4

0.6

0.7

0.8

0.9

1

1.1

1.2

4000

+

+

+

+

+

+

+

+

+++

+
+++++++++++++++++++++++

+

+ ++

++

+

+
+
+
++

++
+ ++

+
+

+
+++
++++
+

+
+ ++++

++
++

++

+++++++++++++++++++++
++

++
++++
++++++++
++++
++

+

+++
+
++++++++++++++++++++
++++

++
++

+++++++++
+++++++++++++++++++++++++++++++++++++
+++

+
++
++++++++++++++++++++++++++++

+
+
+

+++
+++
++

+

++
++++
+++
++++
+++
+++
+++

+++

+++

+
+++

+
+
+
++
+++
+++++++++++++++++++++
++
++++++
+++++++++++++++++
+

+++
+
+
+++

+
+
+
++
+
+

++++
+++++++
++++
+++++++
++
++++++

+++

+

++
+

++++++++++++++++++++++++++++++++++
++++++++++++++++++
++
+++
+++
+++
+
++++++++++++
+++++++++

++
+

+
+

+
+++++++++++++++

+

+
+

+

+
+

+
+
++
++

+++

++
+

++
+
+++++++++
++
++++++++++++++
+++
+++
+++

+++++++++
+
+++++
++++
++++
+++
+

++
+++
+++
++
++
++
++
++
+++

++
++
+
+
+
+++
++

++++++++

6000 8000 10,000 12,000 14,000 16,000 18,000

Average round-trip time

■ Figure 3. The SD connection: RTT vs. window size.

10,0000

Ro
un

d-
tr

ip
 t

im
e

(s
)

Window size (bytes)

INRIA-ESSI (day)

Average round-trip time

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20,000 30,000 40,000 50,000 60,000

+

+

+

+
+

++

++
+

+
++
+
+

++

+
++
+
++
++
++
+++
+++
++++
++++
+++
+++++
++++
+++
++
+++
++++
++
+++++
++++
+++
++
++
+++++
++++
+++
++

++ ++
++
+
+
++++
+++
+
+

+

+++
++
++++
++
++
+++
+++
++++
+++

+
+
+
+
+

+

++
+
+++++++
++
++
+
++++

+++
++
++
++
++
++++
+++
+++
+
++
++
+
++
++
+++
+
+++
+

++
+
+
+
++++++
+++++
++++++++++++++++++++++++++++++++
+
+++
++

+++
++
++
++
+
++
+++
+++
++
+++
+++
+++
+++
++
++
++
++++
+
+++

+
++

+
++
++++
+
+++
+
++++++++++++++++
+++++
+++

+++
+
++
+++
++
++++
+++
+++++
+++++
++++
++
++
+++
++++
+++
+++++
+++
+++
+++
++
+++
+++
+

