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Abstract

The TCP protocol is used by most Internet applications today, including the recent

mobile wireless terminals that use TCP for their World-Wide Web, E-mail and

other traffic. The recent wireless network technologies, such as GPRS, are known

to cause delay spikes in packet transfer. This causes unnecessary TCP retransmis-

sion timeouts.This dissertation proposes a mechanism, Forward RTO-Recovery

(F-RTO) for detecting the unnecessary TCP retransmission timeouts and thus al-

low TCP to take appropriate follow-up actions. We analyze a Linux F-RTO imple-

mentation in various network scenarios and investigate different alternatives to the

basic algorithm. The second part of this dissertation is focused on quickly adapt-

ing the TCP’s transmission rate when the underlying link characteristics change

suddenly. This can happen, for example, due to vertical hand-offs between GPRS

and WLAN wireless technologies. We investigate the Quick-Start algorithm that,

in collaboration with the network routers, aims to quickly probe the available

bandwidth on a network path, and allow TCP’s congestion control algorithms to

use that information. By extensive simulations we study the different router al-

gorithms and parameters for Quick-Start, and discuss the challenges Quick-Start

faces in the current Internet. We also study the performance of Quick-Start when

applied to vertical hand-offs between different wireless link technologies.

Computing Reviews (1998) Categories and Subject Descriptors:

C.2.6 COMPUTER-COMM. NETWORKS / Internetworking

C.4 PERFORMANCE OF SYSTEMS

General Terms: TCP performance, wireless links

Additional Key Words and Phrases: delay spikes, cross-layer protocol

interactions
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CHAPTER 1

Introduction

Within the last 10–15 years Internet applications have become part of everyday

life in the developed parts of the world. Applications such as the World Wide

Web, E-mail, Instant Messaging, or networked games are in widespread use to-

day. Traditionally most people have used desktop computers to access Internet

applications. However, portable laptop computers with wireless Internet access

have become popular as home computers due to their smaller space requirements.

Moreover, recent mobile phones have advanced networking capabilities, and they

have become small computer platforms in terms of processing capacity and the

variety of third-party applications available for these devices. It can be foreseen

that in the near future people will use their mobile terminals for different Internet

applications as extensively as they do with their home computers today.

Although the Internet seems a fairly new technology for an average consumer,

it has existed and evolved for more than 30 years. The end-to-end design philos-

ophy of the Internet has proved to be robust enough to stand the huge growth of

the number of Internet hosts from the 1960s until today [39]. An important design

feature of the Internet are the congestion control algorithms that have protected

the Internet from collapsing under the vastly increased load [81]. These princi-

ples have guided the engineering work of the TCP/IP protocol suite [152] that is

used in all modern operating systems of today, as well as in the mobile terminals

that provide World Wide Web or E-mail applications.

The Transmission Control Protocol (TCP) [133] is used by most of the net-

working applications, for example the World Wide Web, instant messengers, peer-

to-peer file sharing and E-mail. Probably because of its popularity, TCP has also

inspired a large research base from the past decades until today.

Using TCP over the wireless network access technologies is especially chal-

lenging. The wireless networks have very different characteristics compared to

1



2 1 Introduction

the networks where the TCP was originally designed, and they evolve rapidly all

the time. New wireless technologies are being announced at a constant rate, and

the range of network characteristics is likely to grow in the future.

1.1 Scope of the Work

This dissertation investigates the TCP performance in networks that suffer from

long or variable delays. While wireless technologies such as the General Packet

Radio Service (GRPS) [35, 29] and Wireless LAN [62] are the primary topic of

interest, the research approach and solutions are also applicable to other fixed or

wireless networking technologies under TCP. Rather than going into details of

any particular layer 2 networking technology, the focus is on the TCP protocol:

we investigate the packet-level behavior of TCP, with the underlying path charac-

teristics motivated by the above-mentioned wireless networking technologies.

We focus on the following problems related to the interaction of TCP and chal-

lenging delay characteristics:

• Spurious retransmission timeouts caused by a delay spike. TCP retransmis-

sion timer is adjusted dynamically based on the recently measured round-

trip times. However, the TCP sender is unable to prepare for a sudden

unexpected delay spike that can occur, for example, due to certain events in

GPRS networks [66]. Unexpected delay spike causes TCP’s retransmission

timer to expire, which in turn causes a number of harmful follow-up effects

sacrificing TCP performance.

• Slow connection start-up on high-delay paths. TCP’s congestion control

algorithms limit the utilization of a high-latency connection path that could

consume several packets in one round-trip time. For example, the wireless

link in GPRS and EGPRS has high latency, and in such environments TCP’s

slow-start leads to underutilization of the wireless resources.

• Changes in path characteristics due to mobility. Because mobility results

in change of the communication path, the end-to-end path characteristics,

such as bandwidth and round-trip delay can change as well. TCP is known

to be slow in adapting to suddenly changing network conditions. Before

the TCP sender has adjusted itself to the new path characteristics, several

packets may have been lost, or the communication path may remain under-

utilized for a long period of time. Particularly dramatic changes can occur

with vertical hand-offs between different wireless access technologies that
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mobile terminals use. For example, a GPRS link has bandwidth and de-

lay characteristics that are several orders of magnitude different than the

characteristics of a Wireless LAN link.

Since all of the above-mentioned problems are typically related to the char-

acteristics of the GPRS networks or vertical hand-offs between GPRS and Wire-

less LAN links, the research parametrization is motivated by these technologies.

Two methods are used in research: first, parts of the research are conducted us-

ing real Linux implementation attached to an emulated network using Seawind

wireless network emulator [100], which allows various network parameters to be

controlled and configured. Second, the ns-2 simulator [122] is used in tests that

involve a large number of network components, or require modifications in the

network components that are difficult and time-consuming to implement in real

network stacks.

1.2 Contributions

This dissertation has the following contributions:

• We give a detailed description of the Linux TCP implementation that has

been used in many of the experimentations in this dissertation. This part

of the dissertation is based on the experience gained when the author con-

tributed modifications and protocol enhancements to the Linux TCP imple-

mentation. Although there are several books about the Linux kernel and its

networking stack in general, the author is not aware of any that would give

a detailed description of the TCP behavior. A conference paper written by

the author and Alexey Kuznetsov, one of the key architects of the Linux

TCP/IP stack, gives a detailed description of the special features in Linux

TCP implementation [147]. The author has been the main contributor to the

paper, receiving some comments from Alexey Kuznetsov. The author also

conducted all of the performance examples given in the paper.

• We have developed a new algorithm for improving TCP performance on

spurious retransmission timeouts, called Forward RTO-Recovery (F-RTO).

The author was the original inventor of the idea of F-RTO, and the design

work was done in collaboration with Markku Kojo. The author also im-

plemented F-RTO in the Linux kernel and ns-2 network simulator. Both

implementations have been accepted and included in the main code distri-

butions of these systems. This work is discussed in a research publication
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co-authored with Markku Kojo and Kimmo Raatikainen [145]. The perfor-

mance experimentations and analysis presented in the paper and this disser-

tation were conducted by the author. F-RTO has also been published as an

RFC by the IETF [144], and it has been included in the protocol stacks of

several operating systems, such as different mobile phone platforms, Linux,

HP-UX, and recently also Windows Vista and the latest version of the Win-

dows “Longhorn” server [120].

• We developed a SACK-based enhancement of F-RTO, and analyze different

congestion control response variants to F-RTO. This is based on a research

publication entirely written by the author [142]. The design and the analysis

in this publication were also conducted entirely by the author.

• We analyze the Quick-Start mechanism for setting the initial TCP conges-

tion window to a larger size on high-speed or high-delay paths, and thus

significantly improve the TCP start-up performance. This part of the work

is based on a joint research paper with Sally Floyd and Mark Allman [143].

Quick-Start was initially specified by Amit Jain and Sally Floyd, and the

author has participated to the follow-up work with Floyd and Allman to de-

velop and analyze Quick-Start further. The author has developed the Quick-

Start ns-2 implementation, based on the initial code by Srikanth Sundarra-

jan [156], and conducted most of the simulation analysis presented in the

paper. The author also participated in the Quick-Start specification work in

the IETF [54].

• Quick-Start can also be used in the middle of a TCP connection, for exam-

ple after a hand-off has occurred on a mobile host. We analyze the use of

Quick-Start in wireless environments, especially in the context of vertical

hand-offs between the GPRS and WLAN links, and show how Quick-Start

can be used to improve TCP performance in these cases. This is based on

a research paper written with Jouni Korhonen, Laila Daniel and Markku

Kojo [146]. The author has done a significant amount of the editing work

for the paper, implemented most of the applied ns-2 code, and conducted

most of the simulations and analysis presented in the paper.

1.3 Related Work

Much research has been conducted on the general topic of TCP over wireless

links (e.g., [16, 13, 170, 165]). Most of the research has focused on the problems

of treating wireless packet losses incorrectly as congestion notifications, and the
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issues related to variable delays have been under less attention. Below we list past

research work that is most closely related to the work in this dissertation. More

thorough discussion about the technical issues in using TCP over wireless links is

carried out in Chapter 2.

Spurious Retransmission Timeouts

The problem of spurious retransmission timeouts with wireless cellular links was

identified in the 1990s [101]. Possible reasons for spurious timeouts are persistent

link layer ARQ retransmissions, or events that sometimes occur during cellular

hand-off [66]. While the problems related to long delays in some wireless cellular

networking technologies were identified a long time ago, there have been only a

few earlier proposals for mechanisms to improve the TCP performance on spuri-

ous retransmission timeouts caused by sudden delay spikes. So far the most thor-

ough discussion on this area has been presented by Ludwig et. al, who proposed

and evaluated the Eifel algorithm [111, 112, 64], and the different TCP response

variants after a detected spurious retransmission timeout [65, 110]. Ludwig has

also investigated alternative TCP retransmission timeout estimators that improve

performance in variable delay environments [114]. Eifel is designed to detect

all types of spurious retransmissions, and in addition to retransmission caused by

spurious timeout, it should also alleviate the bad effects caused by packet reorder-

ing [17]. However, Eifel requires the use of the TCP timestamp option that might

not be supported in all cases, for example with the TCP/IP header compression

schemes [82, 42]. F-RTO solves the same problem without using any TCP op-

tions, just by proposing a slight change in the TCP retransmission sequence. The

fact that F-RTO has been adopted by a number of operating system vendors in less

than a year after becoming an IETF RFC hints that this is considered a valuable

difference.

Some time after Eifel and F-RTO were published, other alternatives were also

proposed to improve TCP performance on spurious retransmission timeouts. De-

correlated Loss Recovery (DCLOR) [157] proposes an alternative SACK retrans-

mission sequence that performs better than the standard SACK recovery algorithm

after a spurious retransmission timeout. However, the price of DCLOR is that it

slightly reduces the performance on timeouts that have been caused by genuine

packet losses. STODER [159] proposes retransmitting a partial segment after a

retransmission timeout and using the resulting acknowledgment to determine if

the timeout was spurious. Therefore, on genuine timeouts STODER needs to

send one packet in two separate fragments, which can be a small compromise to

performance.
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Using Explicit Communication to Find the Path Capacity

Another main theme in this dissertation is the use of explicit information in set-

ting the TCP congestion window appropriately by using the Quick-Start algo-

rithm. Quick-Start is an explicit mechanism for a TCP sender to query in-band

the available bandwidth from the routers on the network path. If the routers sup-

port Quick-Start, the TCP sender can use the result of the query to set the TCP

congestion window to a larger size than what TCP would normally use. This way

the TCP sender can transmit at a higher rate and utilize the high-latency network

path more efficiently. Explicit Congestion Notification (ECN) [136] was the first

documented mechanism for using explicit information from the network to alter

the congestion control state. ECN allows a TCP sender to reduce its transmis-

sion rate in response to a congestion that is reported using the ECN bits in the IP

header. ECN-capable routers along the connection path can set the ECN bit when

they are under congestion. Explicit Control Protocol (XCP) [89] is a full-fledged

congestion control mechanism where the end-hosts and all the network routers co-

operatively determine the correct transmission rate for a flow at a given time. XCP

is based on continuous feedback about the current load of the network path being

used. In comparison, Quick-Start is a quick mechanism to resolve the current path

capacity, after which the normal TCP mechanisms are used for congestion con-

trol. VCP [163] and Anti-ECN [106] protocols show that TCP performance can

be improved by using just one bit in the IP header for the routers to indicate that

they are underutilized, and the transmission rate can be increased at a faster rate

than normally. These mechanisms are missing the explicit information about the

currently available bandwidth on the connection path. None of the related works

have analyzed the mechanisms with wireless links.

In Chapter 6 we analyze different algorithms for network routers to process

the incoming Quick-Start Requests and decide whether to approve the request.

Measurement-based admission control research has investigated various

algorithms at network nodes for admitting or rejecting flows, when given some

Quality-of-Service requirements (see for example [30]). Quick-Start solves a

somewhat similar problem in terms of the router algorithms for approving Quick-

Start requests. However, while measurement-based admission control algorithms

are designed for implementing soft Quality-of-Service based on some target pa-

rameters such as bandwidth or packet loss rate, Quick-Start is a light-weight

mechanism specifically intended for resolving the appropriate sending rate for

a best-effort flow on an underutilized path.
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1.4 Structure of the Dissertation

Chapter 2 describes the recent evolution of different wireless networking tech-

nologies. It also gives an overview of the basics of TCP with its recent enhance-

ments for wireless links. The problem of spurious retransmission timeouts is

described in detail. The chapter also discusses different types of explicit com-

munication mechanisms between the end-hosts and the network that have been

proposed earlier. Chapter 3 describes the Linux TCP implementation with its spe-

cial features that are different from the TCP standards. Performance implications

of certain design choices in the Linux kernel are also shown. Chapter 4 presents

and analyzes the F-RTO algorithm for improving TCP performance on spurious

retransmission timeouts, and compares its performance with the Eifel algorithm.

Chapter 5 presents a SACK-based enhancement for the F-RTO algorithm, and

compares different congestion control responses to F-RTO. Chapter 6 presents

the Quick-Start algorithm, discusses its benefits and challenges related to deploy-

ment and security, and compares different variants for router algorithms to process

the Quick-Start requests. Chapter 7 proposes an enhancement to Quick-Start and

analyzes use of Quick-Start on wireless hosts in the context of vertical hand-offs

between Wireless LAN and EGPRS links. Finally, Chapter 8 gives concluding

remarks and gives some ideas for follow-up work.
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CHAPTER 2

TCP and Wireless Networks

This chapter provides background to the work established in this dissertation.

First, in section 2.1, a brief introduction to the evolution of the wireless communi-

cation systems is given from the 1960’s to the present day to give the reader a short

overview on the versatility of different wireless communication technologies that

have been designed in the past. The heterogeneity of network characteristics in

these systems is the main reason for the TCP/IP performance issues that are being

discussed in this dissertation. Section 2.2 discusses the main TCP retransmission

and congestion control algorithms, and presents some common performance en-

hancements that have been proposed earlier. Sections 2.3 and 2.4 focus on the

two main issues discussed in this dissertation: the spurious retransmission time-

outs caused by high and unpredictable delay variability on some link technologies,

and the slow convergence time of TCP/IP congestion control parameters on con-

nection paths with high and variable delay characteristics.

