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C O V E R  F E A T U R E

P u b l i s h e d  b y  t h e  I E E E  C o m p u t e r  S o c i e t y

TCP Onloading 
for Data Center
Servers 

T he Internet and the applications it enables
have transformed data center architectures
from a simple single-server model to a
multitier model in which Web servers,
application servers, databases, and stor-

age servers work together to respond to each
client’s request. As a result, overall application per-
formance has become more dependent on the effi-
ciency of data center communication. 

The Transmission Control Protocol is the most
widely used protocol for reliable data communica-
tions both on the Internet and in data center net-
works. TCP, the transport layer in the four-layer
Internet protocol suite, always runs over the Internet
Protocol. IP, the network layer, provides routing ser-
vices between source and destination machines while
TCP provides guaranteed and orderly delivery of
data to applications running at each end of the 
communication pipe. These two protocols are col-
lectively referred to as TCP/IP (TCP over IP). First 
used in the mid-1980s, TCP/IP over Ethernet has
increased in popularity with the evolution of the
Internet and related applications such as Web brows-
ing, e-commerce, e-trading, and messaging.

Inside data centers and corporate local area net-
works, TCP/IP runs on top of Ethernet, which pro-
vides, among other things, framing services (mark-
ing packet boundaries) to upper-layer protocols and
sends and receives bits on the wire. The de facto
protocol on LANs, Ethernet is also being consid-
ered for metro and wide area networks.

Until a few years ago, Ethernet speeds inside data
centers averaged 100 Mbps. However, increased
Internet usage created data center networking
demands that spurred the IEEE Ethernet Standards
Committee’s 802.3 subgroup to develop faster
Ethernet network technologies. This work led to
the development of 1-Gbps and 10-Gbps Ethernet
networks. Today, 1-Gbps Ethernet networks are
being widely deployed, and 10 Gbps will be widely
deployed as it becomes affordable. The sudden
jump in Ethernet speeds from 100 Mbps to 1 and
10 Gbps requires TCP/IP processing on the data
center servers to scale proportionately so that net-
work-intensive applications can ultimately benefit
from the increased network bandwidth levels.

TCP/IP stacks traditionally have been imple-
mented in software as part of the operating system
kernel. TCP/IP interacts with the network interface
controller (NIC) through a device driver and is
exposed to applications through the traditional
sockets interface. TCP/IP processing starts at the
NIC hardware and extends all the way to the
TCP/IP stack interactions with the application layer. 

Our recent measurements on state-of-the-art plat-
forms show that TCP/IP processing of application
data—a full frame payload size of 1,460 bytes—
consumes one entire current generation CPU to
achieve roughly 750 Mbps of throughput while
receiving data and around 1 Gbps of throughput
while transmitting data. Clearly, it currently is not
possible to achieve a tenfold increase in TCP/IP

To meet the increasing networking needs of server workloads, servers 
are starting to offload packet processing to peripheral devices to achieve
TCP/IP acceleration. Researchers at Intel Labs are experimenting with
alternative solutions that improve the server’s ability to process TCP/IP
packets efficiently and at very high rates.
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throughput. The major impediment to achieving
10-Gbps throughput is that CPU and memory
speeds are not expected to improve as dramatically
as Ethernet technologies.

While TCP/IP acceleration efforts focus on
enabling 10-Gbps communication rates, improv-
ing the efficiency at which this rate is achieved is
equally important. In a recent study of data center
servers,1 we analyzed the current and future net-
working requirements of Web servers, front-end
servers, and database servers. This study showed
that TCP/IP receive-and-transmit overhead con-
sumed about one-third of the compute resources.
Another recent study2 showed that the processing
overhead can be as high as 60 to 70 percent for Web
servers after adding other TCP/IP overheads like
connection setup. 

To avoid the seriously limiting scalability issues
of these server workloads in the future, TCP/IP pro-
cessing efficiency must improve dramatically.
Further, as different types of applications—some
throughput-intensive, others latency-sensitive—
employ TCP/IP, accelerating and scaling TCP/IP
processing requires a balanced approach. 