+
++

+

++++
+
++++++
++++++++++++++++++++++++
++++++++

+
+

+
++
++
++
+++
+++
+++
+++
+++
++
++++
+++
++
++
+++
++
+++
+++
+++
+

+
+

+
+
++
+
++++++++++++++++
++++++++++++++++++++++
++
++

++

+
+
++
++
+++
++
++
++++
++
+++
+++
+++
+
+++
++++
+++
+++
+++
+

+
++

+++
++
++++
+++++++++++++++++++
++++++++++++++++++++++++++++
++++++++

+
++

++

++
++
++

+

+
+

+++
+
+

++
++++
++++++++++++++++++
++++++++++++++++++++++++++++++
++
++

+
+

++
++
++
++
++
++
++
+

+

++

+

+++
++
+
++++
++
+
+++++++
++++++++++++++++++++++++++++
++
+

++

+

++
+++
++
++++
++
++
+++
+
++
+++
+++
++

+
+

++

++

++
++
+++++++++++++
+
++
+++
+++++++++++++++++++++++++++
+

++
+
+

+
++
++
+
+
+

+++
++
++
+
++
+++
++++
++
++
+

+++

+

+

+

+

++
+

++++
+
+++++++++++++
+++++++++++++++++
++++++
++
+

+

++
+

+
+
++++
++
++++
+++
+++
++
+
+++
+++
+++
++
+++
+++
+
+

+
+

+
+
+
+

+
+
++++++++++
++++
++++++++++++++++++++
+
+
+
+++++

+++
++
+++
+++
+++
+++
+++
++++
+++
+++
++
+++
+++
+++
+++
++
+++
+
+++
++

+
+

+

+

+

++
++
+
+

+

++

++
+

+++
++
+++
+++
+++
+++
+++
++
+++
++
++
++++
++
+++
+++
+++

+

+
+

+

++
+++
++
+

+++
++++
+
+

+
++
++
++
+
+++
++
+++
++
++++
++
+++
++
+++
+++
+++
++
++
++
+++
+
+
+

+
+
+

+

+
++
++
++
+
+++++
++
+
+
+
+
+

+
++
+
++
+

+
++
++
++
++
++++
+++
++
+++
+++
+++
++
+++
+++
+++
+
++
+
+
++
+
+

+
++

+

+

+
+
++++
++++++++
+++
+
+++++++
++++
+

+

++
++
+
+++
++
++
++
+++
++
++
+
+++
+++
++
++
+
++
+
+
+

++
++
+++++
++++++
+
+++++
+
++++++
++
+++
++
++

+

+
++
+
+++
++
++
+++
++
++
+++
++
+++
++
++
+++
+++
++
+++
+++
+++

+

+

+

++

+
+
++
+++
+++
+++
+
++++

+++++++++
+

+++
+
+

+
++
+
++
++
++
+
+++
+
++

+++
++
++
+
++
+++
++

+

++

+
+

+
+

+
+
+
+++

+
+
+

++
+

++
++
++
+
++
+

++
+
+
++
++
+
++

+

+

+

+
+
+

+++

+
++
+
+++

+
++

+
++
+
+

+
++
++
++
++
+

+
++
++

++
+
+

+

+

+

++

+

+

++
++
++
++
+
+

+
+
+

++
++
++
+
++
+

+
+

++
++
+
+
+
+

+

+

++
+
++++
+

+
++
+
+
+++
++++++

+

+
+

+
+

+
+

++

+

+
+
++
+

+

++

++

+
++
++
++

++

+
+

++

+
+

+

+
+++
++
++
+

+
+

++
+

+

+

+

+

+

+
+
+

+

+

+++
+
+

+

+

+

+

++++
+

+

+

+

++

+

+
+
+
+

+

+
++

++

+
+

+
+
+

+
+

++
++
++
+
++
++++
+++
++++
++++
++
++++
++++
++++
++++
++++
++++
++++
++++
++++
++

++

++
+++++++++
++++++
+++++++++++++++++++++++++++
++
++
+
++++++++

+
+
+

+

+

+
+

+

++
+
+
+
+
++

+
+
+

+
++

+
+
+

++
+++
+++

+++
+
+
++
+
++
+++
++
+

++

+

++

+

+
+
++
+
++++++++
+++++++++
+++++++++++++++++++++++++++++
++

+
+
++

+
+
+
+++
+
++++
+++
++
++
++
++
+++
++
+
+

+
+

+
+

+

+

++++++++
++++++++
++++++++
++++++++++++++++++++++++
+++++

+++
+
+
+
++
++++
+++
+++
+++
+++
+++
+++
+++
++++
+++
+++
++
+
+
++
++
++
+++

+
++
++
++

++

+

++

+

+

+
+
+

++
+
+++
++++

++++
+
+

+

+

+
+ +

++
+

+
+
++++
++
+++
+

++++++++++++++++++++++++++++++
++
+
+
++
+++++++++
++

+
+

+
+

+

+
+

+
+
++

+
+++++
+
+++++++++++++++++++++++++++++++
++
++
+++++++
++++++++++
++++

++
+++
+++
++
++
++
+
+
+
+

+
++
++
+

+

++
+
+
+

+++

+
++
+++++++++
++++++++++
++++++++++++
+++++++++
+++++++++++
++++
+++
+

+
+++
++
+++
+++
++++
++
+++
+
+++
++
++
++
++
+
++
+++
+++

+
+

+
++

+++

+
++

+

+ +

+ +
+

+

++++++++

+
+
+
+

++++
+

+
+

+

++++

++
+

+

+

+
++

+
++
+
++
+
+

++

++
++
+

+
++
++
++
++
+
+
++
+
+

+++
+++++
++++
+++++
++

++
++

+

+
+

++++
++

++++++
+++
++++++
++++

+

+

+
++
++
++++
+++++
+++++++
++++++++++++++
++++++++++++++++++
+
+
+

+++
+
++
+
++
++++
+
++
+++
++++
++
+++
+
++
++
+++
++
++
++

+++
+
+++

++++
+
+++++
++++++
++++
++++++
+++++++

+

+++

+

+
+
+
+++
+
++
++
+++
+++
+++
+++
+++++
+++++
++
++++
+++
+++++
++++
++
++
+
++++
+++
+++
+

++
+
+

+
++

70,000

IEEE Network • May/June 2001 41

the literature for networks of one router (e.g., [3]). Denote by
W the window of the TCP connection. The model considers
the RTT to be constant whenever W is less than a certain win-
dow size W0. For windows larger than W0, the RTT increases
linearly with W at a rate b. We write the model as follows:

RTTe = RTT0 + 1{W > W0} b (W – W0).

RTT0 can be seen as the contribution of the propagation delay
and the exogenous traffic to the total RTT. b(W – W0) repre-
sents the contribution of the connection to the total RTT
when its window is large. 1/b represents the bottleneck band-
width on the path of the connection.

Given this model for the RTT, we use the nonlinear least
square technique to infer the three parameters RTT0, b, and
W0 of the model from the traces of the connection. Let RTTm
be an RTT measurement that corresponds to a window W.
We can write RTTm as follows:

RTTm = RTTe + Œ,

where Œ is a certain error. Let Œn be the error introduced by
the nth RTT measurement. We propose to
find the parameters of the model that mini-
mize the sum

where N is the total number of RTT measure-
ments.