2.1 Evolution of Wireless Communication Systems

One of the earlier wireless packet radio system referred to in the literature is the

ALOHA network [2, 96] developed at the University of Hawaii in the early 1970’s.

ALOHA is a multiple access protocol for sharing a single satellite link that has

yielded much follow-up work (e.g., [3]). The ALOHA ground stations can broad-

cast packets at any time to the satellite channel that is listened to by the other sta-

tions. If the packet is delivered correctly and no collision occurred on the shared

channel, all ground stations (including the sender) get a correct copy of the packet.

If another station was transmitting at the same time, the colliding packets are cor-

rupted, and hence discarded. The characteristics of the channel allow the sender

9



10 2 TCP and Wireless Networks

to monitor whether the transmission was successful. If it was not, the sender waits

for a random time and retransmits the packet.

The pure ALOHA is not an optimal protocol, because the stations can transmit

at any random time, and collision of even a small portion of a packet makes it

useless. Therefore slotted ALOHA was proposed [137], which divides the time

into discrete time intervals. Each time interval is time equal to transmitting one

packet. This way the partial overlapping of packet transmission from two ground

stations can be avoided, and the likelihood of collision for a packet is reduced.

Probability analysis shows that while the pure ALOHA can reach approximately

18 % channel utilization at its best, the slotted ALOHA can achieve about 37 %

channel utilization [160, pp. 249–250]. The idea of splitting the transmission

channel into discrete time intervals has been reused several times in the successive

network designs, some of which are discussed below.

2.1.1 Wireless Local Area Networks

An important step in the research on wireless networking was the introduction of

Wireless LAN (WaveLAN, WLAN) radios in the early 1990’s [162]. These were

an ideal communication system for university campuses, and with the widespread

use of the TCP/IP protocols in the university systems, availability of WLAN

systems started up the research trend on the behavior of TCP/IP over wireless

links [45, 34, 166]. The Wireless LAN system is based on a network of WLAN

base stations, typically connected with each other and the rest of the network by a

fixed Ethernet cable. Each WLAN base station uses one channel in the assigned

radio spectrum, forming up a cell where all nodes can detect the traffic sent by

others. The media access protocol in early WLAN systems is based on Car-

rier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol [62, p.

130]. Prior to sending in a CSMA/CA system, a host transmits a Request To Send

(RTS) message to the receiver that responds with Clear To Send (CTS) message if

the channel is not in use and the sender is free to transmit. Because also the other

hosts in the cell get these two messages, they know that the wireless channel will

be allocated for transmission and know not to transmit for the allocated time pe-

riod. Multiple Access with Collision Avoidance (MACA) [87] is an enhancement

to CSMA/CA that does not perform the data carrier detection, but instead the sta-

tions include the amount of data to be transmitted in the RTS and CTS messages.

This simplifies the basic CSMA/CA protocol and relieves the traditional “hidden

terminal” [95] and “exposed terminal” problems [160, p. 264] in the CSMA/CD

system. MACA has been further enhanced specifically for Wireless LAN sys-

tems [19], for example by improving the channel allocation mechanism for base

stations.
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The first IEEE 802.11 standard on Wireless LAN was published in 1997, and

it was slightly revised a few times in the following years [40, 69, 76]. IEEE

802.11 supports transmission rates of 1 Mbps and 2 Mbps at 2.4 GHz frequency.

The legacy 802.11 did not get deployed to a significant extent before the IEEE

802.11b specification was released in 1999 [77]. The 802.11b stations can have

a transmission rate of 11 Mbps, though by changing the channel encoding they

can also transmit at 5.5 Mbps, 2 Mbps, and 1 Mbps when the link conditions are

not good enough for transmitting at the higher rates, for example because of the

distance between the mobile terminal and the base station. It is worthwhile to

note that despite the given theoretical transmission rates, the actual throughput

for the upper layer protocols is often lower due to the use of CSMA/CA that

uses an additional wireless round-trip time to avoid collisions of the data frames.

While the 802.11b deployment started in university and company campuses, it is

nowadays in widespread use in various public locations and homes.

Recently the IEEE 802.11 family has been extended with two standards capa-

ble of transmitting at 54 Mbps. 802.11a uses 5 GHz frequency band [78], whereas

802.11g is placed on the usual 2.4 GHz frequency band using advanced channel

encoding mechanisms to gain the higher transmission rate [75]. The drawback of

802.11g is that the 2.4 GHz frequency band is used by numerous WLAN-capable

laptops and other devices, and the communication can suffer from interference in

crowded locations. The advantage of 802.11g is that the lower frequency helps in

providing somewhat larger coverage areas and better penetration of solid objects.

There is work ongoing in the IEEE on new standards providing an even higher

transmission rate for WLANs [168]. There is also work ongoing to enhance the

WLAN service capabilities in other ways, for example with the upcoming 802.21

standard, which is intended to provide information and triggers from the wire-

less network for the upper layer protocols to be used for better control in modern

heterogeneous networks [43].

2.1.2 Wireless Wide Area Networks

Roughly at the same time as the research on TCP/IP protocols over wireless

LANs, research on using TCP/IP over cellular phones and other wireless wide

area networks (WWANs) began. We will skip the work on using analog circuit-

switched technologies such as the retired Nordic Mobile Telephone (NMT) sys-

tem [108], although some research on TCP/IP over these systems was conducted

in the early 1990s [4], and focus on the more substantial research that started

with the introduction of digital cellular wireless technologies. We next discuss

the wireless wide area network technologies that are going to be referred to in the

rest of this dissertation. There are some technologies that are not described, since
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they are considered less significant to an average (European) mobile terminal user,

such as PDC [70], IS-95, or CDMA2000 [97].

GSM (Global System for Mobile communications) [135] is the most widely

deployed system for digital wireless wide-area networks, taken into use in the

early 1990s. GSM uses up to 124 frequency channels in each wireless cell, each

channel split into 26 time division multiplexed (TDM) time frames. Transmission

of a TDM frame takes 4.615 milliseconds and it is shared between eight users that

each have a dedicated time slot in the TDM frame. One GSM data user can have

a data transmission rate of 9600 bps. Since GSM is a circuit-switched system, the

transmitting host needs to establish a dial-up connection with a modem to transmit

TCP/IP data over the GSM channel. Later, High-Speed Circuit Switched Data

(HSCSD) (see brief description for example in [104]) was introduced to enhance

the GSM radio speeds by supporting a better channel encoding that is capable of

transmitting at 14.4 Kbps in a single GSM time slot, and with the possibility of

using up to four time slots for a single GSM connection. Furthermore, HSCSD is

able to choose between the 9.6 Kbps and 14.4 Kbps encodings depending on the

quality of the wireless link. As a result, transmission speeds of up to 57.6 Kbps

can be achieved in the GSM data transmission.

Figure 2.1 shows the main components of a GSM and GPRS systems. A Mo-

bile Station (MS) communicates over the radio link with Base Transceiver Station

(BTS) that communicates with the mobile stations in its coverage area. Base Sta-

tion Controller (BSC) controls the base stations, for example, by allocating the

radio frequencies and controlling the hand-offs from one BTS to another in cases

where both of the BTS nodes are controlled by the same BSC. Mobile Switch-

ing Center (MSC) connects the GSM subsystem to the rest of the Public Switched

Telephone Network (PSTN) and handles various tasks related to call control, roam-

ing, and so on. For TCP/IP traffic a modem pool is needed to convert the circuit

switched traffic into IP packets that are sent to the Internet. There are also some

other components in a GSM system that are not shown in the figure, such as Home

Location Register (HLR), because they are not considered relevant for the scope

of this work, analyzing TCP/IP communication performance.

In the late 1990s the GSM system was extended by the General Packet Radio

Service (GPRS) [29, 35] that adds packet-switching capabilities to the existing

GSM architecture. GPRS uses a common radio access system with the circuit-

switched GSM, and can co-exist with the circuit-switched GSM and HSCSD sys-

tems. Similarly to HSCSD, a GPRS terminal can use one to four TDM slots for

data transfer in one direction. However, being a packet data service, a GPRS

terminal allocates the wireless channel only for the time it has packets to trans-

mit. Therefore GPRS can be expected to achieve better channel utilization than
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Figure 2.1: The main components of a GSM/GPRS system.

its circuit-switched predecessors. GPRS also has four different channel encoding

classes for transmitting at 9.05 Kbps, 12.0 Kbps, 14.4 Kbps, or at 20.0 Kbps in a

single time slot. The closer the wireless terminal is to the base station, and the bet-

ter the radio link quality is, the higher an encoding class can be used in the radio

communication. With these settings, a GPRS user can expect data transmission

rates of 30 - 80 Kbps.

The more substantial changes to the GSM system brought by GPRS are in

the core network. The packet-switched GPRS core network uses different com-

ponents than the traditional circuit-switched side. The packets from the Internet

first arrive at Gateway GPRS Support Node (GGSN) at the mobile user’s home

network that encapsulates the arriving packets using the GTP tunneling protocol.

The packets are tunneled to Serving GPRS Support Node (SGSN) at the network

where the mobile terminal is currently located. SGSN detunnels the packets arriv-

ing from GGSN and sends them to the mobile station via the Packet Control Unit

(PCU) that converts the data from the wireless link into packetized traffic. The

main difference between the circuit-switched GSM and GPRS systems is that in

GSM the data goes in circuit-switched connection all the way to the modem pool

in the fixed network, whereas in GPRS the data traffic goes in IP packets through

the GPRS core network.

A few characteristics of the GPRS system specifications have triggered fruit-

ful research issues on TCP/IP performance, some of which have been described

in [66]. First, the GPRS mobile station needs to allocate a Temporal Block Flow

(TBF) state with the GPRS Base Station Controller (BSC) using an ALOHA style

random access channel. To allocate the channel resources, a mobile station first

has to wait for the control message channel to become idle, and then send a Packet
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Channel Request message to the BSC. The BSC responds by indicating the allo-

cated channel and number of time slots allocated for the mobile. The allocation

of the TBF adds a delay of more than 100 ms to the uplink data transmission over

an idle channel [66]. Furthermore, the early GPRS specifications require release

of the TBF state immediately after the data buffers are emptied. As a result, with

data patterns that occasionally send small pieces of data the round-trip times are

generally higher than for bulk data transfer. The second characteristic of GPRS

data transmission is occasional delay spikes in data transfer. Usually these are

caused by GPRS cell reselection: after a mobile station moves and makes a de-

cision to use a new cell, it needs to perform the channel allocation procedures

on the new BSC as described above. After the TBF is established with the new

BSC, the mobile station needs to inform the current SGSN of the change, which

then tells the old BSC to release the resources allocated for the mobile host. It

has been reported that cell reselections suspend the data transmission for 3 to 15

seconds [66]. Cell reselections can cause either delay spikes in the data transfer,

or loss of several packets, or both, depending on the direction of the data transfer.

The cell reselection performance has been improved in the later versions of GPRS

specifications, particularly in Enhanced GPRS discussed below.

In the beginning of the 2000s the GPRS system was enhanced with new fea-

tures, one of them being a more efficient Eight Phase Shift keying (8PSK) channel

modulation scheme that triples the transmission rates available in a GPRS system.

The enhanced GPRS system is called EGPRS or EDGE (Enhanced Data rates

for GSM Evolution) [150, 155]. The data propagation delays on the radio link

are similar to the traditional GPRS system, but the maximum transmission rate

increases to 384 Kbps, if all eight time slots are in use for transmission in one

direction. In practice, with four downlink time slots, the maximum transmission

rate is 236.8 Kbps.

Along with the EDGE specification, third-generation cellular standards have

been specified by two standardization bodies, 3GPP and 3GPP2. The third-

generation system specified by 3GPP is called Universal Mobile Telecommuni-

cations System (UMTS) [86]. It is based on the use of Wideband Code Division

Multiplexing (WCDMA) [73], which is capable of a maximum of 2 Mbps data

transfer rate. The radio link propagation delays are also lower than in the GPRS-

based radio links. Recently WCDMA systems have been further enhanced with

the High-Speed Downlink Packet Access (HSDPA) technology [109]. HSDPA can

improve the downlink data transfer rates by a factor of five for some traffic patterns

by utilizing technologies such as Adaptive Modulation and Coding, fast schedul-

ing and Hybrid Automatic Repeat Request at the Node B, the base station in the

UMTS system.
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2.1.3 Interaction of different wireless technologies

The MosquitoNet was among the first projects to investigate mobility between dif-

ferent network access technologies [12]. Utilizing the capability of using multiple

network interfaces, MosquitoNet was able to achieve seamless hand-offs. Wire-

less overlay network was introduced to refer to a network with heterogeneous

hierarchy of different wireless access technologies with varying coverage ranges

and characteristics. The term vertical hand-off was used in this context already in

1998 [151].

Many of the current handheld terminals support both WWAN and WLAN tech-

nologies. Typically a terminal has a GPRS and possibly WCDMA connectivity,

and a 802.11-based wireless LAN radio, that are largely independent with sepa-

rate radio hardware, and can be used in parallel. Because the coverage ranges of

WCDMA and WLAN technologies are smaller than in GSM/GPRS radios, GPRS

is still the main technology used for data communication in rural areas, but in ur-

ban areas it is possible that either WCDMA or WLAN access is available. As a

result, the range of transmission speed and delays observed by the user is large,

varying from a few tens of kilobits per second to a few tens of megabits per second.

Furthermore, a TCP sender adjusts some of its parameters based on the measured

performance in the recent past. The substantial variance in possible wireless link

characteristics therefore imposes a great challenge to the TCP performance.

In today’s mobile terminals GPRS and WCDMA radios typically share the

same layer two control functionality, and usually have the same Internet access

provider. Therefore the access provider can have a strong role in determining

which technology is being used at a given time. In addition, the IP layer typically

sees these technologies as a single logical access interface. However, the wireless

LAN access can be offered by a different provider, and it often uses a different IP

address in a separate network interface of the TCP/IP stack. Therefore IP mobility

technologies such as Mobile IP [129, 85] are needed for hand-offs between these

interfaces. Although we discuss the different IP mobility mechanisms more in

Chapter 7, we do not go into details of the IP mobility mechanisms, but focus on

TCP algorithms and performance.

2.2 Transmission Control Protocol (TCP)

The Internet that has become a considerable part of life for people in developed

countries is a result of a development process that started in the late 1960s. While

the network has grown rapidly, and the number of hosts attached to the Internet is

orders of magnitude larger than it was a couple of decades ago, it has remained
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operational with reasonably small modifications to the traditional base protocols.

It could be argued that the successful growth would not have been possible without

following certain well-established design principles when defining the TCP/IP

protocols [39]. This section summarizes the evolution of TCP in the past 30 years

and presents some of the performance enhancements proposed to TCP for wireless

networking. Some of the performance enhancements follow the original design

principles better than the others.