TCP/IP PROCESSING OVERVIEW
TCP/IP processing can be classified into three

major categories: connection processing, receive-
side processing, and transmit-side processing. 

Connection processing
Connection processing refers to the establishment

and teardown of TCP connections between com-
municating end systems. Once the systems establish
a connection, data transfer occurs over the connec-
tion through receive and transmit operations.
Typically, the frequent processing paths in data cen-
ter servers are receive and transmit operations—also
referred to collectively as data-path processing. 

Receive-side processing
Receive-side processing begins when the NIC

hardware receives an Ethernet frame from the net-
work. To extract the packet embedded inside the
frame, the NIC removes the frame delineation bits
and updates the descriptor data structure with the
packet information. The NIC driver software sup-
plies these descriptors, which are typically orga-
nized in circular rings, to the NIC. Through these
descriptors, the NIC driver informs the NIC of
information such as the memory buffer address in
which to store the incoming packet data. The NIC
uses a DMA operation to copy the incoming data
into this memory buffer. Once it places the packet

in memory, the NIC updates a status field inside the
descriptor to indicate to the driver that this descrip-
tor holds a valid packet. It then generates an inter-
rupt to initiate processing of the received packet. 

Figure 1 shows the overall receive-side process-
ing flow. The NIC device driver reads the descrip-
tor and passes the header and payload memory
locations to the TCP/IP stack. 

The next step is to identify the connection that
this packet belongs to. The TCP/IP software stores
each connection’s state information in the TCP/IP
control block (TCB) data structure. Since there can
be many open connections and thus many TCBs,
the TCP/IP stack uses a hashing mechanism to per-
form a fast lookup of the right TCB. The hash value
is calculated from the IP address and port number
of both the source and destination machines. 

When the TCP/IP stack receives a new packet, it
updates several fields in the TCB—such as the
sequence numbers for received and acknowledged
bytes—and checks whether the application has pre-
posted buffers. If the application has already posted
a buffer to receive the incoming data, the TCP/IP
stack copies the incoming data directly from the
NIC buffer to the application buffer. Otherwise the
stack stores the data in a temporary buffer for later
delivery to the application. Performing a memory
copy to move data from the NIC buffer to the appli-
cation buffer is one of the most time-consuming
operations in receive-side processing. 
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Figure 1. Data flow in receive-side processing. Receive-side processing starts
with the NIC device driver reading the descriptor and ends with the TCP/IP stack
notifying the application that the data has been placed in its buffer.
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Transmit-side processing
Transmit-side processing starts when an

application passes a data buffer to the TCP/IP
stack. The application passes a socket ID
along with the data buffer, and the TCP/IP
stack uses this socket ID to locate the con-
nection’s TCB. The TCP/IP stack can then
copy the application’s data into an internal
buffer. Many TCP/IP stacks employ opti-
mizations to avoid this copy. When the
receiver’s window size indicates it is time to
transmit data, the TCP/IP stack divides the
accumulated data into maximum transfer

unit segments. An MTU is typically 1,460 bytes on
Ethernet LANs. The stack then computes the
header: 20 bytes for TCP, assuming no options, and
20 bytes for IPv4. The stack then appends these seg-
ments with the IP headers and passes them down to
the NIC driver. The driver sets up the DMA to trans-
fer the headers and application data to the NIC. 

TCP/IP PROCESSING EVOLUTION
Over the years, applications with differing

requirements for latency sensitivity and high
throughput have adopted TCP/IP over varying link
speeds. To make TCP work best across these vari-
ous scenarios, researchers have investigated several
enhancements to the base protocol.3

Initially, the primary source of overhead in
TCP/IP processing was unclear, and developers
assumed that the base protocol processing was the
culprit. However, landmark research analyzing the
associated overheads showed that TCP/IP proto-
col-specific processing by itself is not the main over-
head.4 The source for most of the overhead was the
environment—interrupts, OS scheduling, buffer-
ing and data movement—in which the TCP/IP pro-
tocol operates. While this dissuaded researchers
from replacing the TCP/IP protocol, overall pro-
cessing continued to be expensive. 