We solve the minimization problem for the
traces of our SD connection shown in Fig. 3.
We get the thick line in Fig. 5. We also plot in
Fig. 5 the 95 percent confidence intervals as
well as the measurements we obtained. Our
results show clearly that there is a dependence
between window size and RTT on this particu-
lar path. For small windows, the expected RTT
is constant and equal to 0.35 s. Once the win-
dow of the connection exceeds 2246 bytes, the
expected RTT starts to increase linearly by
0.0493 s every 10,000 bytes.

Modeling Timeouts and Fast Recovery
The above modeling does not consider these
two mechanisms of TCP [2, 18]. Due to the
coarse granularity of TCP timers (500 ms in

most implementations), the first mechanism
introduces a certain idle time between con-
gestion and its detection. The second mech-
anism also introduces a certain time between
the detection of congestion with duplicate
ACKs and the resumption of window
increase. During this latter time, the source
is supposed to recover from losses and trans-
mit new packets in order for the ACK clock
not to stop.

The modeling of these two mechanisms
of TCP requires a detailed description of
the protocol behavior at the packet level.
This behavior is quite complicated to model
and varies from one version to another
[18]. The fast recovery phase is always
ignored due to the complexity of its model-
ing, and because it adds a negligible contri-
bution to the throughput when it works
well. It is assumed in [8] that once the
source receives three duplicate ACKs, the
window resumes its linear increase until the

next congestion event. This seems reasonable with the new
versions of TCP (e.g., TCP-SACK [18]) where the fast recov-
ery phase is quite robust and fast, but it is not true with
other versions such as Reno [18], where fast recovery may
fail due to multiple losses per window. A failure of fast
recovery results in a timeout and a slow start from a window
of one packet. A model that does not account for the fast
recovery phase will lead to throughput overestimation if such
failures are frequent.

The timeout mechanism is studied in [8] using the probabil-
ity that a packet is dropped. Denote this probability by p. The
authors focus on the calculation of the probability that the
source fails to receive three duplicate ACKs to trigger fast
recovery. This has been assumed to be the necessary and suf-
ficient condition for the occurrence of a timeout. Timeouts
are assumed not to occur during the fast recovery phase. We
believe that this will be the case with the new versions of TCP
which use the SACK option [18], and have a robust and quick
fast recovery phase. We also believe that with the modifica-
tions proposed to TCP error recovery in [20], failure to

Œ=Â nn
N 2

1 ,

■ Figure 4. SDC: Window size vs. time.

17601755

In
st

an
ta

ne
ou

s
TC

P
w

in
do

w
 (

by
te

s)

Time (s)

Exact fluid model window
Real window

10,000

0

20,000

30,000

40,000

50,000

60,000

70,000

1765 1770 1775 1780

■ Figure 5. The SD connection: expected RTT vs. window size.

10,0000

Ro
un

d-
tr

ip
 t

im
e

(s
)

Window size (bytes)

INRIA-ESSI (day)

Expected round-trip time

-0.1

-0.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

20,000 30,000 40,000 50,000 60,000 70,000

IEEE Network • May/June 200142

receive three duplicate ACKs will no longer be a sufficient
condition to get a timeout. Sources will be able to recover
from losses when more than one ACK are received per RTT.
In anticipation of the deployment of these modifications, we
will show in the following a heuristic for the addition of the
timeout mechanism to the above model according to the con-
dition in [8].

To simplify the analysis, it is assumed in [8] that when a
packet is dropped, the subsequent packets in the same win-
dow are also dropped. The probability to get a timeout (Q(p))
as well as the average duration of a timeout period (Z(p)) are
calculated as a function of p,

with

and T0 being the basic timeout interval which is doubled when
the source backs off its timer after the loss of a retransmission
[2]. In practice, 4RTT has been shown to be a safe value for
T0 [16].

Using these two functions of p, the influence of timeout
intervals can be introduced into the model in the following
way. We calculate first the throughput of the connection when
excluding these intervals; in other words, when assuming that
the window resumes its linear increase directly after a conges-
tion event whatever the method of detection (Fig. 6). Denote
this throughput by

—
Xd. Denote by

—
Xf the throughput of the

connection in the presence of timeout intervals (Fig. 7). The
throughput in both cases is equal to the ratio of the average
number of packets that cross the network between two con-
gestion events (~–1/p) and the average time between conges-
tion events (see [6, 8] for details). Let {Sn} denote the process
of time intervals between congestion events when timeout
intervals are excluded (Fig. 6). Let {S¢

n} denote the process of
time intervals between congestion events when timeout inter-
vals are considered (Fig. 7). Given the average number of
packets that cross the network between two congestion events
is the same in both cases (~–1/p), it follows that

and

Using these two equations and the fact that

E[S¢n] = E[Sn] + Q(p)Z(p),

we can write

Note that our expressions for the throughput are in terms of
packets per second. Note also that our throughput corre-
sponds to the rate at which TCP packets leave the network,
also called the receiving rate.

Modeling Window Limitation
Another problem with the previous model is that it does not
consider the fact that a TCP source cannot inject into the net-
work more packets than the window advertised by the receiver
[8]. This phenomenon can be seen in Fig. 4 where we plot the
number of bytes in the network as a function of time. The
model becomes sublinear, and the calculation of a simple
expression for the throughput seems to be impossible except
for some particular models for the network [8, 18, 21]. For
example, the calculation is straightforward when the time
between congestion events is constant. Using techniques from
queuing theory, the authors in [12, 21] succeed in calculating
the throughput when congestion events appear according to a
homogeneous Poisson process.