2.2.1 Evolution of TCP

A paper published in 1974 by Vint Cerf and Robert Kahn presented the Transmis-

sion Control Program1 (TCP) [37]. The paper introduced several concepts that

are still important today, although many of the details have changed. TCP was

designed to be a protocol by which two hosts in different subnetworks can have

reliable data transfer. The hosts were addressed by identifiers that indicate the

network in which the host is located, as well as the unique identifier within that

network. Networks are connected to each other by Gateways. TCP used source

and destination port numbers by which several data flows could be multiplexed

to the network, and sequence numbers were used for reliable, ordered delivery

of data packets. TCP also had a retransmission mechanism based on the use of

positive acknowledgments and a retransmission timer, and a window-based flow

control mechanism to aid reliable transfer. These basic concepts are still in use

today, although some parts of the protocol design have evolved over time.

The Internet protocols, including TCP, are specified in Request For Comments

(RFC) documents. The first RFC was written in 1969 as part of the ARPANET

project, and as of August 2006, there are 4600 RFCs. The Transport Control Pro-

tocol specification, RFC 793 [133] was written by Jon Postel in 1981, based on

the design in the 1974 paper by Vint Cerf and Robert Kahn. RFC 793 is still

in effect, and it defines the baseline TCP protocol, although several RFCs have

been published since then to update some parts of TCP. At the same time, spec-

ifications of a couple of other important core Internet protocols were released,

namely the Internet Protocol (IP) [132], and the Internet Control Message Proto-

col (ICMP) [131], are still in use today, although in somewhat evolved form. The

User Datagram Protocol (UDP) [130], another important protocol in the Internet,

saw birth as an RFC already earlier, in 1980.

The Internet Engineering Task Force (IETF) was founded in 1986 to orga-

nize the specification of the Internet protocols and to coordinate the authoring of

1Yes, the original paper uses Program, not Protocol.
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RFCs. Among several other work topics, the IETF has taken care of maintaining

the TCP protocol, and proposed many new enhancements to TCP. One of these is

the F-RTO algorithm based on the research conducted for this doctoral disserta-

tion [144].

As the number of ARPANET network hosts and the amounts of transmitted

data expanded, some of the network paths were not capable to keep up with the

amount of traffic, resulting in periods of collapsing transmission performance in

1986 in transmission between two sites that were geographically just a few hun-

dred meters apart, the Lawrence Berkeley National Laboratory and the University

of California at Berkeley campus. This inspired the well-known congestion con-

trol paper by Van Jacobson [81] that has become the determining factor in the TCP

performance research. Van Jacobson proposed that a TCP sender should employ a

congestion control algorithm, starting up its transmission at a slow rate, and then

gradually increasing its transmission rate as the acknowledgments of the pack-

ets arrive. Because congested routers drop packets that they cannot receive due to

lack of buffer space, it was proposed that a packet loss is taken as a sign of network

congestion, and the sender should reduce its transmission rate in response to con-

gestion. The way by which the arrival of acknowledgments triggers transmission

of new packets is called acknowledgment (ACK) clocking, which is one of the im-

portant principles to guarantee the network stability today. A new variable to the

TCP sender’s connection control block, the congestion window (cwnd), was intro-

duced to determine TCP’s sending rate, i.e., how many TCP packets are allowed

to be outstanding in the network by a TCP connection. The congestion window is

maintained separately for each TCP connection between a client application and

a server, separately for both directions of data communication.

TCP’s congestion window is adjusted in two phases: in slow-start, the con-

gestion window and TCP’s transmission rate are roughly doubled each round-trip

time2. The congestion window is initialized to allow transmission of 1–4 seg-

ments3, depending on the maximum segment size. Each incoming acknowledg-

ment for a successfully transmitted TCP segment increases the congestion win-

dow by the size of one full-sized segment. TCP sender also maintains a slow-start

threshold (ssthresh) that determines when execution of the slow-start algorithm

is finished, and when execution of the congestion avoidance algorithm is started.

The slow-start threshold is usually initialized to an arbitrarily large value, and it

is decreased at the same time with the congestion window when a packet loss

2If delayed acknowledgments [26, 11] are in use, the sending rate is increased roughly by 50 %

each round-trip time. Also the use of Appropriate Byte Counting [6] affects the rate at which the

congestion window is increased.
3The TCP transmission unit carried in one IP packet is called segment.
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occurs, to a value corresponding with half the amount of outstanding data at the

time the packet loss was detected at the sender. The current IETF specification

for TCP’s congestion control is RFC 2581 [11]. Congestion avoidance is applied

when the congestion window size is larger than the current slow-start threshold.

In congestion avoidance TCP’s congestion window is increased by the size of one

full-sized segment once in a round-trip time. The congestion window is decreased

to half of its previous size when a TCP sender detects congestion. This class of

congestion control algorithms are generally called Additive Increase, Multiplica-

tive Decrease (AIMD) congestion control algorithms in the research literature, and

several alternative variants of AIMD congestion control have been proposed to be

used with TCP in the past [55, 28, 164, 36]. A widely used analytical model of

TCP throughput with the basic congestion control algorithm is given in [123].

Figure 2.2 is a traditional illustration4 of the behavior of the TCP congestion

control algorithms. The figure shows that in the beginning the TCP sender doubles

the congestion window size each round-trip time, until the congestion window size

is larger than the slow-start threshold (ssthresh). From that point on the congestion

window increases by one segment size each round-trip time. When a congestion

notification, for example a packet loss, arrives at the sender, it reduces the slow-

start threshold and congestion window to half the size of the current window, and

continues transmitting in congestion avoidance at the reduced transmission rate.

As TCP uses only positive cumulative acknowledgments, the only loss sig-

nal available in the early TCP implementations was the retransmission timeout.

Because waiting for the expiry of the conservatively maintained retransmission

timer is a rather inefficient way of recovering from a loss of a single packet in

most cases, an improved algorithm called fast retransmit [81, 26] was proposed at

the same time with slow-start and other congestion control algorithms in Van Ja-

cobson’s congestion control paper. Fast retransmit makes use of the fact that the

TCP receiver immediately sends a duplicate acknowledgment, i.e., an acknowl-

edgment for the same segment as previously, when it receives an out-of-order

segment. Because a likely reason for receiving out-of-order segments is a loss

of one or more earlier packets, a duplicate acknowledgment can be taken as a

loss signal. However, because it is possible that packets are re-ordered in the net-

work, the sender waits for three consecutive duplicate acknowledgments before

retransmitting the first unacknowledged segment to be more robust against unnec-

essary retransmissions. When using the fast retransmit algorithm, the TCP sender

is able to maintain a steady flow of packets to the network, preserving the ACK

4A similar figure is used widely in course literature on TCP/IP networking, for example in [160,

p. 539].
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Figure 2.2: Illustration of TCP congestion window behavior.

clocking of outgoing packets, and usually retransmit packets quicker than with

the timer-based retransmissions, that often cause a small pause in TCP transmis-

sion. In addition, when a retransmission timeout occurs, the TCP sender sets its

congestion window size to one segment, while after the fast retransmit the con-

gestion window is set to half of its earlier size (as shown in Figure 2.2). If also

the retransmitted packet is lost in the network, the retransmission timeout length

is doubled, and a new retransmission is made. The exponential back-off of the

retransmission timer continues until the retransmitted packet is acknowledged, or

when a user timeout expires after a few minutes, and the connection is aborted.

The TCP sender tries to estimate a typical packet round-trip time (RTT), and

use it to determine an appropriate retransmission timeout (RTO) length. When an

acknowledgment to a segment arrives at the TCP sender, the IETF specification

require that the TCP sender adjusts the RTO estimate as follows [127]:

RTTVAR <- (1− β) ∗RTTV AR + β ∗ |SRTT −R|

SRTT <- (1 − α) ∗ SRTT + α ∗R

RTO <- max(SRTT + 4 ∗RTTV AR, 1s.)

where R is the measured round-trip time for the acknowledged segment,

RTTVAR is variation of the recent round-trip times, and SRTT is the smoothed
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mean round-trip time based on the recent measurements. α and β are constants

with recommended values of α = 1
8 and β = 1

4 .

Later the fast retransmission algorithm was enhanced by fast recovery, first

implemented in 4.3 BSD Reno in 1990 [83, 11, 51]. Fast recovery follows fast

retransmit and lasts until the retransmitted segment is acknowledged. During fast

recovery the TCP sender preserves the number of outstanding segments after the

congestion window has been reduced to half of its earlier size by sending new

segments to the network as acknowledgements come in. This is done after the

number of outstanding segments has decreased to match the reduced congestion

window size. The TCP congestion control specification temporarily increases the

congestion window for each incoming duplicate ACK to allow this forward trans-

mission of a segment, and deflates it back to the original value at the beginning of

the fast recovery when the fast recovery is over.

There are two variants of fast recovery: the original one described above, and

the NewReno algorithm [71, 56]5. The standard variant exits the fast recovery al-

gorithm when the first acknowledgment that advances the window arrives at the

sender. If there is more than one segment dropped in the same window, the stan-

dard fast retransmit does not perform efficiently, because the rest of the dropped

segments can only be retransmitted after a retransmission timeout that can take a

relatively long time to expire. NewReno TCP exits the fast recovery only after all

segments in the last window following the segment that triggered fast retransmit

have been successfully acknowledged.

TCP acknowledgments indicate the next segment the receiver expects to re-

ceive in the byte stream. A basic TCP receiver is not able to indicate lost segments

by other means than using the duplicate acknowledgment method, which indicates

that at least one of the segments is missing. Therefore, after retransmitting the first

unacknowledged segment by fast retransmit, the TCP sender needs to await the

acknowledgment for the retransmitted segment in order to know if other packets

were lost in the window of data that was outstanding when the sender detected the

first packet loss. In practice, a basic TCP implementation can recover from data

loss at a rate of at most one segment in a round-trip time because of the minimal

information in the acknowledgments.

A significant improvement to the TCP loss recovery performance was achieved

with the Selective Acknowledgment (SACK) TCP option [117, 51]. With the

SACK option, a receiver can acknowledge up to four non-sequential blocks of

5Recently a Standards Track version of the NewReno algorithm has been published by the

IETF [57]. However, since most of the analysis in this dissertation was conducted before the Stan-

dards Track document was published, we mostly refer to the earlier experimental version of the

NewReno specification. In practice the differences between the two versions are minimal.
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data received beyond the first missing byte. With the extra information, the TCP

sender can employ retransmission algorithms that are able to retransmit more than

one segment in a round-trip time, thus allowing faster TCP recovery. Different

TCP sender implementations have applied slightly different recovery algorithms

in response to incoming SACK information. Two of the best known ones are the

Forward Acknowledgment (FACK) algorithm [116], and the IETF-standardized

conservative recovery algorithm [23]. The main difference between these two al-

gorithms is in how quickly the TCP sender decides a packet loss has occurred

instead of waiting for a delayed packet to arrive. The FACK algorithm assumes

that all segments transmitted before the most recently acknowledged segment in

a SACK option have either reached the receiver or been lost. In the conservative

algorithm the receiver assumes a segment is lost only after there is a gap of more

than three unacknowledged segments between the selective acknowledgments,

thus aiming to preserve the robustness of the fast retransmit algorithm against

possible packet reordering. The practical difference is that the FACK algorithm

recovers slightly faster in lossy situations, but is less robust against unnecessary

retransmissions due to packet reordering.

Recently the use of SACK information has been extended to report duplicate

segments that arrive at the receiver by a mechanism called DSACK [61, 21, 20].

Because segments that arrive in the wrong order at the receiver generate dupli-

cate acknowledgments, it is possible that the sender unnecessarily starts retrans-

missions, despite requiring three consecutive duplicate ACKs before starting the

retransmissions. It has been reported that such packet re-ordering occurs in the

Internet [17]. A DSACK receiver generates SACK acknowledgments also for

incoming packets that have already been acknowledged by TCP’s cumulative ac-

knowledgment. Use of DSACK allows the sender to act appropriately on seg-

ments that are either duplicated at the network, or have been unnecessarily re-

transmitted by the sender, and undo the apparent false congestion control response

made due to receiving three consecutive duplicate acknowledgments that have

falsely indicated a packet loss.

The TCP Timestamp option [25] was suggested to allow more accurate round-

trip time measurements for some implementations with coarse-grained round-trip

time measurement algorithms, especially on network paths with high bandwidth-

delay product. A 32-bit timestamp is attached to each TCP segment transmitted

by the sender, which is then echoed back in the acknowledgment for the segment.

From the echoed timestamp the TCP sender can measure exact round-trip times

for the segments and use the measurement for deriving the retransmission timeout

estimator. Particular benefits of the TCP Timestamp option are that it allows mea-

suring round-trip times from TCP retransmissions, which is not possible without it
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Table 2.1: TCP congestion control related IETF specifications.

RFC Description

RFC 793 TCP base specification

RFC 1122 Requirements for hosts

RFC 1323 Performance extensions

RFC 2018 SACK

RFC 2581 Congestion control

RFC 2883 DSACK

RFC 2988 Retransmission timer

RFC 3042 Limited transmit

RFC 3168 Explicit Congestion Notification

RFC 3390 Increasing initial window

RFC 3517 SACK Recovery Algorithm

RFC 3782 NewReno

due to a problem called retransmission ambiguity [88]; and that it allows protect-

ing against wrapped sequence numbers on paths with very high-bandwidth delay

product.

To give TCP senders additional means of detecting congestion, Explicit Con-

gestion Notification (ECN) [136] was suggested for routers to explicitly mark

packets when they arrive to a congested point in the network. When a TCP sender

receives an echoed ECN notification from the receiver, it reduces its transmission

rate in the same way as it does when responding to a packet loss. ECN allows

the TCP senders to reduce the transmission rate in response to congestion without

having to suffer from packet losses. Explicit cross-layer communication mecha-

nisms are discussed more in Section 2.4.

As discussed above, the TCP algorithms are specified in a number of different

RFCs, which can make it difficult to analyze and implement a state-of-the-art

TCP behavior. Table 2.1 summarizes the most important Standards Track RFCs

that affect the TCP performance. In addition, there are a number of experimental

and informational RFCs related to TCP. The IETF has published a TCP roadmap

that shortly describes all the current TCP-related RFCs [46].

2.2.2 Enhancements for Wireless Links

The emerging of WLAN networks and IP mobility support [80] inspired various

research activities on improving TCP’s performance over wireless links. The key

problem in the early research was the TCP congestion control taking packet losses
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as an indication of congestion, which is a false assumption when a packet loss is

caused by data corruption in wireless transfer [33, 169].