To ease some of these overheads, researchers
developed several mechanisms that have become
common in today’s platforms and TCP/IP stacks: 

• Interrupt coalescing. Also referred to as inter-
rupt moderation, this mechanism helps reduce
the overhead of using the interrupt mechanism
to signal the arrival of incoming packets from
the network. To amortize interrupt cost, NICs
can accumulate multiple packets and notify the
processor only once for several packets. 

• Checksum offload. TCP and IP headers use
checksums to ensure that the packet data is not
corrupted during transmission. Checksum cal-

culation on a general-purpose processor is an
expensive operation, but TCP/IP stacks can
offload this feature to the NIC if it supports
checksum calculation. Since implementing a
checksum in hardware is relatively simple,
offloading it to the NIC hardware does not
add much complexity or cost. 

• Large segment offload (LSO). Segmenting
large chunks of data into smaller segments and
computing TCP and IP header information for
each segment is expensive if done in software.
Most current-generation NICs support this
feature because doing this in hardware does
not add much complexity. This feature bene-
fits only transmit-side processing and is only
beneficial when the application wants to send
data larger than the maximum segment size
(MSS), which the connection’s two end points
negotiated during the TCP establishment phase.
When transmitting a 64-Kbyte application
payload, LSO can improve performance by up
to 50 percent. 

Combined with constantly increasing CPU 
and memory speeds, these enhancements have
enabled server platforms to achieve TCP/IP trans-
mit throughput that meets or exceeds current
Ethernet speeds (10-1000 Mbps) with reasonable
efficiency. However, the imminent need to achieve
10 Gbps for both receive and transmit processing.

SERVER PROCESSING CHALLENGES 
Today’s server platforms face major challenges

while performing TCP/IP processing. 
Figure 2 shows an example of the processing

breakdown for a TCP/IP transmit of 1-Kbyte pack-
ets. This measurement was taken on an Intel Xeon
processor-based server system running Linux OS
v2.4.18. In this example, OS integration and system
overhead—interrupt, syscall, driver, and bufmgt
components—constitute 50 percent of the overall
TCP/IP processing. This creates significant over-
head because the server’s TCP/IP stack must share
the CPU, memory, and I/O resources with the OS.
To do this, the TCP/IP stack must follow the OS’s
rules in terms of scheduling, resource management,
and interfaces. 

OS mechanisms such as system calls, preemptive
scheduling, layered drivers, and interrupt process-
ing are all sources of overhead that limit TCP/IP
efficiency and performance on servers. Researchers
are investigating hybrid interrupt and polling mech-
anisms such as NAPI5 to avoid the overheads and
harmful effects of interrupts.6

The imminent need
to achieve 10 Gbps

is forcing
researchers to
revisit TCP/IP 
overheads and 

challenges.
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The second major challenge for TCP/IP process-
ing on servers is memory latency and poor cache
locality. Server memory and cache architectures are
optimized for efficient execution of a broad set of
applications. The TCP/IP software stack generally
exhibits poor cache locality primarily because it
deals with large amounts of control information
and data that is entering or exiting the system
through the network interface. For example, once
the NIC receives packets and places them in mem-
ory, the TCP/IP software must examine the control
information that includes the descriptor and packet
headers for each packet. Since the packet was just
placed in memory, access to this data will always
cause a cache miss and thus a CPU stall. 

Incoming application data also exhibits no tem-
poral locality because the network interface places
the incoming data into memory and forces the CPU
to suffer several cache misses—that is, memory
accesses—to bring the data into the cache for pro-
cessing. I/O-intensive workloads cause numerous
CPU stalls due to cache misses.7 Given the rapid
advances in network link technologies combined
with the growing disparity between processor
speeds and memory latency,8 this is becoming a
greater problem over time. 

Buffering and copying application data offers the
third major challenge in TCP/IP processing on
servers. The TCP/IP stack copies incoming data into
internal buffer space if the application has not posted
any buffers to receive the data. The stack will copy
the data again into the application buffer when it is
available. Thus, depending on the scenario, there
may be one or two copies of the incoming data. 