For more general models for the network (e.g., a generally
distributed time between congestion events), one can always
think about finding some approximations of the throughput.
One possible approximation is to assume that the receiver
window is always reached between congestion events. The
problem is then automatically transformed into a simpler one
with constant time intervals between congestion events equal
to the average of these time intervals. This is the kind of
approximation used in [8]. In [6] we find bounds for the
throughput which are also a good approximation. The advan-
tage of our bounds is that they are valid for any receiver win-
dow. The first approximation is only valid for small receiver
windows, so one needs to apply a condition on the average
window at moments of congestion in order to use either the
approximation or the expression of the throughput obtained
when there is no window limitation.

Note that the problem of window limitation exists because of

X
X

pX Q p Z p
f

d

d
=

+1 () ()
.

X
p

E S
d

n
= 1/

[]
.

X X
E S

E S
f d

n

n
=

¢
[]

[]
,

W
b

b

p

bp

b

b
= + + - + +Ê

ËÁ
ˆ

¯̃
2
3

8 1
3

2
3

2
()

,

Q p
p p p

p

Z p T
p p p p p p

p

W

W
() min

(())(() (()))

()
,

() ,

= - - + - - -

- -

Ê

Ë
ÁÁ

ˆ

¯
˜̃

= + + + + + +
-

-1 1 1 1 1 1

1 1

1 2 4 8 16 32
1

3 3 3

0

2 3 4 5 6

■ Figure 6. The model without timeout intervals.

Sn–1 Sn Sn+1

Time

Tr
an

sm
is

si
on

 r
at

e

■ Figure 7. The model with timeout intervals.

Sn–1

Time

Tr
an

sm
is

si
on

 r
at

e

D
up

lic
at

e
A

C
Ks

Ti
m

eo
ut

Sn Sn+1Z

S'n–1 S'n S'n+1

IEEE Network • May/June 2001 43

the small windows advertised by current Internet receivers (less
than 64 kbytes). This is supposed to disappear in the future
with the trend of increasing the window field in the TCP head-
er and dynamically changing the buffer size allocated to the
TCP connection at the receiver [22]. It is even recommended in
[23] that future studies of TCP congestion control should con-
sider an infinite receiver window. Models that account for the
limitation of TCP transmission rate will not be of much
importance.

Fluid Models vs. Discrete Models
Some of the models for TCP assume that the window increas-
es continuously between congestion events [7, 12, 18, 24]. The
use of a continuous model for the window facilitates analysis
since it permits the use of tools from the theory of continuous
functions such as integration and differentiation. The continu-
ous increase may hold for the congestion window at the
source, but not for the volume of data in the network. Indeed,
the former quantity increases in small values (in bytes) upon
ACK arrivals, whereas the latter increases in steps of one
packet every b RTTs [8]. This is due to the Nagle algorithm
[25], which prohibits the TCP source from injecting small
packets into the network. At the moment of congestion, it is
the window at the source which is divided by two rather than
the number of packets in the network [2]. So models assuming
continuous increase in the window, also called fluid models,
are appropriate for the prediction of the window variation at
the TCP source. The throughput obtained with these models
is the throughput the TCP connection would realize if it were
not limited by the Nagle algorithm.

The correct throughput can be obtained by one of two
ways: either using a discrete model for the window evolution
such as the one in [8], or using a fluid model and introduc-
ing some corrections into the calculated throughput to
account for the difference between the size of the congestion
window at the source and the volume of data in the network.
In our work on TCP modeling [6, 21], we chose the second
alternative for the calculation of TCP throughput due to the
simplicity of analysis the use of fluid models permits. We
present here the technique we used in order to account for
the packet nature of TCP. To illustrate this technique, we
plot in Fig. 8 the number of packets that cross the network
between two congestion events for both a fluid model and a
discrete (or packet) model. The curve for the discrete model
is taken from [8]. On average, half of the window is assumed
to be dropped in the network upon congestion (the last RTT
in the figure). Suppose that all the transmission rates are
expressed in terms of packets/s. Denote by E [Wn] the aver-
age window size upon congestion and by E [Sn] the average
time interval between congestion events. Let

—
X denote the

throughput obtained with the fluid model and
—

Xd the real
throughput of TCP. A good approximation for

—
Xd can be

obtained by:
• Shifting down the fluid window by 0.5 packet, which results

in a decrease in the throughput
—
X by 0.5/RTT.

• Subtracting the rate of dropped packets, which is approxi-
mately equal to

It follows that

Using one of our results [3, Eq. 3],

we can write

With this correction, and as we will see in later figures when
validating our model, a fluid model for TCP is able to give the
same throughput as a detailed discrete model.