Many of the early solutions relied on having an active component at the wire-

less base station or wireless access router. A few solutions, such as Indirect TCP

(I-TCP) [13] or the Mowgli communication architecture [101] split the TCP con-

nection into two separate connections at the wireless access router, using a regular

TCP connection between the fixed server and the wireless access router, and an-

other TCP connection or a protocol specifically tailored for wireless links in the

communication between the wireless access router and the mobile host. With

the split connection approach, the sender at the fixed Internet can speed up the

startup of the connection during slow-start because of the shorter round-trip times

of packets that are being acknowledged at the wireless access router. Split connec-

tion also helps to avoid TCP congestion control response due to wireless packet

losses, because the wireless access router hides the packet losses on the wireless

link from the fixed server. A separate protocol aware of the wireless link charac-

teristics can be used to recover efficiently from wireless packet losses.

The Snoop approach [16] also uses an intermediate component at the wireless

access router, but it does not split the TCP connection. The Snoop module mon-

itors the TCP duplicate acknowledgments and uses the acknowledgements or a

local timer to determine if a packet is lost on the wireless link. If the Snoop mod-

ule determines that a packet is lost on the wireless link, it retransmits the packet

locally and hides the packet loss from the fixed end sender by not forwarding the

duplicate acknowledgments to it. This way the Snoop module aims to make quick

retransmissions of the lost data on the wireless link, and avoid the congestion

control actions at the fixed sender due to data loss on the wireless link.

The main disadvantage of the split connection approach and many of the other

types of transport-layer proxies is that they violate the end-to-end principle that

is one of the key design principles of the Internet protocols [140, 49]. A wireless

access router may falsely acknowledge packets even if the wireless host has dis-

connected from the network for some reason, or has had a software failure that

has resulted in loss of the TCP state. In addition, solutions that require access to

the transport protocol headers in the middle of the connection path cannot be used

with IPsec [93]. Because of these reasons, splitting the connection or using other

types of performance enhancing proxies are generally discouraged. The IETF has

given recommendations regarding hosts that either split the connection or have

some other TCP-aware heuristics near the wireless access point [24].

The IETF has made recommendations on TCP behavior over 2.5G and 3G

links [79]. The document discusses the appropriate window sizes for TCP in

these environments, and proposes to use certain TCP enhancements, such as the
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selective acknowledgments and limited transmit described earlier. Furthermore,

the document recommends to use TCP timestamps to improve TCP performance.

This dissertation challenges some of the recommendations in the document, for

example by showing that some of the benefits of using TCP Timestamps can also

be acquired without using them.

Wireless hosts may also suffer from longer periods of disconnection. If such

a disconnection takes more than a few minutes, the TCP user timeout expires

and the connection is aborted. Because some applications would benefit from the

connection state being maintained over longer periods of disconnection, a new

TCP option has been proposed to extend the user timeout length on per-connection

basis [149]. When connectivity is regained, the TCP sender is triggered to make

a quick retransmission, as the next retransmission timeout could take a long time

due to a backed-off retransmission timer.

2.3 Problems with TCP’s Retransmission Timer

When using TCP in GPRS networks, new kinds of problems emerged. Unlike

in the traditional research on TCP over wireless, TCP is not usually affected by

packet losses due to data corruption on the wireless link, because the lower proto-

col layers provide reliable delivery service for upper-layer protocol data. Instead,

the additional delays due to the actions related to channel allocation as explained

in Section 2.1 can cause the TCP retransmission timeout to expire [119]. Be-

cause it is possible that no data has been lost, the TCP retransmission timeout is

spurious, followed by unnecessary slow-start retransmissions by the TCP sender.

The spurious retransmission timeout also violates the packet conservation rule.

The packet conservation rule requires that the number of outstanding segments

are maintained at a steady level, apart from the adjustments made to the conges-

tion window. However, after a spurious timeout the TCP sender makes two useless

slow-start retransmissions for each packet that leaves the network. In addition, the

TCP’s congestion window is reset unnecessarily after the retransmission timeout,

which further damages the TCP performance.

Figure 2.3 shows a time-sequence diagram of a TCP transfer when a 3-second

delay occurs on the link. The retransmission timer expires because of the de-

lay, spuriously triggering the RTO recovery and unnecessary retransmission of all

unacknowledged segments. This happens because after the delay the ACKs for

the original segments arrive at the sender one at a time but too late, because the

TCP sender has already entered the RTO recovery. Therefore, each of the ACKs

trigger the retransmission of segments for which the original ACKs will arrive

after a while. This continues until the whole window of segments is eventually



2.3 Problems with TCP’s Retransmission Timer 25

unnecessarily retransmitted. Furthermore, because a full window of retransmit-

ted segments arrive unnecessarily at the receiver, it generates duplicate ACKs for

these out-of-order segments. Later on, the duplicate ACKs unnecessarily trig-

ger fast retransmit at the sender, which causes further reduction of the congestion

window.
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Figure 2.3: A delay triggers spurious retransmission.

The possible solutions for improving TCP performance after spurious RTO can

roughly be divided into two categories. One alternative is to avoid the RTOs in

the first place by changing the algorithm used for the RTO calculation. Different

constants and granularities applied to the standard algorithm documented in [127]

have been studied [10]. In addition, totally new algorithms for setting the RTO

timer have been suggested (e.g. [114]). However, we believe it is very difficult to

come up with an algorithm that results in a good performance in various different

network environments. Another way to mitigate the performance penalty due to

spurious retransmission timeouts is to change the TCP sender behavior after a

timeout. Chapter 4 presents an algorithm for improving the TCP’s performance

in the face of spurious retransmission timeouts, called Forward RTO Recovery

(F-RTO) [145].

There is no known way to prevent the retransmission timeout from expiring

because of a sudden delay. However, by having additional information in the

TCP segments, the unnecessary retransmissions following the spurious RTO can
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be avoided. The Eifel algorithm [111] suggests that the TCP sender indicates

whether a segment is transmitted for the first time, or whether it is a retransmis-

sion. When this information is echoed back in the acknowledgement, the sender

can determine whether the original segment arrived at the receiver and declare

the retransmission either correct or spurious action. Based on this knowledge, the

sender either retransmits the unacknowledged segments in the conventional way,

assuming the RTO was triggered by a segment loss, or reverts the recent changes

on the congestion control parameters and continues with transmitting new data.

The latter alternative is likely to be the correct action to take when the original

segment was acknowledged after the RTO, indicating that the RTO was spurious.

The Eifel algorithm suggests using either the TCP timestamps option [25] or

two of the reserved bits in the TCP header for distinguishing the original trans-

missions from retransmissions. Using the reserved bits in the TCP header re-

quires modification to TCP at both ends. The TCP timestamps option is deployed

on some Internet hosts6, but in order to take advantage of Eifel, the timestamps

option would need to be deployed at both ends of the TCP connection. Given

that the sudden delays are often a problem on wireless links with low bandwidth,

including timestamps in each TCP segment increases the TCP header overhead

and makes the communication inefficient. Moreover, the TCP timestamps are

not supported in the current TCP/IP header compression specifications [82, 42].

The main difference between Eifel and the F-RTO algorithm is that F-RTO does

not require additional TCP options, but it works with basic TCP, just by slightly

modifying the sender’s TCP retransmission algorithm.

Instead of distinguishing the ACKs of the original transmissions from the

ACKs of the retransmissions at the TCP sender, the receiver can indicate whether

it received a segment that had arrived earlier. The Duplicate SACK

(DSACK) enhancement [61] suggests to use the first SACK block to indicate du-

plicate segments arriving at the receiver. This alternative has its benefits over the

Eifel algorithm presented above, because the SACK option is being more widely

deployed than the TCP timestamps [5], and the SACK blocks are appended to the

TCP headers only when necessary. However, if the unnecessary retransmissions

occurred due to spurious RTO caused by a sudden delay, the acknowledgements

with the DSACK information arrive at the sender only after the acknowledgements

of the original segments. Therefore, the unnecessary retransmissions following

the spurious RTO cannot be avoided by using DSACK. Instead, the suggested re-

covery algorithm using DSACK can only revert the congestion control parameters

6A study on use of the different TCP options indicates that 15 % of the WWW clients connected

to a WWW server on the Internet used TCP timestamps in the early 2000s [5].
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to the state preceding the spurious retransmission [20]. Both ends of the TCP con-

nection need to be aware of the DSACK extension in order to take advantage of

it.

Recently other algorithms to avoid harmful effects of spurious retransmission

timeouts have also been proposed. Like F-RTO, STODER [159] does not require

any TCP options but it just applies a small modification at the TCP sender. The

idea of STODER is to split the retransmitted segment into two smaller pieces after

an RTO, and retransmit just the first, smaller piece. By this trick, the sender can

separate the acknowledgment of the original segment and the acknowledgment of

the retransmission, and is able to take the appropriate actions on spurious retrans-

mission. A slight problem with STODER is that on genuine timeouts the sender

needs to transmit one segment more than normally, which involves a bit more

packet overhead in the network, and takes one more round-trip time to recover.

The Correlated Loss Recovery (DCLOR) algorithm [157] is an alternative TCP

retransmission algorithm based on the use of TCP SACK acknowledgments in de-

termining whether the sender is required to retransmit after a retransmission time-

out, or whether it can send new data. Immediately after a retransmission timeout

the sender transmits new data, and if the incoming SACK blocks indicate that the

recently transmitted segment arrived before the original, earlier transmitted seg-

ments, it is likely that the retransmission timeout was not caused by a delay spike,

but is a genuine RTO. A slight drawback of the DCLOR algorithm is that it fol-

lows RTO by immediately transmitting new data, which delays the recovery by

one round-trip time on genuine timeouts.

The IETF has organized the work on spurious retransmission timeouts into

detection algorithms and response algorithms. A detection algorithm is used to

determine whether an RTO is genuine or spurious, and the response algorithm

is activated if an RTO is determined to be spurious. A response algorithm de-

fines how congestion control parameters, the congestion window and slow-start

threshold size, are adjusted after a spurious timeout, value of the retransmission

timer, and the sequence of segments to transmit. Currently there are RFCs for

DSACK [21], Eifel detection algorithm [112] and F-RTO [144], that is modeled

as a detection algorithm, and two active documents for alternative response algo-

rithms, namely the Eifel response algorithm [110] and DCLOR [157]. Chapter 5

discusses the response algorithms in more detail.
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2.4 Enhancing TCP with Explicit Cross-Layer

Communication

Section 2.2 discussed different approaches to improve TCP performance. Some

of the mechanisms were based on placing an intelligent proxy node on the con-

nection path that can hinder the negative effects of the wireless link from the fixed

end of the TCP connection. Other mechanisms modify the TCP algorithms at the

end hosts to perform better on a challenging network environment. We now take

a look at another kind of approach to improve the transmission performance at the

end hosts: giving tools for the network to tell more about its characteristics to the

end hosts.

The normal congestion control mechanisms of TCP usually work well when

the network environment is reasonably stable and the end-to-end delay is rea-

sonably short so that the congestion control parameters can be adjusted timely.

However, when the delay of an end-to-end path is long, the delay in getting TCP

feedback starts to affect the communication performance: first, in TCP slow-start

it takes several round-trip-times to increase the congestion window size to be large

enough to efficiently utilize the capacity of the end-to-end path. Second, propa-

gation of the loss or congestion notifications takes time, during which the TCP

continues increasing its sending rate [41], even though it should reduce it. This

has a substantial effect especially in slow-start, when TCP doubles the congestion

window size during the round-trip it takes to get the loss notification back to the

sender.

Another problematic environment for TCP is that where the end-to-end path

can have sudden significant changes in its characteristics. This can happen, for

example, due to mobility, especially in vertical hand-offs [115] where two network

access technologies are drastically different. A common real-world example is

hand-offs between a GRPS access link, which can provide bandwidths of about

tens of kilobits per second, and a WLAN link, which can provide bandwidths of

about several megabits per second. However, TCP adapts its RTO estimate and

congestion control parameters to the changed path characteristics very slowly,

because the congestion window can only be reduced by half after a packet loss7,

and in congestion avoidance the congestion window can be increased only by one

segment in a round-trip time. When the sudden changes to the path characteristics

are measured on the orders of magnitude, it is apparent that the TCP adaption is

distressingly slow in these situations.

7Or, explicit congestion notification, if that happens to be supported
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With a little additional intelligence in the network, or at the different proto-

col layers of a mobile end host, it is possible to deliver notifications to the TCP

sender about the changed path characteristics, to allow it to adapt more timely

to the characteristics of a new path. The notification message could contain in-

formation about the new path characteristics, or if reliable evaluation of the new

characteristics is not possible, the sender could re-initialize its congestion control

state and round-trip time measurements on getting the notification.

2.4.1 Classification of explicit cross-layer mechanisms

Based on the past work on explicit notification and communication mechanisms,

we propose a taxonomy of the mechanisms between the end hosts and the network

can be identified [105]. Signaling or notification mechanisms can be split into

in-band and out-of-band mechanisms, based on whether the information is piggy-

backed along with the transport protocol traffic, or whether the signaling is done

by the means of separate control packets, respectively.

The benefit of using in-band signaling is that the signaling can be better as-

sumed to take the same network path as the protocol data. Out-of-band mecha-

nisms could take a different path due to different policy actions: an IPsec policy

might not aggregate the signaling protocol to the same security association as the

data protocol, or a policy-based routing system could select a different path for

the out-of-band signaling than for the protocol data. Sometimes a packet with

unrecognized content can cause the whole IP packet to be dropped in the network

due to NAT or firewall policy, or because of a defective router. When the mes-

sage is transferred in-band, the loss notification usually comes naturally with the

protocol’s own acknowledgment mechanisms. For out-of-band mechanism there

might not be any direct mechanisms to inform about the loss. The drawback of

an in-band mechanism is that a loss due to additional packet content also hurts

the data transfer. Out-of-band messages can also be more susceptible to security

problems caused by a third party generating malicious messages.

The following list discusses three types of in-band notification mechanisms

that have been proposed in the past, and two types of out-of-band signaling mech-

anisms.

• In-band message processed by end hosts. When a message is attached

to the transport protocol header, only the communication end hosts can be

assumed to see the message. IPv6 also has extension headers that are only

processed by the end hosts. The routers along the network path are not

typically capable of processing this kind of message, and if the packet is

encrypted with IPsec, it is impossible for other nodes than the end hosts to
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read the message. The benefit of using transport header is that it can be ex-

pected that the legacy routers and different flavor of network middle boxes

are not likely to take unexpected actions on the packet, such as dropping

a packet with an unknown option. An example of this kind of notification

type is LMDR [158] that uses a TCP option to allow a mobile end host to

notify the other end that it has moved.

• In-band message processed by some routers. If a message uses some of

the reserved bits in the IP header, or is an IP hop-by-hop option, routers

along the network path are able to process it and take appropriate actions.

There can be two types of messages: those that are only read by a router,

and those that can also be altered by the router. The options that are to be

altered by the router should not be covered by IPsec authentication [92].

In case of IPv4 this means that such an option should be explicitly marked

as a mutable field for IPsec. An IPv6 option includes a bit that tells IPsec

whether the option is mutable or non-mutable. IPsec does not cover the

reserved bits in the IP header, either. The problem with the use of IP options

is that the network is known to drop the majority of packets with unknown

IP options [118]. Some explicit notification types are such that they are

of benefit even if a single router along the network path supports them.