When transmitting data, there is an opportunity
to avoid a copy by transferring the data directly
from the application buffer to the NIC using DMA.
Zero copy on transmit has been achieved under
some implementations—for example, in-kernel
Web servers and fast-path overlapped I/O in the
Microsoft Windows OS. Implementations based
on traditional BSD sockets, however, still require a
copy between application and kernel buffers in the
general case. These data copies are expensive, espe-
cially when any of the source or destination buffers
are not in the processor’s cache. 

While efforts have been made to eliminate copies,
the proposed techniques are not applicable in many
scenarios. Even if we assume that it somehow alle-
viates system overheads, the significant amount of
time spent on memory copies and other memory
stalls during TCP/IP receive-side processing can
limit the achievable throughput to much less than
10 Gbps.

TCP/IP ACCELERATION SOLUTION 
To achieve efficient TCP/IP throughput of 10

Gbps and beyond on server systems, researchers
and industry projects have adopted an approach
that offloads the bulk of TCP/IP processing from
server processors and executes it on a peripheral
device. However, there is an ongoing debate about
whether offloading TCP/IP processing is the right
long-term solution.10

Offload or not?
TCP/IP offload engines (TOEs) generally offload

the TCP/IP processing onto a device that attaches
to the server’s I/O system and uses separate, spe-
cialized processing and memory resources (www.
alacritech.com/html/tech_review.html). 

The main argument for TCP/IP offloading is that
it increases the server’s network throughput while
reducing CPU utilization. For some application sce-
narios, especially for bulk transfers involving few
connections, using a TOE can improve throughput
and utilization for applications such as IP-based
data storage.10

The arguments against offloading TCP/IP include
factors such as scalability, flexibility, extensibility,
and cost. In terms of performance, TOE devices
generally have limited processing power because
Moore’s law applies to high-volume, general-pur-
pose processors, and the processors in TOE devices
tend to lag behind. Because most TOE devices must
store and forward the payload data, the additional
latency tends to hamper performance for real-life
applications other than bulk data transfers. 
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Figure 2. Profile of TCP/IP processing on servers. OS
integration and system overhead constitute 50 percent
of the overall TCP/IP processing.
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Since TOE devices attach to the server platform’s
I/O subsystem, the latency to main memory is rel-
atively high compared to the main CPU. Because
of this additional latency, TOEs require local mem-
ory to store state and to buffer data. This local
memory adds latency and cost, and the amount of

memory constrains scalability in terms of how
many concurrent connections a TOE can support.

The alternative to offloading is to improve the
server’s inherent ability to process TCP/IP packets
efficiently and at very high rates, referred to as
onloading. General-purpose processors, with their
economies of scale, have the advantage of being
flexible, extensible, and scalable. Their program-
mability and the availability of a rich set of pro-
gramming tools make them extensible and flexible.
Extensibility makes it possible to add value to the
solution over time in terms of new features, proto-
cols, and applications, while flexibility lets the net-
working software adapt to changing standards and
modify its behavior in subtle but important ways. 

Stack and NIC enhancements
Stack and NIC enhancements that are either

already available or likely to become available in
the near future to help server platforms achieve
more efficient network throughput include the fol-
lowing:

• Asynchronous I/O. This technique lets appli-
cations use a completion port for receiving
socket notifications. To reduce the number of
copies needed during processing, applications
can pre-post one or more buffers to send and
receive data from the network and wait for
completion messages to arrive in the comple-
tion port. 

• Header splitting. Instead of placing the entire
packet in one location in memory, this tech-
nique lets the NIC place headers indepen-
dently from the data. In addition to allowing
locality of incoming headers, this soon to be
available technique facilitates better prefetch-
ing schemes.

• Receive-side scaling. This approach allows
multiprocessor systems to better process net-
work traffic on multiple CPUs (www.microsoft.
com/whdc/device/network/NDIS_RSS.mspx).
It accomplishes receiver-side scaling by pro-
viding multiple receive queues in the NIC and
letting them be mapped to different processors
in the system. This allows for scalability
through connection-level parallelism and affin-
ity. We anticipate that NIC vendors will em-
ploy this feature in future products.