Modeling the Network
This is the part of the model where the heterogeneity of the
Internet has the greatest impact. The objective of this part is
to find a good characterization of congestion or loss moments.
A loss moment in our terminology is the moment at which the
TCP source decides that the network is congested and it must
reduce its window. These moments can be directly character-
ized by making some assumptions on the way they appear.
For example, one can assume that they appear according to a
deterministic process or a Poisson process. This direct charac-
terization is the approach widely used in the literature [6–8,
18]. Another possible but indirect characterization consists of
finding a model for the reaction of the network to a particular
TCP packet or during a small time interval. Examples of this
approach are papers which suppose that TCP packets are
dropped within the network with a constant or variable proba-
bility [11], or those assuming that loss moments form a Pois-
son process with a variable intensity function of the window
size of the connection [24]. The advantage of the indirect
approach is that it decouples the model for the network from
the control policy at the TCP source. It happens that on some
Internet paths, the process of losses seen by a TCP connection
is a function of the way it increases and decreases its window,
and this process changes if another control policy is used (e.g.,
if packets are transmitted at a constant rate). The indirect
approach is very useful on such paths since it permits one to
deduce the loss process a TCP connection will see from that
seen by another connection with a different congestion con-
trol policy. We cite different applications of the indirect
approach on such paths. As an application one can probe the
network with a given flow of packets (e.g., a constant rate
flow) and calculate the parameters of an appropriate model
for the network (e.g., packet drop probability, variation of loss
intensity as a function of transmission rate). With these
parameters, it is possible to predict the performance of a TCP

X X
RTT b v

d = - +
-

Ê

ËÁ
ˆ

¯̃
0 5

1
1

1
.

()
.

E W
E S

bRTT v
n

n[]
[]

()
,=

-1

X X
RTT

E W

E S
d

n

n
= - -0 5 0 5. . []

[]
.

Rate of dropped packets
1=
2

E W

E S
n

n

[]

[]
.

■ Figure 8. The fluid model vs. the discrete model.

Time

Packet
model

Fluid
model

b RTT

1

RTT

N
um

be
r

of
 p

ac
ke

ts
 in

 t
he

 n
et

w
or

k

IEEE Network • May/June 200144

connection on the same path. Another application of the indi-
rect approach is that from the trace of a TCP connection, one
can build a model for the network and predict the perfor-
mance of another TCP connection with another congestion
control policy. This will be useful for a study of the influence
of a change of TCP congestion control parameters. A third
application of the indirect approach is that a TCP-friendly
application (e.g., TFRC [16]) can deduce, from the loss pro-
cess it sees, the loss process a TCP flow would see, and hence
get a better estimate of the rate to use. All these applications
are not possible with the direct approach since, without a
model for network reaction, we cannot deduce the perfor-
mance of a TCP connection from the loss process seen by
another connection with another control policy. Recall that
we are talking about paths where the loss process changes
with the congestion control policy.

The difficulty with the indirect approach is in the defini-
tion of a correct model for the Internet and the calculation
of its parameters. This may be possible for a simple network
of one router (e.g., a RED buffer is known to drop packets
with a probability that increases linearly with the average
queue length [5]), but it seems to be difficult for a wide net-
work such as the Internet. It is not clear if a model exists for
the Internet that works on all paths. Certainly, the Internet
reaction to TCP packets changes from one path to another
and with time on the same path. For example, on some
paths the network may drop packets with a constant proba-
bility, on other paths with a probability that increases linear-
ly with the congestion window, on other paths with a
probability that increases logarithmically with the congestion
window, and so on. One can imagine different models for
the network. The question is, on how many paths are such
models useful?

Given the difficulty in coming up with a model for network
reaction that works on all Internet paths, we shall only focus
on the direct approach. Recall that the direct approach con-
sists of using the parameters of the loss process seen by the
connection for throughput calculation. Our TCP connections
use the same control policy; thus, we can decide on the het-
erogeneity of the Internet from the loss processes they see. In
the next section we present some measurement results to
show to what extent the Internet is heterogenous. We then
use the expression of TCP throughput we found in [6] to eval-
uate the influence of the assumption on the network we make.
Note that in [6], we found a simple expression of TCP
throughput for a general process of congestion events.

Diversity of Loss Processes in the Internet
We present in this section some of the loss processes we
found on our three connections. First, we plot the distribution
of time intervals between congestion events. Figures 9–14
show some samples of the distributions we got. The figures

contain for comparison some theoretical distributions (expo-
nential for the SD and LD connections, normal for the MD
connection). On the SD connection the process is highly
bursty, which results in a spike close to the origin. This bursti-
ness can also be seen in Fig. 4, where the window is repeated-
ly divided by two in short time intervals. We noticed that the
congestion on our SD connection persists for multiple consec-
utive RTTs during which the network keeps dropping packets
and the source keeps reducing its window. On the MD con-
nection, the time intervals between losses closely follow a nor-
mal distribution. On the LD connection, as one would expect,
the loss process is close to Poisson. Indeed, on the LD con-
nection the source has a small window and does not con-
tribute to the congestion of the network. The loss process it
sees is the superposition of a large number of processes in all
the routers it crosses. We also found some correlation of loss-
es on the three connections. This correlation varies during the
day between negative and positive values with an absolute
value of the covariance coefficient sometimes reaching 0.2.
Tables 1, 2, and 3 show some of the covariance coefficients we
saw on the three connections at different hours during the
day. Recall that the covariance coefficient (of order 1) of a
process {Sn}is given by

This coefficient varies between –1 when interloss times are
highly negatively correlated and +1 when they are highly posi-
tively correlated.