Explicit Congestion Notification [136] is one such mechanism.

• In-band message processed by all routers. Some message types need

to be processed by all routers in order to have effect. This is a tough re-

quirement for any mechanism to be used in the Internet, and this kind of

schemes are likely to remain in limited controlled portions of the network.

These messages would also utilize reserved bits in IP header or IP options,

with the same challenges as listed above. Additionally, in some cases the

sender must be able to verify that all routers have processed the message.

One way to do this is by the means of a separate TTL field in the message

that is compared to the IPv4 TTL or IPv6 hop count. If the two fields do

not give matching information about the number of hops in the path, it can

be concluded that there were routers that did not process the notification

message. IP tunnels are also a considerable challenge to this kind of mech-

anisms, as they can hide the inner IP header with the in-band message from

the routers. Sometimes the TTL field comparison does not reveal the pres-

ence of such tunnels on the path. This work presents a mechanism that falls

into this category.

• Out-of-band message processed by end hosts. Sending ICMP messages

from the receiver to the sender of a packet has been a traditional way of
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reporting, for example, some error condition in the data transfer. Usually

the transport header, or a part of it, is included in the message to help the

receiver of the ICMP message identify the transport connection the ICMP

message concerns, and do some primitive security screening.

• Out-of-band message processed by routers. Resource ReserVation Pro-

tocol (RSVP) [27] uses a specific protocol type for QoS signaling between

the sender and the receiver. RSVP requires that every router processes the

messages, so it includes a similar kind of TTL-based hop tracking mecha-

nism as mentioned above. In order to have out-of-band messages processed

at routers, they need to be set to monitor the given protocol type inside the

IP packets, or the IP packets need to use a router alert option [90, 125] to

trigger further processing at the router. As with the in-band messages, IP

tunnels and layer 2 switching systems such as MPLS [138] may prevent

the signaling from working, or cause the signaling to work defectively. An

out-of-band message could also be sent from one of the routers along the

network path, of which some of the ICMP error messages are a common

example. Taking strong actions based on such signaling can be dangerous,

though, because there would be many security issues in the validity and

authenticity of such messages.

To summarize, when analyzing cross-layer notification mechanisms, a number

of issues should be considered based on the experiences from past proposals. To

mention two of the more important issues, it should be determined whether some

or all nodes along the path are required to process the message, and it should be

evaluated whether it is feasible to embed the signaling into the protocol data traf-

fic, or whether a separate signaling flow is more appropriate, either as embedded

to some existing signaling such as Mobile IP binding updates [85], or using an

entirely new protocol. It is also possible that a combination of different mecha-

nisms is used: for example, a mobile host could use an end-to-end method to tell

the corresponding node about change in its status. In response, a corresponding

node could trigger a hop-by-hop QoS request in the changed environment.

2.4.2 Adjusting TCP sending rate using Quick-Start

As discussed in Section 2.2, the TCP senders are required to select a low initial

sending rate to follow the congestion control principles. As acknowledgments

start arriving, the TCP sender then increases its sending rate until it gets an indi-

cation of congestion. The appropriate sending rate depends on the bandwidth and

propagation delay of the network path between the sender and receiver, as well as

the amount of load being placed on the network by others at the given time.
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This dissertation investigates the use of an in-band mechanism called Quick-

Start to quickly find out the correct initial sending rate, and to quickly adapt the

sending rate to the new path characteristics after a hand-off. When used with

TCP, Quick-Start is used to quickly set the TCP congestion window size. Quick-

Start is expected to be useful on clearly under-utilized network paths that would

require several round-trip times from the TCP slow-start before being properly

utilized. Even with an initial window of four packets, slow-start takes log2N − 2

round-trip times to reach a congestion window size of N packets. When using

Quick-Start over an under-utilized path, it is possible that a transfer that would

otherwise take several round-trip times, could be finished in a single round-trip

time, i.e., the potential performance improvements could be huge. Since GPRS is

a network technology with particularly high round-trip times, it can be expected

that Quick-Start is useful when used over GPRS links. Because the Quick-Start

is intended to deliver information about the bottleneck on the connection path, it

needs to be processed by every router. The related challenges in such mechanisms

are extensively discussed in Chapter 6.

In addition to Quick-Start and other explicit mechanisms to resolve the path

capacity mentioned in Section 1.3, there are mechanisms to gain a higher ini-

tial sending rate without requiring specific support from routers. For example,

SwiftStart [126] would use the first packets sent during slow start to estimate the

bottleneck bandwidth, and then use that estimate as the basis for a rapid increase

of the congestion window. There are also proposals for sharing information about

network conditions between connections, ranging from TCP Fast Start [124] to

the Congestion Manager [15], which would allow a new connections to start with

a larger congestion window, based on the assessment of the network path con-

ducted by previous connections. Recently, Re-Feedback has been proposed as a

mechanism to control congestion response using explicit interaction with the net-

work [31]. Re-Feedback can be applied, for example, by extending the use of the

Explicit Congestion Notification bits.

2.5 Summary

This chapter outlined the problem area we are focusing on in this work. We dis-

cussed the recent evolution of the wireless communication systems. Within a little

more than a decade the variety of different wireless communication technologies

has increased tremendously, and the range of possible wireless link bandwidths

used by a single device can vary from few tens of kilobits per second to few tens

of megabits per second. Also the other link characteristics, such as the propagation

delay vary significantly between different link technologies. The large variance in
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network characteristics makes efficient networking at upper layer protocols diffi-

cult, especially with TCP that is based on measurement-based evaluation of the

communication path characteristics.

We discussed the basic TCP algorithms and a number of performance enhance-

ments made on TCP during its lifetime to fix the performance problems it was

known to have under certain link behavior, and discussed a specific problem we

are addressing in our work: spurious retransmission timeouts caused by an unex-

pected delay spike in link behavior, that are known to occur in GPRS networks.

We showed that the delay spikes have a severe effect on TCP performance, they

cause unnecessary retransmissions of several TCP segments, and hamper the TCP

congestion control behavior. Finally we discussed another problem related to TCP

congestion control behavior, the slow startup of a connection on high delay links,

and slow convergence times to sudden changes in link characteristics and discuss

the different types of explicit communication mechanisms that could be used to

enhance the congestion control performance with better knowledge of the com-

munication path characteristics. Later in this thesis we investigate one such mech-

anism, Quick-Start, in more detail.
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CHAPTER 3

Congestion Control in Linux TCP

This chapter describes the Linux TCP implementation used in many of the ex-

periments conducted in this dissertation. Linux is a freely available Unix-like

operating system that has gained popularity in the last years. The Linux source

code is publicly available1, which makes Linux an attractive tool for the com-

puter scientists in various research areas. Therefore, a large number of people

have contributed to Linux development during its lifetime. In this chapter we de-

scribe the design solutions selected in the TCP implementation of the Linux kernel

version 2.4. Linux TCP implements many of the RFC specifications in a single

congestion control engine, using common code for supporting both SACK TCP

and NewReno TCP. The Linux implementation also contains features that differ

from the RFCs or other TCP implementations used today, and we believe that

the protocol designers working with TCP find this information useful considering

their work.

Building up a single consistent protocol implementation that conforms to the

different RFCs is not a straightforward task. For example, the TCP congestion

control specification [11] gives a detailed description of the basic congestion con-

trol algorithm, making it easier for the implementer to apply it. However, if the

TCP implementation supports SACK TCP [117], it needs to follow congestion

control specifications that use a partially different set of concepts and variables

than those given in the standard congestion control RFC [51, 23]. Therefore,

strictly following the algorithms used in the specifications makes an implementa-

tion unnecessarily complicated, as usually several RFCs are implemented at the

same time.

This chapter is organized as follows. In Section 3.1 we discuss some aspects in

1The Linux kernel source can be obtained from http://www.kernel.org/.
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the IETF specifications that were considered unsatisfying by the Linux commu-

nity and implemented differently. In Section 3.2 we introduce the main concepts

of the Linux TCP congestion control engine and describe the main algorithms

governing the packet retransmission logic. In Section 3.3 we describe a num-

ber of Linux-specific features, for example concerning the retransmission timer

calculation. In Section 3.4 we discuss how Linux TCP conforms to the IETF

specifications related to TCP congestion control, and in Section 3.5 we illustrate

the performance effects of selected Linux-specific design solutions. Section 3.6

summarizes this chapter.

3.1 Why Linux differs from standards?

Some details in the IETF specifications are problematic in practice. Although

many of the RFCs suggest a general algorithm that could be applied to an im-

plementation, combining the algorithms from several RFCs may be inconvenient.

For example, combining the congestion control requirements for SACK TCP and

NewReno TCP can be problematic due to different variables and algorithms used

in the specifications.

The TCP congestion control specification artificially increases the congestion

window during the fast recovery in order to let out forward transmissions that

maintain a steady packet flow to the network and keep the ACK clock operational.

Therefore, during fast recovery the congestion window size does not actually re-

flect the number of segments allowed to be outstanding in the network. When

fast recovery is over, the congestion window is deflated back to a proper size.

This procedure is needed because the congestion window is traditionally evalu-

ated against the difference of the highest data segment transmitted (SND.NXT)

and the first unacknowledged segment (SND.UNA). By taking a more flexible

method for evaluating the number of outstanding segments, the congestion win-

dow size can be constantly maintained at an appropriate level that corresponds to

the network capacity.

Adjusting the congestion window consistently becomes important when SACK

information is used by the TCP sender. By using the selective acknowledgements,

the sender can determine the number of outstanding packets in the network with

a better accuracy than by just using the cumulative acknowledgements. In order

to make a coherent implementation of the congestion control algorithms, it is

desirable to have common variables and routines both for SACK TCP and for the

TCP variant that is used when the other end does not support SACK.

Finally, the details of the retransmission timeout (RTO) calculation algorithm

described in Chapter 2 have been questioned [114]. Because many networks have
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round-trip delays of a few tens of milliseconds or less, the RTO algorithm details

may not have a significant effect on TCP performance, since the minimum RTO

value is limited to one second [127]. However, for high-delay network environ-

ments, such as GPRS, the effectiveness of the RTO calculation is important. It

has been pointed out that the RTO estimator results in overly large values due to

the weight given to variance of the round-trip time in the algorithm [114]. This

may cause problems when the round-trip time suddenly drops for some reason.

On the other hand, when the congestion window size increases at a steady pace

during the slow start, it is possible that the RTO estimator is not increased fast

enough due to small variance in the round-trip times. This may result in spurious

retransmission timeouts. Alternative RTO estimators, such as the Eifel Retrans-

mission Timer [114], have been suggested to overcome the potential problems in

the standard RTO algorithm. Although the Eifel Retransmission Timer is efficient

in avoiding the problems of the standard RTO algorithm, it introduces a rather

complex set of equations compared to the standard RTO calculation. Therefore,

evaluating the possible side effects of different network scenarios on Eifel RTT

behavior is difficult.

3.2 The Linux Approach

Although Linux conforms to the TCP congestion control principles, it takes a

different approach in carrying out the congestion control. Instead of comparing

the congestion window to the difference of SND.NXT and SND.UNA, the Linux

TCP sender determines the number of TCP segments currently outstanding in the

network. When making decisions on how many segments to transmit, the Linux

TCP sender compares the current number of outstanding segments to the con-

gestion window that gives the maximum number of packets that are allowed to

be in the network at a time. Unlike the Linux implementation, the TCP specifi-

cations and some implementations compare cwnd to the number of transmitted

octets. This results in different behavior if segments are smaller than allowed by

the Maximum Segment Size (MSS): if the implementation uses a byte-based con-

gestion window, it allows several small segments to be injected into the network

for each MSS-sized segment in the congestion window. Linux, on the other hand,

allows only a given number of packets to be in the network, no matter how small

they are. Therefore, the Linux congestion control is more conservative compared

to the byte-based approach when the TCP payload consists of small segments.

The Linux TCP sender uses the same set of variables and functions for de-

termining the number of outstanding packets with the NewReno recovery and
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with the two flavors of SACK recovery supported. When the SACK informa-

tion is available, the sender can either follow the Forward Acknowledgements

(FACK) [116] approach, or a more conservative approach that better conforms

to the principles of the SACK recovery algorithm specified in the IETF standards

track documentation [23]. As a basis for all recovery methods the Linux TCP

sender uses the following equations in defining the number of segments outstand-

ing in the network:

left out <- sacked out + lost out

in flight <- packets out - left out + retrans out

In the equation above, packets out is the number of originally transmit-

ted segments above SND.UNA, sacked out is the number of segments ac-

knowledged by SACK blocks, lost out is an estimation of the number of seg-

ments lost in the network, and retrans out is the number of retransmitted

segments. Determining the lost out variable depends on the selected recovery

method. For example, when FACK is in use, all unacknowledged segments be-

tween the highest SACK block and the cumulative acknowledgement are counted

in lost out. The selected approach makes it easy to add new heuristics for

evaluating which segments are lost.

If the SACK option is not available, the Linux TCP sender increases

sacked out by one for each incoming duplicate acknowledgement. This is

in conformance with the TCP congestion control specification, and the resulting

behavior is similar to the NewReno algorithm with its forward transmissions. The

design chosen in Linux does not require artificial inflation of the congestion win-

dow, but cwnd holds the valid number of segments allowed to be outstanding in

the network throughout the fast recovery.

The counters used for tracking the number of outstanding, acknowledged, lost,

or retransmitted packets require additional data structures to support them. The

Linux sender maintains the state of each outstanding segment in a scoreboard,

where it marks the known state of the segment. The segment can be marked as

outstanding, acknowledged, retransmitted, or lost. Combinations of these bits are

also possible. For example, a segment can be declared lost and retransmitted, in

which case the sender is expecting to get an acknowledgement for the retransmis-

sion. Using this information the Linux sender knows which segments need to be

retransmitted, and how to adjust the counters used for determining in flight
when a new acknowledgement arrives. The scoreboard also plays an important

role when determining whether a segment has been incorrectly assumed lost, for

example due to packet reordering.

The scoreboard markings and the counters used for determining the

in flight variable should be in consistent state at all times. Markings for out-
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standing, acknowledged and retransmitted segments are straightforward to main-

tain, but the decision to place a lost mark depends on the recovery method used.

With the NewReno recovery, the first unacknowledged packet is marked lost when

the sender enters the fast recovery. In practice, this corresponds to the fast retrans-

mit of the IETF congestion control specifications [11]. Furthermore, when a par-

tial ACK not acknowledging all the data outstanding at the beginning of the fast

recovery arrives, the first unacknowledged segment is marked lost. This results in

retransmission of the next unacknowledged segment, as the NewReno specifica-

tion requires [57].

When SACK is used, more than one segment can be marked lost at a time. With

the conservative approach, the TCP sender does not count the holes between the

acknowledged blocks in lost out, but when FACK is enabled, the sender marks

the holes between the SACK blocks lost as soon as they appear. The lost out
counter is adjusted appropriately.