While these enhancements definitely help improve
the efficiency of TCP/IP processing, they are not
adequate to scale TCP/IP processing to 10 Gbps
and beyond. 
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Figure 3. Onloading TCP/IP in a CMP server architecture. Using one or more of
the cores efficiently for TCP/IP processing is preferable to offloading the
processing to yet another compute element in a peripheral device.
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ONLOADING TCP/IP IN FUTURE SERVER 
PLATFORMS

The evolution of processor architectures is at an
important juncture: As more transistors become
available to processor architects, innovative archi-
tectures such as on-chip multiprocessors are becom-
ing a reality. In CMP architectures, each processor
in the server platform consists of multiple cores, a
potentially shared last-level cache, and integrated
memory support. As Figure 3 shows, in such an
architecture, using one or more of the cores effi-
ciently for TCP/IP processing is preferable to
offloading the processing to yet another compute
element in a peripheral device. 

Addressing system overheads
To enable high-performance communication for

servers over standard Ethernet and TCP/IP net-
works, the Embedded Transport Acceleration
(ETA) project at Intel Labs reduces the operating
system overhead by dedicating one or more of the
cores for TCP/IP processing.11 Packet processing
engine (PPE) is the generic term we use for the cores
that are dedicated as communication processing
cores. 

Figure 4 shows the high-level ETA architecture,
which partitions the system between the host and
the PPE. The system implements the interfaces
between these two components in the shared host
memory. Each direct transport interface (DTI) con-
sists of a set of queues for control, data, and syn-
chronization. 

The DTI is modeled after the virtual interface
architecture12 and Infiniband (www.infinibandta.
org) interfaces, but has been optimized for TCP and
socket semantics. In particular, the DTI supports
direct commands for establishing socket connec-
tions—connect, listen, accept. It also supports
anonymous buffer pools for out-of-order packets
and for incoming data without a corresponding
posted receive buffer.

We have implemented an ETA prototype by
employing one of the processors in a dual-proces-
sor SMP server as the host processor and the other
as the PPE. The PPE establishes and terminates
TCP/IP sessions on behalf of applications running
on the host CPU. The processing core uses multiple
standard gigabit Ethernet network cards with a
modified version of the Ethernet driver. In our test-
ing, we used a dual-processor Intel Xeon processor
platform. The processors run at 2.4 GHz on a 400-
MHz front-side bus.

Our test environment consists of the server under
test—the ETA prototype server—and five client

computers connected directly by gigabit Ethernet
links. The client computers are standard off-the-
shelf servers running the Linux OS and the Test
Transmission Control Protocol throughput
microbenchmark. The tests running on the ETA
prototype are kernel-level applications that inter-
face directly to an ETA kernel abstraction layer. We
performed basic throughput tests on the ETA pro-
totype for transmit and receive for several transfer
sizes, then we compared the initial ETA test results
with a standard Linux dual-processor server run-
ning the TTCP benchmark.

Figure 5 compares transmit performance along
with the amount of idle CPU processing time avail-
able for application use. For transfers of 1,024
bytes and less, both CPUs in the standard Linux
server were 100 percent utilized executing the net-
working stack, thus leaving no CPUs idle. For
larger-sized messages, 20 percent or less of one CPU
was left idle. For the ETA prototype, the host CPU
was used less than 20 percent across all transfer
sizes, leaving more than 80 percent of one CPU idle
and available. In addition, the ETA transmit
throughput considerably exceeded the standard
Linux server for all transfer sizes. 

Figure 6 shows a comparison of the efficiency of
the standard Linux (SMP) server and the ETA pro-
totype in terms of the bits/hertz rule-of-thumb for
both transmit and receive tests.

We have recently developed a user-level version
of the kernel DTI and continue to see significant
efficiency improvement in user-level ETA compared
to Linux and sockets. We are currently testing real
applications on ETA using the direct user socket
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Figure 5. ETA transmit performance benefits. The ETA
transmit throughput considerably exceeded the standard
Linux server throughput for all transfer sizes.
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interface.13 Although tuning is not complete, user-
level ETA tests show that throughput equals the
kernel level throughput, with some cases showing
increased CPU utilization. Profiling to date shows
that much of the additional overhead stems from
our implementation of signals for synchronization. 