Our measurements show some examples of losses a TCP
connection may see over the Internet. We expect to see other
processes on other paths. Other distributions of inter-loss
times could be found. Also, some paths such as those includ-
ing satellite and wireless links, may exhibit more memory than
our paths which will result in a more important correlation of
losses. Using one of our results in [6], we discuss in the next
section the impact of the different parameters of a loss pro-
cess on TCP throughput. This will give us an idea of how
much a certain assumption on the occurrence of losses or con-
gestion events influences the result of the modeling.

The Influence of the Loss Process Choice on TCP
Modeling
Most of existing models for TCP make simplistic assumptions
on interloss times (e.g., deterministic [7, 8], Poisson [19]). In
[6] we propose a general model for the network where we
only make the restricted assumption that the loss process is
stationary and ergodic. We allow the interloss times to follow
any distribution and the losses to be correlated. We derive a
general expression for the throughput which uses, in addition

Cov
E S S E S

E S E S
n n n

n n

= -

-
-[] []

[] []
.1

2

2 2

■ Table 1. SD: covariance coefficient.

11:00 +0.034

12:00 +0.041

12:30 +0.113

13:00 –0.001

13:30 –0.191

14:00 –0.078

Covariance
Hour coefficient
(traces of 20 min) Cov(Sn, Sn-1)/Var(Sn)

■ Table 2. MD: covariance coefficient.

15:00 +0.106

19:00 +0.101

20:00 +0.015

21:00 –0.01

22:00 –0.048

23:00 –0.005

Covariance
Hour coefficient
(traces of 40 min) Cov(Sn, Sn–1) = Var(Sn)

■ Table 3. LD: covariance coefficient.

11:00 –0.197

12:00 –0.001

14:00 –0.102

16:00 –0.107

20:00 +0.023

22:00 –0.09

Covariance
Hour coefficient
(traces of 60 min) Cov(Sn, Sn–1) = Var(Sn)

IEEE Network • May/June 2001 45

to the packet loss probability (p) and the average RTT (RTT),
the variance of interloss times as well as the covariance func-
tion of the loss process. For a window reduction factor equal
to one half we find

^V and ^C(k) are the variance (VarSn)) and covariance functions
(Cov(Sn,S{n-1})), respectively, of the loss process normalized
to the square of the average time between losses.

Three terms appear under the square root in our formula.
The first term corresponds to the intensity of losses or aver-
age interloss time. The second term represents the variation
of interloss times. The third term represents the correlation of
losses. This third term is equal to zero when the loss process
exhibits no correlation. If we take only the first term, we get
the well-known square root formula [7] which was indeed
established for a deterministic loss process.

This formula gives the error we introduce when making a
certain assumption on the loss process. For example, it tells us
that the throughput is an increasing function of the variance
of interloss times. Assuming that losses are deterministic
when they are actually Poisson should lead to an underestima-
tion of the real throughput. In contrast, assuming that losses
are Poisson when they are deterministic should lead to an

overestimation of the real throughput. The next section con-
tains some results of measurements that show how the use of
a wrong variance yields a wrong throughput estimate. The for-
mula also tells us that due to the geometrical decrease in the
weights of the ^C(k), a small number of covariance functions is
sufficient to calculate the throughput even if the loss process
is highly correlated. The window evolution becomes indepen-
dent of the past after a certain number of loss events.

Separate Model Validation
We introduce in this section the notion of separate validation
of each part of a model for TCP. Researchers compare direct-
ly the real throughput achieved by a TCP connection to the
final result of their modeling. But as we saw, a model for TCP
is composed of two parts: a model for the window evolution
and a model for losses. Proceeding for the validation in one
step hides the errors introduced by these two parts. It gives us
the sum of the two errors instead of each of them separately.
First, this prevents us from distinguishing from which part of
the model the error is mainly due. Second, and most impor-
tant, the errors introduced by the two parts of the model may
be of opposite signs which may make the total error small and
acceptable. The result will be a wrong estimation of the capac-
ity of the model since, as we will see later, this phenomenon
of error cancellation does not always exist.

To avoid the problem of error superposition and possibly
error cancellation, we propose to validate separately the two

TCP throughput = + +
Ê

ËÁ
ˆ

¯̃=

•
Â1 3

2
1
2

1
21RTT bp

V C k
k

k

ˆ ˆ().

■ Figure 9. SD connection: interloss time distribution.

50

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Interloss time (s)

INRIA-ESSI (day)

0.2

0

0.4

0.6

0.8

1

1.2

1.4

10 15 20 25 30 35

Exponential distribution
Measurements

■ Figure 10. SD connection: interloss time distribution.

50

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Interloss time (s)

INRIA-ESSI (day)

0.5

0

1

1.5

2

2.5

10 15 20 25

Exponential distribution
Measurements

■ Figure 11. MD connection: interloss time distribution.