The Linux TCP sender is governed by a state machine that determines the

sender actions when acknowledgements arrive. The states are as follows:

• Open. This is the normal state in which the TCP sender follows the fast

path of execution optimized for the common case, when processing the in-

coming acknowledgements. When an acknowledgement arrives, the sender

increases the congestion window following either slow-start or congestion

avoidance algorithms, depending on whether the congestion window is

smaller or larger than the slow-start threshold, respectively.

• Disorder. When the sender detects duplicate acknowledgements or selec-

tive acknowledgements, it moves to the Disorder state. In this state the

congestion window is not adjusted, but each incoming packet triggers trans-

mission of a new segment. Therefore, the TCP sender follows the packet

conservation principle [81], which requires that a new packet is not sent out

until an old packet has left the network. In practice the behavior in this state

is similar to the limited transmit specification by the IETF [7], which was

suggested to allow more efficient recovery when the congestion window is

small, or when a large number of segments are lost in the last window of

transmission. Limited transmit allows fast retransmit in these situations,

avoiding retransmission timeout that might be needed if limited transmit

was not in use.

• CWR. The TCP sender may receive congestion notifications either by Ex-

plicit Congestion Notification [136], ICMP source quench [131], or from

a local device. When receiving a congestion notification, the Linux sender

does not reduce the congestion window at once, but by one segment for
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every second incoming ACK until the window size is halved. When the

sender is in the process of reducing the congestion window size and it does

not have outstanding retransmissions, it is in CWR (Congestion Window Re-

duced) state. CWR state can be interrupted by the Recovery or Loss states

described below.

• Recovery. After a sufficient number of successive duplicate ACKs arrive at

the sender, it retransmits the first unacknowledged segment and enters the

Recovery state. By default, the threshold for entering the Recovery state is

three successive duplicate ACKs, a value recommended by the TCP conges-

tion control specification. During the Recovery state, the congestion win-

dow size is reduced by one segment for every second incoming acknowl-

edgement, similarly to the CWR state. The window reduction ends when

the congestion window size is equal to ssthresh, i.e. half of the window size

when entering the Recovery state. The congestion window is not increased

during the recovery state, and the sender either retransmits the segments

marked lost, or makes forward transmissions on new data according to the

packet conservation principle. The sender stays in the Recovery state until

all of the segments outstanding when the Recovery state was entered are

successfully acknowledged. After this the sender goes back to the Open

state. A retransmission timeout can also interrupt the Recovery state.

• Loss. When an RTO expires, the sender enters the Loss state. All outstand-

ing segments are marked lost, and the congestion window is set to one seg-

ment. Therefore the sender starts increasing the congestion window using

the slow start algorithm. A major difference between the Loss and Recov-

ery states is that in the Loss state the congestion window can be increased

according to the congestion control rules after the sender has reset it to one

segment, but in the Recovery state the congestion window size can only be

reduced. The Loss state cannot be interrupted by any other state, and the

sender exits to the Open state only after all data outstanding when the Loss

state began have successfully been acknowledged. For example, fast re-

transmit cannot be triggered during the Loss state, which is in conformance

with the NewReno specification.

Linux TCP avoids explicit calls to transmit a packet in any of the above-

mentioned states, for example, regarding the fast retransmit. The current conges-

tion control state determines how the congestion window is adjusted, and whether

the sender considers the unacknowledged segments lost. After the TCP sender has

processed an incoming acknowledgement according to its current state, it trans-

mits a maximum of (cwnd − in flight) segments to the network. The sender
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first retransmits earlier segments marked lost and not yet retransmitted, or new

data segments if there are no lost segments waiting for retransmission.

There are occasions where the number of outstanding segments decreases sud-

denly by several segments in the TCP bookkeeping. For example, after a loss

or reordering of TCP acknowledgments, the next incoming acknowledgment may

cover several segments. These situations would cause bursts of data to be trans-

mitted into the network, unless they are taken into account in the TCP sender

implementation. The prevalence and impact of micro-bursts, i.e. bursts caused by

a single event such as ACK losses, are evaluated in [22]. The Linux TCP sender

avoids the micro-bursts by limiting the congestion window to allow at most three

segments to be transmitted for an incoming ACK. This is similar to the Use It or

Lose It algorithm described in [8]. Since burst avoidance may cause reduction

of the congestion window size below the slow start threshold, it is possible that

the sender enters slow start after several segments have been acknowledged by a

single ACK.

When a TCP connection is established, many of the TCP variables need to

be initialized with some fixed values. In order to improve the communication

efficiency at the beginning of the connection, after each connection the Linux

TCP sender stores in its destination cache the slow start threshold, the variables

used for the RTO estimation, and a variable that tracks the observed magnitude of

packet reordering on the connection path. If another connection is established to

the same destination, the cached values can be used to get initial values that are

more likely to be adequate for the new TCP connection. TCP Control Block In-

terdependence [161] and the Congestion Manager [14, 15] are other mechanisms

that have been proposed for reusing the past congestion control data in new TCP

connections. A possible disadvantage in this scheme is that if the network condi-

tions between the sender and the receiver change for some reason, the values in

the destination cache might get outdated.

3.3 Features

We now list the most important Linux TCP features that may differ from a typ-

ical TCP implementation. Linux implements a number of TCP enhancements

proposed recently by IETF, such as Explicit Congestion Notification [136] and

DSACK [61]. To our knowledge, Linux was among the first systems to implement

these features.
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3.3.1 Retransmission timer calculation

Some TCP implementations use a coarse-grained retransmission timer, having

granularities up to 500 ms. The round-trip time samples are often measured once

in a round-trip time. In addition, the present retransmission timer specification re-

quires that the RTO timer should not be less than one second [127]. Considering

that most of the present networks provide round-trip times of less than 500 ms,

studying the feasibility of the traditional retransmission timer algorithm standard-

ized by the IETF has not excited much interest.

Linux TCP has a retransmission timer granularity of 10 ms and the sender takes

a round-trip time sample for each segment2. Therefore it is capable of achieving

more accurate estimations for the retransmission timer, if the assumptions in the

timer algorithm are correct. Like many other implementations, Linux TCP devi-

ates from the IETF specification by allowing a minimum limit of 200 ms for the

RTO. Because of the finer timer granularity and the smaller minimum limit for

the RTO timer, the correctness of the algorithm for determining the RTO is more

important than with a coarse-grain timer. The traditional algorithm for retransmis-

sion timeout computation has been found to be problematic in some networking

environments [114]. This is especially true if a fine-grained timer is used and the

round-trip time samples are taken for each segment.

In Section 3.1 we described two problems regarding the standard RTO algo-

rithm. First, when the round-trip time decreases suddenly, RTT variance increases

momentarily and causes the RTO value to be overestimated. Second, the RTT

variance can decay to a small value when RTT samples are taken for every seg-

ment while the window is large. This increases the risk for spurious RTOs that

result in unnecessary retransmissions.

The Linux RTO estimator attacks the first problem by giving less weight for

the mean deviance (MDEV) when the measured RTT decreases significantly below

the smoothed average. A separate MDEV variable is used to calculate the final

RTTVAR of the original algorithm as described below. The reduced weight given

for the MDEV sample is based on the multipliers used in the standard RTO algo-

rithm. First, the MDEV sample is weighed by 1
8 , corresponding to the multiplier

used for the recent RTT measurement in the SRTT equation given in Section 2.2.1.

Second, MDEV is further multiplied by 1
4 corresponding to the weight of 4 given

for the RTTVAR in the standard RTO algorithm. Therefore, choosing the weight

of 1
32 for the current MDEV neutralizes the effect of the sudden change of the mea-

sured RTT on the RTO estimator, and assures that RTO holds a steady value when

2Due to retransmission ambiguity, RTTs for retransmissions are not measured unless the TCP

timestamps option is in use.
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the measured RTT drops suddenly. This avoids the unwanted peak in the RTO es-

timator value, while maintaining a conservative behavior. If the round-trip times

stay at the reduced level for the next measurements, the RTO estimator starts to

decrease slowly to a lower value. In summary, the equation for calculating the

MDEV is the following:

if (R < SRTT and |SRTT - R| > MDEV) {

MDEV <- 31

32
∗MDEV + 1

32
∗ |SRTT −R|

} else {

MDEV <- 3

4
∗MDEV + 1

4
∗ |SRTT −R|

}

where R is the recent round-trip time measurement, and SRTT is the smoothed

average round-trip time. Linux does not directly modify the RTTVAR variable,

but makes the adjustments first on the MDEV variable which is used in adjusting

the RTTVAR that determines the RTO. The SRTT and RTO estimator variables are

set according to the standard specification.

A separate MDEV variable is needed, because the Linux TCP sender allows de-

creasing the RTTVAR variable only once in a round-trip time. However, RTTVAR
is increased immediately when MDEV gives a higher estimate, thus RTTVAR is the

maximum of the MDEV estimates during the last round-trip time. The purpose of

this solution is to avoid the problem of underestimated RTOs due to low round-trip

time variance, which was the second of the problems described earlier.

Linux TCP supports the TCP Timestamp option [25] that allows accurate round-

trip time measurement also for retransmitted segments, which is not possible with-

out using timestamps. Having a proper algorithm for RTO calculation is even

more important with the timestamp option. According to our experiments, the

algorithm proposed above gives reasonable RTO estimates also with TCP times-

tamps, and avoids the pitfalls of the standard algorithm.

Figure 3.1 illustrates the above-mentioned differences of the standard RTO

calculation and the Linux algorithm. The figure shows an arbitrarily generated

sequence of round-trip time measurements (mrtt), simulated results of the output

of the standard algorithm (RFC 2988) with the given round-trip times, and the

corresponding output of the Linux algorithm. It is worth noting that, to illustrate

the differences of the two algorithms, in this graph no minimum limit is applied to

the retransmission timeout length. Neither is the timer granularity limited in this

simulated scenario in any way. The figure shows how the Linux timer estimate

decays slower than the standard algorithm. Furthermore, with small variation in

round-trip times the standard algorithm causes the RTO estimate to approach very

close to the round-trip times, which increases the risk of spurious retransmission
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timeouts. The figure also shows how a sudden reduction of the measured round-

trip times causes a momentary increase of the RTO in the standard algorithm, but

not in the Linux variant, while Linux RTO estimator values increase as quickly

as with the standard estimator, when round-trip times increase again. While the

sequence of round-trip times may seem arbitrary (which they are, in this case),

for example in the context of vertical hand-offs discussed more in Chapter 7, this

kind of sudden changes in round-trip times are possible.
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Figure 3.1: Comparison of standard RTO calculation and the Linux algorithm.

The retransmission timer is reset every time an acknowledgement advancing

the window arrives at the sender. The retransmission timer is also reset when the

sender enters the Recovery state and retransmits the first segment. During the rest

of the Recovery state the retransmission timer is not reset, but a packet is marked

lost, if more than an RTO’s worth of time has passed from the first transmission

of the same segment. This allows more efficient retransmission of packets during

the Recovery state even though the information from acknowledgements is not

sufficient enough to declare the packet lost. However, this method can only be

used for segments not yet retransmitted.

3.3.2 Undoing congestion window adjustments

Because the currently used mechanisms in the Internet do not provide explicit

loss information to the TCP sender, it needs to speculate when keeping track of
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which packets are lost in the network. For example, reordering is often a problem

for the TCP sender because it cannot distinguish whether the missing ACKs are

caused by a packet loss or by a delayed packet that will arrive later. The Linux

TCP sender can, however, detect unnecessary congestion window adjustments

afterwards, and do the necessary corrections in the congestion control parameters.

For this purpose, when entering the Recovery or Loss states, the Linux TCP sender

stores the old ssthresh value prior to adjusting it.

A delayed segment can trigger an unnecessary retransmission, either by caus-

ing a spurious retransmission timeout or by causing packet reordering. The Linux

TCP sender has mainly two methods for detecting afterwards that it unnecessar-

ily retransmitted the segment. First, the receiver can inform by a Duplicate-SACK

(DSACK) that the incoming segment was already received. If all segments retrans-

mitted during the last recovery period are acknowledged by DSACK, the sender

knows that the recovery period was unnecessarily triggered. Second, the Linux

TCP sender can detect unnecessary retransmissions by using the TCP timestamp

option [25] attached to each TCP header. When this option is in use, the TCP

receiver echoes the timestamp of the segment that triggered the acknowledge-

ment back to the sender, allowing the TCP sender to conclude whether the ACK

was triggered by the original or by the retransmitted segment. The Eifel algo-

rithm [111] uses a similar method for detecting spurious retransmissions.

When an unnecessary retransmission is detected by using TCP timestamps, the

logic for undoing the congestion window adjustments is simple. If the sender is

in the Loss state, i.e., it is retransmitting after an RTO which was triggered unnec-

essarily, the lost mark is removed from all segments in the scoreboard, causing

the sender to continue with transmitting new data instead of retransmissions. In

addition, cwnd is set to the maximum of its present value and ssthresh * 2,

and the ssthresh is set to its prior value stored earlier. Since ssthresh was

set to half of the number of outstanding segments when the packet loss is detected,

the effect is to continue in congestion avoidance at a similar rate as when the Loss

state was entered.

Unnecessary retransmission can also be detected by the TCP timestamps while

the sender is in the Recovery state. In this case the Recovery state is finished nor-

mally, with the exception that the congestion window is increased to the maximum

of its present value and ssthresh * 2, and ssthresh is set to its prior value.

In addition, when a partial ACK for the unnecessary retransmission arrives, the

sender does not mark the next unacknowledged segment lost, but continues ac-

cording to present scoreboard markings, possibly transmitting new data.

In order to use DSACK for undoing the congestion control parameters, the

TCP sender tracks the number of retransmissions that have to be declared unneces-
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sary before reverting the congestion control parameters. When the sender detects

a DSACK block, it reduces the number of revertable outstanding retransmissions

by one. If the DSACK blocks eventually acknowledge every retransmission in the

last window as unnecessarily made, and the retransmission counter falls to zero

due to DSACKs, the sender increases the congestion window and reverts the last

modification to ssthresh similarly to what was described above.

While handling the unnecessary retransmissions, the Linux TCP sender main-

tains a metric measuring the observed reordering in the network in variable

reordering. This variable is also stored in the destination cache after the

connection is finished. reordering is updated when the Linux sender de-

tects unnecessary retransmission during the Recovery state by TCP timestamps or

DSACK, or when an incoming acknowledgement is for an unacknowledged hole

in the sequence number space below selectively acknowledged sequence num-

bers. In these cases reordering is set to the number of segments between the

highest segment acknowledged and the currently acknowledged segment, in other

words, it corresponds to the maximum distance of reordering in segments detected

in the network. Additionally, if FACK was in use when reordering was detected,

the sender switches to use the conservative variant of SACK, which is not too

aggressive in a network involving reordering.