Initial results from the ETA prototype show 
that partitioning the packet processing engine can
significantly increase a standard multiprocessor
server’s overall communication performance.
Specifically, partitioning the packet processing onto
a dedicated set of compute resources allows opti-
mizations that aren’t possible when time-sharing
the same compute resources with the OS and 
applications. 

For example, our prototype PPE does not incur
interrupt and system call overhead because it can

poll shared memory for new work. It can perform
this polling without placing load on the memory
subsystem or the platform’s front-side bus because
the cache coherence protocols let the PPE poll inter-
nally in cache. The PPE only incurs memory load
when either a network device or one of the host
processors updates the associated memory location.
Cache interference is also largely avoided because
the PPE doesn’t need to switch context or share
caches with the OS and applications except through
the ETA host interface. 

Other possible optimizations include strategic
prefetching of control and packet header infor-
mation. 

Addressing memory challenges 
To address the memory challenges and copy

overhead, we developed a memory-aware reference
stack (MARS) for TCP/IP processing. In developing
MARS, we looked for innovative mechanisms to
either bring data closer to the CPU before it is
accessed or to overlap the memory access latency by
performing other useful computation—processing
of other packets or bookkeeping operations. 

In addition to the software prefetching already
available on today’s CPUs, MARS takes advantage
of three new latency reduction techniques: light-
weight threading(LWT), direct cache access(DCA),
and asynchronous memory copies (AMC). 

Lightweight threading. To tolerate long-latency
events such as individual memory accesses and
data copies, MARS employs multiple lightweight
threads that execute within a single OS thread con-
text. To differentiate them from the OS thread, we
refer to these lightweight threads as strands.
Strands either process independent packets (be-
longing to different connections) or perform book-
keeping operations. 

When a strand incurs a long-latency event such
as a cache miss, it switches to another strand to
overlap the latency with useful computation that
can be performed on another packet. For this to be
effective, the strand-switching overhead must be
extremely small—a fraction of the memory access
latency. Therefore, in our MARS prototype, we
have kept the strand context that must be saved
and restored to a minimum. 

Figure 7 shows how LWT exploits connection-
level parallelism by overlapping packet processing
with memory accesses to achieve improved pro-
cessing throughput and reduce CPU utilization. In
terms of implementation, detection of the memory
access—a cache miss or a copy operation—and
switching to the other strand can be either implicit

Compute
cycles

Memory
access

(L2 miss)

Compute
cycles

Async
memory

copy

Compute
cycles

Compute
cycles

Memory
access

(L2 miss)

Compute
cycles

Async
memory

copy

Compute
cycles

Memory
access

(L2 miss)

Compute
cycles

Async
discrete

operation

Time

Strand 
(0)

Strand 
(1)

Strand 
(N)

Figure 6. Processor efficiency comparison. ETA improves TCP/IP processing 
efficiency by reducing system overhead. 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

256 512 1,024 4,096 65,536
Transfer size (bytes)

Bi
ts

 p
er

 C
PU

 H
z

ETA TX
SMP TX
ETA RX
SMP RX

Figure 7. Lightweight threading. LWT and connection-level parallelism allow for
compute-memory overlap to improve processing throughput and reduce CPU
cycles.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on October 19, 2009 at 15:32 from IEEE Xplore.  Restrictions apply. 



(requiring hardware support14,15) or explicit (in soft-
ware, as in our prototype).

Direct cache access. DCA promotes the push
model of data transfer between the NIC and the
CPU. Conventional platforms place incoming net-
work data—descriptors, headers, and payload—
in memory before notifying the CPU that the data
has arrived. As a result, when the CPU accesses
this data, it suffers cache misses and associated
memory read latencies. 

As Figure 8 shows, DCA helps reduce CPU read
latency as well as memory bandwidth by making
the incoming network data directly available in the
CPU’s cache. Prior to notifying the CPU of a
packet’s presence, MARS employs DCA to route
descriptors, headers, and even payload traffic from
the NIC directly to the CPU’s cache. 