0.50

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Interloss time (s)

INRIA-Paris (day)

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 1.5 2 2.5 3 3.5 4 4.5

Exponential distribution
Measurements

■ Figure 12. MD connection: interloss time distribution.

0.50

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Interloss time (s)

INRIA-Paris (day)

0.1

0

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 1.5 2 2.5 3 3.5 4 4.5

Exponential distribution
Measurements

IEEE Network • May/June 200146

parts of the model. We start first with the model for losses.
Consider that a fluid linear model is used for window evolu-
tion. To get only the error introduced by the assumption on
the distribution of losses, the window of TCP should increase
continuously and linearly between losses and decrease multi-
plicatively by a factor 0.5 upon losses. However, a TCP win-
dow does not have this ideal behavior in reality. What we do
here is to construct this ideal behavior of the window using
the moments of losses seen by the TCP connection. The aver-
age of RTT measurements is used for the calculation of the
linear window increase rate. The ideal window is shown by
the straight line in Fig. 4. We call the version of TCP that has
the window behaving as the ideal window ideal TCP or the
exact fluid model. Then we calculate numerically the through-
put obtained by ideal TCP and compare it with the result of
our modeling under a certain assumption on the loss process.
The comparison gives us the error introduced by the model
for losses.

The throughput of ideal TCP is calculated as follows. First,
we sum over all the areas between the ideal window, the loss
moments, and the time axis; then we divide this sum by the
total time of the measurement. This gives the time average of
the ideal window size. The ideal throughput is obtained by
dividing the average of the ideal window by the measured
average RTT. Now, to get the error introduced by the model
for the window evolution, all what we need to do is to com-
pare the ideal throughput to the real throughput. Before this

comparison, the ideal throughput has to be corrected for
timeouts and for the packet nature of TCP using the heuris-
tics we outlined earlier.

We present some results to confirm the utility of such a
method for validation. We take first the SD connection. We
plot in Fig. 15 the ideal throughput we obtained during the
different hours of the day. We also plot in the same figure the
real throughput, the result of a linear fluid model assuming
deterministic interloss times, and the result of the packet
model in [8], which also considers that losses are determinis-
tic. A model assuming deterministic losses underestimates the
ideal throughput given the high variance of interloss times
observed on the SD connection (Figs. 9 and 10). The ideal
throughput in turn overestimates the real throughput due to
the sublinear growth of the window discussed earlier. We
notice that a direct comparison of the real throughput with
the result of the modeling in case of deterministic losses hides
the two errors and gives us an impression that the model
works correctly.

We now take the LD connection (Fig. 16). The ideal
throughput approximates well the real throughput given that
the window increase on the LD connection is quite linear (dis-
cussed earlier). However, a model with deterministic losses
does not give as good performance in this case as on the SD
connection since the loss process is close to Poisson (Figs. 13
and 14). The assumption that losses form a Poisson process
should give better performance. This difference in the perfor-

■ Figure 13. LD connection: interloss time distribution.

50

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Interloss time (s)

INRIA-Australia (day)

0.05

0

0.1

0.15

0.2

0.25

0.3

10 15 20 25 30 35 40

Exponential distribution
Measurements

■ Figure 14. LD connection: interloss time distribution.

50

Pr
ob

ab
ili

ty
 d

en
si

ty
 f

un
ct

io
n

Interloss time (s)

INRIA-Australia (day)

0.05

0

0.1

0.15

0.2

0.25

0.3

10 15 20 25 30 35

Exponential distribution
Measurements

■ Figure 15. SD connection: separate model validation.

1110.5

TC
P

th
ro

ug
hp

ut
 (

kb
/s

)

Day time (hours)

INRIA-ESSI

1000

800

1200

1400

1600

1800

2000

2200

2400

11.5 12 12.5 13 13.5 14

Exact fluid model
Deterministic losses
Packet-level model

Real throughput

■ Figure 16. LD connection: separate model validation.

Exact fluid model
Deterministic losses
Packet-level model
Real throughput

1210

TC
P

th
ro

ug
hp

ut
 (

kb
/s

)

Day time (hours)

INRIA-Australia

40

20

60

80

100

120

140

160

14 16 18 20 22 24

IEEE Network • May/June 2001 47

mance of a model with deterministic losses between the SD
and LD connections cannot be explained without the method
of validation we introduced. Using our method, we conclude
that it is better to take the loss process as Poisson on the LD
connection.

Conclusions
We present in this article an overview of the different issues
to be considered when modeling TCP. Our main results can
be summarized as follows:
• A linear window increase model does not hold on paths

where the round-trip time is dependent on the window size.
A sublinear window increase model needs to be considered
in this case. The modeling of the sublinearity requires a
model for the round-trip time which can be inferred from
end-to-end measurements.

• The process of congestion events needs to be well charac-
terized. A simplistic assumption may lead to considerable
error on some Internet paths. In particular, underestimat-
ing the variance of time intervals between congestion events
leads to underestimation of the throughput.

• The validation of a model for TCP needs to be done in two
steps. The model for window evolution and the model for
the network need to be validated separately. A one-step
validation hides the error introduced by each part of the
model, which may make the results inexplicable in some sit-
uations.