3.3.3 Delayed acknowledgements

The TCP specifications state that the TCP receiver should delay the acknowledge-

ments for a maximum time of 500 ms in order to reduce the number of acknowl-

edgements generated by the receiver. The specifications do not mandate any spe-

cific delay time, but many implementations use a static delay of 200 ms for this

purpose. However, a fixed delay time may not be adequate in all networking en-

vironments with different properties. Thus, the Linux TCP receiver adjusts the

timer for delaying acknowledgements dynamically according to the packet inter-

arrival time, trying to estimate the time it takes to receive the next two segments,

while sending acknowledgements for at least every second incoming segment. A

similar approach was also suggested in an early RFC by Clark [38]. However, the

maximum delay for sending an acknowledgement is limited to 200 ms.

Using delayed ACKs slows down the TCP sender, because it increases the con-

gestion window size based on the rate of incoming acknowledgements. In order

to speed up the transmission in the beginning of the slow start, the Linux TCP

receiver refrains from delaying the acknowledgements for the first incoming seg-

ments at the beginning of the connection. This is called quick acknowledgements.

The number of quick acknowledgements sent by the Linux TCP receiver is at

most half of the number of segments required to reach the receiver’s advertised
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window limit. Therefore, using quick acknowledgements does not open the op-

portunity for the Silly Window Syndrome [38] to occur. In addition, the Linux

receiver monitors whether the traffic appears to be bidirectional, in which case it

disables the quick acknowledgements mechanism. This is done to avoid transmit-

ting pure acknowledgements unnecessarily when they can be piggybacked with

data segments.

3.3.4 Congestion Window Validation

The Linux sender reduces the congestion window size if it has not been fully used

for one RTO estimate’s worth of time. This scheme is similar to the Congestion

Window Validation documented in an Experimental RFC 2861 [67]. The moti-

vation for Congestion Window Validation is that if the congestion window is not

fully used, the TCP sender may have an invalid estimate of the present network

conditions. Therefore, a network-friendly sender should reduce the congestion

window as a precaution.

When the Congestion Window Validation is triggered, the TCP sender de-

creases the congestion window to halfway between the actually used window and

the present congestion window. Before doing this, ssthresh is set to the max-

imum of its current value and 3
4 of the congestion window, as suggested in RFC

2861.

3.3.5 Explicit Congestion Notification

Linux implements Explicit Congestion Notification (ECN) [136] to allow the ECN-

capable congested routers to report congestion before dropping packets. A con-

gested router can mark a bit in the IP header, which is then echoed to the TCP

sender by an ECN-capable TCP receiver. When the TCP sender gets the conges-

tion signal, it enters the CWR state, in which it gradually decreases the congestion

window to half of its current size at the rate of one segment for two incoming

acknowledgements. Besides making it possible for the TCP sender to avoid some

of the congestion losses, ECN is expected to improve the network performance

when it is more widely deployed to the Internet routers.

3.4 Conformance to the IETF Specifications

Since Linux combines the features specified in different IETF specifications fol-

lowing certain design principles described earlier, some IETF specifications are

not fully implemented according to the algorithms given in the RFCs. Table 3.1
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Table 3.1: TCP congestion control related IETF specifications implemented in

Linux. + = implemented, * = implemented, but details differ from specification.

Specification Status

RFC 1323 (Perf. Extensions) +

RFC 2018 (SACK) +

RFC 2140 (Ctrl block sharing) +

RFC 2581 (Congestion control) *

RFC 2582 (NewReno) *

RFC 2861 (Cwnd validation) +

RFC 2883 (DSACK) +

RFC 2988 (RTO) *

RFC 3042 (Lim. xmit) +

RFC 3168 (ECN) *

shows which RFC specifications related to TCP congestion control are imple-

mented in Linux3. Some of the features shown in the table can be found in Linux,

but they do not fully follow the given specification in all details. These features are

marked with an asterisk in the table, and we will explain the differences between

Linux and the corresponding RFC in more detail below.

Linux fast recovery does not fully follow the behavior given in RFC 2582.

First, the sender dynamically adjusts the threshold for triggering fast retransmit,

based on the observed reordering in the network. Therefore, it is possible that the

third duplicate ACK does not trigger a fast retransmit in all situations. Second,

the Linux sender does not artificially adjust the congestion window during fast

recovery, but maintains its size while adjusting the in flight estimator based

on incoming acknowledgements. The different approach alone would not cause

a significant effect on TCP performance, but when entering the fast recovery, the

Linux sender does not reduce the congestion window size at once, as RFC 2582

suggests. Instead, the sender decreases the congestion window size gradually,

by one segment per two incoming acknowledgements, until the congestion win-

dow meets half of its original value. This approach was originally suggested by

Hoe [71], and later it was named Rate-halving by an expired Internet Draft by

Mathis, et. al. Rate-halving avoids pauses in transmission, but is slightly too ag-

3After this analysis was conducted some new RFCs have been published for features imple-

mented in Linux. Also the Linux TCP behavior might have changed in the latest versions. These

are not shown in the table. For example RFC 4138 specifying the F-RTO algorithm is one such

RFC.
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gressive after the congestion notification, until the congestion window has reached

a proper size.

As described in Section 3.3, the round-trip time estimator and RTO calculation

in Linux differs from the Proposed Standard specification by the IETF. Linux

follows the basic patterns given in RFC 2988, but the implementation differs

from the specification in adjusting the RTTVAR. A significant difference between

RFC 2988 and Linux implementation is that Linux uses the minimum RTO limit

of 200 ms instead of 1000 ms given in RFC 2988.

RFC 2018 defines the format and basic usage of the SACK blocks, but does not

give detailed specification of the congestion control algorithm that should be used

with SACK. FACK is the default congestion control algorithm applied when the

SACK option is in use. However, since FACK results in overly aggressive behav-

ior when packets have been reordered in the network, the Linux sender changes

from FACK to a more conservative congestion control algorithm when it detects

reordering. The SACK recovery algorithm specified by the IETF [23] is similar

to the conservative SACK alternative in Linux. Furthermore, Linux follows the

DSACK basics given in RFC 2883.

Linux implements RFC 1323, which defines the TCP timestamp and win-

dow scaling options, and the limited transmit enhancement defined in RFC 3042,

which is taken care of by the Disorder state of the Linux TCP state machine.

However, if the reordering estimator has been increased from the default of

three segments, the Linux TCP sender transmits a new segment for each incoming

acknowledgement, not only for the two first ACKs. Finally, the Linux destination

cache provides functionality similar to the RFC 2140 that proposes Control Block

Interdependence between the TCP connections.

3.5 Performance Issues

We now illustrate the behavior of the selected Linux TCP features by a few simple

test cases, and discuss the potential performance effect of these features. We il-

lustrate the implications of using quick acknowledgements, rate-halving, and con-

gestion window reversion. We do this by disabling these features, and comparing

the time-sequence diagrams of a pure Linux TCP implementation and an imple-

mentation with the corresponding feature disabled. We use Linux hosts as con-

nection endpoints communicating over a 256 Kbps link with MTU of 1500 bytes.

Between the sender and the 256 Kbps link there is a tail-drop router with buffer

space for seven packets, connected to the sender with a high-bandwidth link with

small latency. We have chosen a simple experimentation setup to illustrate the

functionality of the TCP enhancements, without trying to build a detailed model
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of any real network setup. However, our parameter setup is roughly similar to the

characteristics of a modern wireless link technology, with a buffer size chosen to

match the link’s bandwidth-delay product, to keep the bottleneck link utilized also

on periods of disruption in data transfer. The test setup is illustrated in Figure 3.2.

In addition to the low bandwidth, the link between the router and TCP receiver

has a fairly high propagation delay of 200 ms. The slow link and the router are

emulated using the Seawind real-time network emulator [100]. With the network

emulator we can control the link and the network parameters and collect statistics

and log about the network behavior to help the analysis.

TCP sink TCP senderRouter

100 Mbps256 Kbps

200 ms 1 ms

Figure 3.2: Test setup.

We first illustrate the effect of quick acknowledgements on TCP throughput.

Figure 3.3(a) on page 53 shows the slow start performance of unmodified Linux

implementing quick acknowledgements, and Figure 3.3(b) shows the performance

of an implementation with the quick acknowledgements mechanism disabled. The

latter implementation applies a static delay of 200 ms for every acknowledgement,

but transmits an acknowledgement immediately if more than one full-sized seg-

ment’s worth of unacknowledged data has arrived. One can see that when the

link has a high bandwidth-delay product like in our case, the benefit of quick ac-

knowledgements is noticeable. The unmodified Linux sender has transmitted 50

KB in 2 seconds, but when the quick acknowledgments are disabled, it takes 2.5

seconds for the sender to transmit 50 KB. In our example, the unmodified Linux

receiver with quick acknowledgements enabled sent 109 ACK packets, and the

implementation without quick acknowledgements sent 95 ACK packets. Because

quick acknowledgements cause more ACKs to be generated in the network than

when using the conventional delayed ACKs, the sender’s congestion window in-

creases slightly faster. Although this improves the TCP performance, it makes the

network slightly more prone to congestion.

Rate-halving is expected to result in a similar average transmission rate as

the conventional TCP fast recovery, but it paces the transmission of segments

smoothly by making the TCP sender reduce its congestion window steadily in-

stead of making a sudden adjustment. Figure 3.4(a) illustrates the performance of

an unmodified Linux TCP implementing rate-halving, and Figure 3.4(b) illustrates

the performance of an implementation with the conventional fast recovery behav-

ior. These figures also illustrate the receiver’s advertised window (the uppermost
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line), since it limits the fast recovery in our example.

The scenario is the same in both figures: the router buffer becomes full during

TCP slow-start, and several packets are dropped due to congestion before the

feedback of the first packet loss arrives at the sender. The packet losses at the

bottleneck link due to initial slow start is called slow start overshoot [41]. The

figures show that after 12 seconds both TCP variants have transmitted 160 KB.

However, the behavior of the unmodified Linux TCP is different from the TCP

with rate-halving disabled. With the conventional fast recovery, the TCP sender

stops sending new data until the number of outstanding segments has dropped to

half of the original amount, but the sender with the rate-halving algorithm lets

the number of outstanding segments reduce steadily, with the rate of one segment

for two incoming acknowledgements. Both variants suffer from the advertised

window limitation, which does not allow the sender to transmit new data, even

though the congestion window would.

Finally, we show how the timestamp-based undoing similar to the Eifel algo-

rithm [111] affects TCP performance. We generated a three-second delay, which

is long enough to trigger a retransmission timeout at the TCP sender. Figure 3.5(a)

shows a TCP implementation with the TCP timestamp option enabled, and Fig-

ure 3.5(b) shows the same scenario with timestamps disabled. The acknowledge-

ments arrive at the sender in a burst, because during the delay packets queue up in

the emulated link receive buffers and are all released when the delay is over4.

The use of timestamps improves the TCP performance considerably, because

the TCP sender detects that the acknowledgement following the retransmission

was for the original transmission of the segment. Therefore the sender can revert

the ssthresh to its previous value and increase the congestion window. More-

over, the Linux TCP sender avoids unnecessary retransmissions of the segments

in the last window. The ACK burst injected by the receiver after the delay causes

19 new segments to be transmitted by the sender within a short time interval.

However, the sender follows the slow start correctly as clocked by the incoming

acknowledgements, and none of the segments are transmitted unnecessarily. A

potential drawback of fully reverting the congestion control parameters is that it

may create congestion at the bottleneck router. This effect is further emphasized

in our scenario due to the burst of acknowledgments that arrive at the sender after

the spurious timeout.

A conventional TCP sender not implementing the Eifel-style congestion win-

dow reversion retransmits the last window following the first delayed segment

4The delay stands for emulated events on the link layer, for example representing persistent re-

transmissions of erroneous link layer frames. The link receive buffer holds the successfully received

packets until the period of retransmissions is over to be able to deliver them in order to the receiver.
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unnecessarily. Not only does this waste the available bandwidth, but the retrans-

mitted segments appearing as out-of-order data at the receiver trigger several du-

plicate acknowledgments. However, since the TCP sender is still in the Loss state,

the duplicate ACKs do not cause further retransmissions5 . One can see that the

conventional TCP sender without timestamps has received acknowledgements for

165 KB of data in the 10 seconds after the transmission begun, while the Linux

sender implementing TCP timestamps and congestion window reverting has re-

ceived acknowledgements for 175 KB of data. The Linux TCP sender having

TCP timestamps enabled retransmitted 22.6 KB in 16 packets, but the Linux TCP

sender without timestamps retransmitted 37.1 KB in 26 packets in the test case

transmitting a total of 200 KB. The link scenario was the same in both test runs,

having a 3-second delay in the middle of transmission. When the TCP timestamps

were not used, the TCP sender retransmitted 11 packets unnecessarily.

3.6 Summary

This chapter presented the basic ideas of the Linux TCP implementation, and

gave a description of the details that differ from a typical TCP implementation.

Linux implements many of the recent TCP enhancements suggested by the IETF.

Therefore Linux provides a platform for testing the interoperability of the recent

enhancements in an actual network. The current design also makes it easy to

implement and study alternative congestion control policies.

The Linux TCP behavior is strongly governed by the packet conservation prin-

ciple and the sender’s estimate of which packets are still in the network, which

are acknowledged, and which are declared lost. Whether to retransmit or transmit

new data depends on the markings made in the TCP scoreboard. In most of the

cases none of the requirements given by the IETF are violated, although in some

situations the detailed behavior may be different from what is given in the IETF

specifications. However, the TCP essentials, in particular the congestion control

principles and the conservation of packets, are maintained in all cases.

The Linux TCP implementation has been under much discussion and contro-

versy for example in the IETF because of the certain special characteristics de-

scribed in this chapter. Therefore we hope that this chapter helps in removing

some of the uncertainty people have about the Linux implementation. We also

hope that the information in this chapter is useful in research that analyzes the

TCP performance using the Linux implementation.

5The behavior is similar to the NewReno “bugfix” [56]
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Figure 3.3: Effect of quick acknowledgements on slow start performance.
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Figure 3.4: Effect of Rate-halving on TCP performance.
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Figure 3.5: Effect of congestion window undoing on TCP performance.
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CHAPTER 4

F-RTO: A Recovery Algorithm for

TCP Retransmission Timeouts

In this chapter we focus on attacking the TCP performance problems resulting

from unnecessary retransmissions that originate from spurious RTOs. A new

RTO recovery algorithm was developed as part of this work, called Forward RTO-

Recovery (F-RTO), to improve the TCP performance after a spurious retransmis-

sion timeout. The F-RTO algorithm uses a set of simple rules for avoiding unnec-

essary retransmissions after a spurious RTO. The F-RTO recovery algorithm does

not require use of any TCP options or additional bits in the TCP header, unlike

the Eifel algorithm [111], for example.

The rest of the chapter is organized as follows. In Section 4.1 we discuss the

TCP behavior after spurious retransmission timeouts, and what is the general idea

of our approach to improve TCP’s behavior on these occasions. In Section 4.2 we

give a detailed definition of the F-RTO algorithm for making forward transmis-

sions after RTO. We continue by giving some examples of the F-RTO algorithm

behavior in different situations involving RTOs in Section 4.3. In Section 4.4 we

describe the experiments made with F-RTO in different network environments and

the results of the experiments. Finally, we wrap up the main observations made in

this chapter in Section 4.5.