Asynchronous memory copies. Copies can be the
most time-consuming operations during TCP/IP
processing. Asynchronous memory copies are
hardware mechanisms that permit copies to take
place asynchronously with respect to the CPU. 

Figure 9 shows the typical execution flow when
a hardware data mover engine is used for AMC.
With this engine, once the copy operation is sched-
uled on this hardware, the CPU can use LWT to
begin processing another packet by switching to
another strand. 

The considerations for copy engine implementa-
tion include the setup cost to initiate the copy and
the cost to notify completion. As a result, mecha-
nisms that keep setup and notification costs low are
highly desirable. To this end, integrating the data
mover engine into the CMP processor can both help
reduce these costs and let the copy engine perform
faster by taking advantage of the last-level cache.

With the exception of AMC, most of the mech-
anisms that MARS employs can be applied to mul-
tiple data structures that the TCP/IP stack touches.
However, as Table 1 shows, our experimentation
with the MARS prototype leads us to conclude that
certain techniques yield optimal performance for
certain data structures. 

Further, using these techniques efficiently
required revisiting the TCP/IP stack implementa-
tion. Our MARS prototype employs the LWT
architecture shown in Figure 10. While this archi-
tecture is configurable, we have found that employ-
ing two strands each for receive and transmit
operations and one strand for event handling and
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Figure 8. Direct cache access. DCA helps reduce CPU read latency as well as
memory bandwidth by making the incoming network data directly available in the
CPU’s cache. 
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this hardware, the CPU can begin processing another packet and hide the memory
copy latency.

AMC-based memory copy

CPU

Memory

Processor-based memory copy

Cache

Memory copy

Processor stalled

CPU

Memory

Cache

Setup
AMC

Copy
complete

Processor not stalled

AMC

Table 1. Applying latency hiding techniques.

Type of TCP/IP Software Lightweight Direct cache Asynchronous
memory access prefetching threading access memory copy  

Descriptors Yes Yes Preferred   
Headers Yes Yes Preferred   
TCP/IP control block Yes Preferred
Payload Yes  Yes Preferred  
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other operations, such as timers, yields efficient
TCP/IP processing.

Our MARS prototype confirms the benefits of
combining these latency reduction techniques with
the improved stack implementation. Figure 11
shows the benefits of applying the MARS latency
hiding techniques incrementally for receive-side pro-
cessing of a 512-byte payload. Although each tech-
nique can be employed independently, we have
found that applying them together achieves more
than a twofold improvement. These benefits im-
prove further with an increase in payload sizes. For
example, for a 1,460-byte packet, the MARS pro-
totype shows that addressing the memory stalls can
result in a greater than threefold increase in achiev-
able network bandwidth—from ~3 Gbps to ~11
Gbps.

W hile research in TCP/IP processing has been
under way for several decades, the increas-
ing networking needs of server workloads

and evolving server architectures point to the need
to explore TCP/IP acceleration opportunities. 

At Intel Labs, we are experimenting with mech-
anisms that address system and memory stall time
overheads. In our ETA project, we are currently
working on enabling user applications over ETA
through the sockets interface. In our MARS pro-
ject, we are finalizing our reference implementa-
tion, which we plan to integrate into an OS
environment to investigate the achievable gains
using real applications. In addition to ETA and
MARS, we are also studying the effects of inter-
rupt- and connection-level affinity on TCP/IP pro-
cessing performance.16

Figure 10. MARS
architecture.
Employing two
strands each for
receive and transmit
operations and 
one strand for other
operations, such 
as event handling,
yields efficient
TCP/IP processing.
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Figure 11. MARS
performance sum-
mary. Combining the
latency reduction
techniques with the
improved stack
implementation
achieves more 
than a twofold
improvement. 
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We are also beginning to explore mechanisms to
support latency-critical TCP/IP usage models such
as storage over IP17 and clustered systems. The goal
is to identify the right level of hardware support
required for efficient and fast communication on
future CMP processors and server platforms. More
details on our research in this area are available at
www.intel.com/labs/perfnet/. �
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