Acknowledgments
The author would like to thank Eitan Altman and Kostya
Avrachenkov for their encouragement and their valuable
remarks on an earlier version of this article. Grateful thanks
are expressed to Prof. Colman Altman for his help in improv-
ing the presentation of the article. The author would also like
to thank his colleagues at ESSI, ENST, and the University of
South Australia for providing the required material to con-
duct the experiments.

References
[1] K. Thompson, G. J. Miller, and R. Wilder, “Wide-Area Internet Traffic Pat-

terns and Characteristics,” IEEE Network, Nov. 1997.
[2] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM, Aug.

1988.
[3] T. V. Lakshman and U. Madhow, “The Performance of TCP/IP for Networks

with High Bandwidth-delay Products and Random Loss,” IEEE/ACM Trans.
Net., vol. 5, no. 3, Jun. 1997, pp. 336–50.

[4] S. Floyd, “Connections with Multiple Congested Gateways in Packet-Switched
Networks Part 1: One-way Traffic,” ACM Comp. Commun. Rev., Oct 1991.

[5] S. Floyd and V. Jacobson, “Random Early Detection Gateways for Conges-
tion Avoidance,” IEEE/ACM Trans. Net., Aug. 1993.

[6] E. Altman, K. Avratchenkov, and C. Barakat, “A Stochastic Model for TCP/IP
with Stationary Random Losses,” ACM SIGCOMM, Sept. 2000.

[7] M. Mathis et al., “The Macroscopic Behavior of the TCP Congestion Avoid-
ance Algorithm,” Comp. Commun. Rev., July 1997.

[8] J. Padhye et al., “Modeling TCP Throughput: A Simple Model and Its Empiri-
cal Validation,” ACM SIGCOMM, Sept. 1998.

[9] T. Bu and D. Towsley, “Fixed Point Approximation for TCP behavior in an
AQM Network,” UMass CMPSCI tech. rep. no. 00-43, July 2000.

[10] V. Firoiu and M. Borden, “Queue Management for Congestion Control,”
IEEE INFOCOM, Mar 2000.

[11] A. Misra and T. Ott, “The Window Distribution of Idealized TCP Congestion
Avoidance with Variable Packet Loss,” IEEE INFOCOM, Mar. 1999.

[12] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based Analysis of a Network
of AQM Routers Supporting TCP Flows with Application to RED,” ACM SIG-
COMM, Aug. 2000.

[13] R. Morris, “Scalable TCP Congestion Control,” IEEE INFOCOM, Mar. 2000.
[14] H. Chaskar, T. V. Lakshman, and U. Madhow, “On the Design of Interfaces

for TCP/IP Over Wireless,” IEEE MILCOM, 1996.
[15] S. Floyd and K. Fall, “Promoting the Use of End-To-End Congestion Control

in the Internet,” IEEE/ACM Trans. Net., vol. 7, no. 4, Aug. 1999, pp.
458–72.

[16] S. Floyd, M. Handley and J. Padhye, “Equation-based Congestion Control
for Unicast Applications,” ACM SIGCOMM, Aug. 2000.

[17] C. Barakat, “Performance Evaluation of TCP Congestion Control,” Ph.D. the-
sis, available at http://www.inria.fr/mistral/personnel/Chadi.Barakat/

[18] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and
SACK TCP,” ACM Comp. Commun. Rev., Jul 1996.

[19] V. Misra, W.-B. Gong, and D. Towsley, “Stochastic Differential Equation Mod-
eling and Analysis of TCP-Windowsize Behavior,” Performance, Oct 1999.

[20] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing TCP’s Loss Recovery
Using Early Duplicate Acknowledgment Response,” Internet draft, June 2000,
work in progress.

[21] E. Altman et al., “State-dependent M/G/1 Type Queueing Analysis for
Congestion Control in Data Networks,” IEEE INFOCOM, Apr. 2001.

[22] J. Semke, J. Mahdavi, and M. Mathis, “Automatic TCP Buffer Tuning,” ACM
SIGCOMM, Sept. 1998.

[23] M. Allman and A. Falk, “On the Effective Evaluation of TCP,” ACM Comp.
Commun. Rev., vol. 29, no. 5, Oct. 1999.

[24] S. Savari and E. Telatar, “The Behavior of Certain Stochastic Processes Aris-
ing in Window Protocols,” IEEE GLOBECOM, Dec. 1999.

[25] J. Nagle, “Congestion Control in IP/TCP Internetworks,” RFC 896, Jan. 1984.

Biography
CHADI BARAKAT (cbarakat@sophia.inria.fr) received his degree in electrical and
electronics engineering from the Lebanese University in Beirut in 1997. In 1998,
he obtained a D.E.A. degree in networks and distributed systems from the Uni-
versity of Nice-Sophia Antipolis, France. Since 1998 he has been working
toward a Ph.D. within the MISTRAL team at INRIA Sophia Antipolis, France. He
obtained his Ph.D. in April 2001 and after that he joined the ICA department in
EPFL, Lausanne. His main research interests are congestion and error control in
computer networks, performance evaluation of communication protocols, and
integration of new transmission media such as satellite networks into the Internet.