4.1 Spurious Retransmission Timeouts

Because wireless networks are often subject to a high packet loss rate due to cor-

ruption or hand-offs, reliable link-layer protocols are widely employed with wire-

less links [113, 50], and some wireless links may be unusable without some link

ARQ mechanism. The link-layer receiver often aims to deliver the packets to the

57
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upper protocol layers in order, which implies that the later arriving packets are

blocked until the head of the queue arrives successfully. Due to the strict link-

layer ordering, the communication end points observe a pause in packet delivery

that can cause a spurious TCP RTO instead of getting out-of-order packets that

could result in a false fast retransmit instead. Either way, interaction between TCP

retransmission mechanisms and link-layer recovery can cause poor performance.

Wireless links may also suffer from link outages that cause persistent data loss

for a period of time. If the link outage lasts long enough, it triggers the TCP

RTO at the sender which then retransmits the unacknowledged TCP segments.

However, if the link layer protocol is highly persistent in its retransmissions, it

is able to deliver the original packets to the TCP receiver once the link outage

is finished. In this case the TCP RTO may also be triggered spuriously. Other

potential reasons for sudden delays that have been reported to trigger spurious

RTOs include a delay due to tedious actions required to complete a hand-off or

re-routing of packets to the new serving access point after the hand-off, arrival of

competing traffic on a shared link with low bandwidth, and a sudden bandwidth

degradation due to reduced resources on a wireless channel [64, 94]. In recent

multi-access wireless terminals the hand-offs from low-latency WLAN link to

high-latency GPRS link can also cause a spurious timeout.

As described in Chapter 2, TCP uses the fast retransmits [11] as the main

mechanism to timely trigger retransmissions after receiving three successive du-

plicate acknowledgements (ACKs). If for a certain time period the TCP sender

does not receive ACKs that acknowledge new data, the TCP retransmission timer

expires as a backoff retransmission mechanism. More specifically, a RTO-triggered

retransmission is needed when a retransmission is lost, or when nearly a whole

window of data is lost, thus making it impossible for the receiver to generate

enough duplicate ACKs for triggering TCP fast retransmit. Under these assump-

tions, retransmitting the unacknowledged segments in slow-start after the RTO is

likely to be the most efficient way of recovering.

In the normal RTO recovery the TCP sender retransmits the first unacknowl-

edged segment, sets the congestion window to one segment and the slow-start

threshold (ssthresh) to half of the number of currently outstanding segments, when

the RTO expires. After this the sender continues in slow-start, increasing the

congestion window by one segment on each ACK that advances the window and

retransmitting the next unacknowledged segments allowed by the congestion win-

dow. However, if no segments were lost but the retransmission timer expires spu-

riously, the segments retransmitted in the slow-start are sent unnecessarily. The

cumulative acknowledgements for the original transmissions appear at the TCP

sender one at a time, triggering further unnecessary retransmissions. In particular,
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this is very costly for slow links. Because there still are segments outstanding in

the network, a false slow start is harmful for the potentially congested network as

it injects extra segments into the network at increasing rate. Particularly, this phe-

nomenon is very possible with the various wireless access network technologies

that are prone to sudden delay spikes. Additionally, the TCP sender unnecessarily

reduces the TCP congestion window to one segment and reduces the slow-start

threshold to half of the currently used TCP window. This, in turn, is costly for

high-bandwidth links as it takes a long time for the sender to reopen the window.

4.2 F-RTO Algorithm

The F-RTO algorithm affects the TCP sender behavior only after a retransmission

timeout, otherwise the behavior is similar to the conventional TCP. Although the

main motivation of the F-RTO algorithm is to recover efficiently from a spurious

RTO, we require it to achieve similar performance with the conventional RTO

recovery in other situations where RTO may occur. Our approach requires mod-

ification only at the TCP sender, while adhering to the TCP congestion control

principles [52, 11]. When the first acknowledgements arrive after retransmitting

the segment for which the RTO expired, the F-RTO sender does not immediately

continue with retransmissions like the conventional RTO recovery does, but it

first checks if the acknowledgements advance the window to determine whether it

needs to retransmit, or whether it can continue sending new data. F-RTO can be

considered somewhat similar to the Limited Transmit algorithm [7], but applied

to the RTO recovery.

The guideline behind F-RTO is that an RTO either indicates a loss, or it is

caused by an excessive delay in packet delivery while there still are outstanding

segments in flight. If the RTO was due to delay, that is, the RTO was spurious,

acknowledgements for non-retransmitted segments sent before the RTO should

arrive at the sender after the RTO occurred. If no such segments arrive, the RTO

is concluded to be non-spurious and the conventional RTO recovery with go-back-

N retransmissions should take place at the TCP sender.

To implement the principle described above, an F-RTO sender acts as follows:

if the first ACK arriving after a RTO-triggered retransmission advances the win-

dow, transmit two new segments instead of continuing retransmissions. If the

second incoming acknowledgement also advances the window, RTO is likely to

be spurious, because the second ACK is triggered by an originally transmitted

segment that has not been retransmitted after the RTO. If the RTO was genuine

and caused by packet loss, the two new segments transmitted after the RTO would
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appear as out-of-order segments at the receiver and trigger duplicate acknowl-

edgements. Therefore, if either one of the two acknowledgements after RTO is a

duplicate ACK, the sender continues retransmissions similarly to the conventional

RTO recovery algorithm.

When the retransmission timer expires, the F-RTO algorithm takes the follow-

ing steps at the TCP sender. In the algorithm description below we use SND.UNA
to indicate the first unacknowledged segment.

1. When the retransmission timer expires, retransmit the segment that trig-

gered the timeout. As required by the TCP congestion control specifica-

tions, the ssthresh is adjusted to half of the number of currently outstanding

segments. However, the congestion window is not yet set to one segment,

but the sender waits for the next two acknowledgements before deciding on

what to do with the congestion window.

2. When the first acknowledgement after RTO arrives at the sender, the sender

chooses the following actions depending on whether the ACK advances the

window or whether it is a duplicate ACK.

(a) If the acknowledgement advances SND.UNA, transmit up to two new

(previously unsent) segments. This is the main point in which the F-

RTO algorithm differs from the conventional way of recovering from

RTO. After transmitting the two new segments, the congestion win-

dow size is set to have the same value as ssthresh. In effect this

reduces the transmission rate of the sender to half of the transmission

rate before the RTO. At this point the TCP sender has transmitted a

total of three segments after the RTO, similarly to the conventional

recovery algorithm. If transmitting two new segments is not possible

due to advertised window limitation, or because there is no more data

to send, the sender may transmit only one segment. If no new data

can be transmitted, the TCP sender follows the conventional RTO re-

covery algorithm and starts retransmitting the unacknowledged data

using slow start.

(b) If the acknowledgement is duplicate ACK, set the congestion window

to one segment and proceed with the conventional RTO recovery. Two

new segments are not transmitted in this case, because the conven-

tional RTO recovery algorithm would not transmit anything at this

point either. Instead, the F-RTO sender continues with slow start and

performs similarly to the conventional TCP sender in retransmitting

the unacknowledged segments. Step 3 of the F-RTO algorithm is not
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entered in this case. A common reason for executing this branch is the

loss of a segment, in which case the segments injected by the sender

before the RTO may still trigger duplicate ACKs that arrive at the

sender after the RTO.

3. When the second acknowledgement after the RTO arrives, either continue

transmitting new data, or start retransmitting with the slow start algorithm,

depending on whether new data was acknowledged.

(a) If the acknowledgement advances SND.UNA, continue transmitting

new data following the congestion avoidance algorithm. Because the

TCP sender has retransmitted only one segment after the RTO, this

acknowledgement indicates that an originally transmitted segment has

arrived at the receiver. This is regarded as a strong indication of a

spurious RTO. However, since the TCP sender cannot surely know at

this point whether the segment that triggered the RTO was actually

lost, adjusting the congestion control parameters after the RTO is the

conservative action. From this point on, the TCP sender continues as

in the normal congestion avoidance.

If this algorithm branch is taken, the TCP sender ignores the

send high variable that indicates the highest sequence number trans-

mitted so far [56]1. The send high variable was proposed as a

“bugfix” for avoiding unnecessary multiple fast retransmits when RTO

expires during fast recovery with NewReno TCP. The problem of

multiple fast retransmits can occur when the TCP sender unnecessar-

ily retransmits segments that have already been received by the TCP

receiver. This can happen, for example, when retransmission time-

out occurs during fast recovery. In this case the sender will receive

duplicate acknowledgements that are not caused by packet loss, but

the out-of-order segments that were unnecessarily transmitted. The

NewReno “bugfix” says that when receiving such duplicate acknowl-

edgements below the send high variable that set after each retrans-

mission timeout to indicate the highest sequence number transmitted

so far, the sender should not enter fast retransmit or fast recovery.

However, when applying the F-RTO, the sender has not retransmit-

ted other segments but the one that triggered RTO at this point, the

1The Standards Track revision of NewReno [57] uses variable name recover instead of

send high, and has included the “bugfix” as part of the standard algorithm. However, we will use

send high in this dissertation.
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problem addressed by the bugfix cannot occur. Therefore, if there are

duplicate ACKs arriving at the sender after the RTO, they are likely to

indicate a packet loss, hence fast retransmit should be used to allow ef-

ficient recovery. Alternatively, if there are not enough duplicate ACKs

arriving at the sender after a packet loss, the retransmission timer ex-

pires another time and the sender enters step 1 of this algorithm to

detect whether the new RTO is spurious.

(b) If the acknowledgement is a duplicate ACK, set the congestion window

to three segments, continue with the slow start algorithm retransmit-

ting unacknowledged segments. The duplicate ACK indicates that at

least one segment other than the segment that triggered RTO is lost

in the last window of data. There is no sufficient evidence that any

of the segments was delayed. Therefore, the sender proceeds with re-

transmissions similarly to the conventional RTO recovery algorithm,

with the send high variable stored when the retransmission timer

expired to avoid unnecessary fast retransmits.

If either one of the two acknowledgements arriving after the RTO is a duplicate

ACK, the algorithm is safe, because it reverts back to the conventional retransmis-

sions and adjusts the congestion window appropriately. However, the validity of

the algorithm when the two first acknowledgements advance SND.UNA is worth

discussing. As described above, this indicates that at least one segment was de-

layed. If the next segments in the window were also delayed, for example being

blocked by the first delayed segment, the algorithm performs as intended, as we

will show in Section 4.3. If the next segments would not have been delayed, they

would have arrived before the delayed segment and triggered duplicate ACKs.

We will discuss the F-RTO behavior under packet reordering in more detail in

Section 4.3.

When algorithm branch (3a) is taken, the sender does not reduce the conges-

tion window to one segment, but halves it to the level of ssthresh. Because

the sender does not enter slow start, it increases the congestion window only once

in a round-trip time after RTO, and therefore is slightly more conservative than

the conventional recovery algorithm. In fact, if the segment that triggered RTO

was not lost, the correct behavior would have been to not decrease the congestion

window at all. If the DSACK option is in use, the sender can detect whether the

retransmission was unnecessary, and revert the last adjustments on the conges-

tion control parameters in such a case. The benefits of using DSACK to detect

unnecessary retransmissions are analyzed in [20]. In general, it is possible to sep-

arate the detection of a spurious RTO from the actions taken as congestion control

response, and employ a different response alternative than what was described
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above. We will discuss some of the suggested response alternatives that could be

applied with F-RTO-based detection in Chapter 5.

An additional condition to the second step of the above-presented algorithm

is that if an ACK acknowledges the whole outstanding window up to the highest

transmitted segment at algorithm branch (2a), the TCP sender should not declare

the RTO spurious, but follow the conventional TCP behavior. A common case of

this is that the RTO was caused due to lost retransmission, and the rest of the win-

dow was successfully delivered to the receiver before the RTO occurred. In this

case the ACK following the RTO acknowledges all of the outstanding window,

and the F-RTO algorithm as described above could end up in algorithm branch

(3a) that is meant to be applied in the case of a spurious RTO. This condition was

left out from the above algorithm, because we apply a conservative response after

a spurious retransmission timeout, and because the Use It or Lose It - type burst

avoidance in Linux ensures that the TCP sender is never more aggressive than it

is in slow-start. Therefore in this case there is no risk of congestion control viola-

tion or performance penalty. However, considering the use of F-RTO as a generic

detection mechanism for spurious RTOs the additional condition given above is

recommended. The algorithm in the IETF specification of F-RTO requires apply-

ing the above condition [144].

Branch (3a) can also be taken in a special case when the RTO retransmission

is lost after a spurious retransmission timeout. Because the acknowledgements

of the original transmissions arrive at the sender, it can continue transmitting new

data without noticing the loss of RTO retransmission. Because any packet loss can

be a sign of congestion, fully undoing the congestion control parameters would be

a violation of the congestion control principles. The same is true also for the Eifel

algorithm, but with DSACK it is possible to notice that the RTO retransmission

did not reach the receiver. Therefore, we consider that reducing the congestion

window to half of its previous size is an adequate action at this point, because a

similar action is taken when the TCP sender enters fast recovery.

4.3 Discussion of F-RTO Behavior in Specific

Scenarios

In this section we discuss the different reasons that may cause the RTO to expire

and study the different scenarios after a retransmission timeout has expired due

to these reasons. We compare the packet traces produced using the conventional

RTO recovery and using F-RTO, and discuss the differences of the two recovery

methods. Selective Acknowledgements (SACK) [117] and limited transmit [7] TCP
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enhancements are used in the examples presented in this section, since SACK can

be considered rather widely deployed today, and limited transmit is a sender-side

modification that can be implemented with F-RTO to further improve the TCP

performance. However, the F-RTO algorithm does not require either of these

enhancements to be present.

4.3.1 Sudden delays

Recovering efficiently from spurious retransmission timeouts is the main motiva-

tion of the F-RTO algorithm. Figure 4.1 compares the packet traces of the con-

ventional RTO recovery and F-RTO. Figure 4.1(a) shows that the conventional

recovery method eventually retransmits the whole window of segments unneces-

sarily, since the acknowledgements of the originally transmitted segments arrive

at the sender after the RTO. When the retransmissions arrive at the receiver, it

generates a duplicate ACK for each arriving retransmission, thus causing an un-

necessary fast retransmit at the TCP sender.

Figure 4.1(b) shows that F-RTO avoids the unnecessary retransmissions fol-

lowing the spurious RTO. The first acknowledgement arriving at the sender af-

ter the RTO advances SND.UNA, and the sender transmits two previously unsent

segments. The second ACK arriving after the RTO acknowledges two originally

transmitted delayed segments, hence the sender continues transmitting new data.

However, since the congestion window was reduced after the RTO, the sender

waits for a few acknowledgements without sending new segments to balance the

number of packets in flight towards the present congestion window size.
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Figure 4.1: Comparison of the conventional RTO and F-RTO after an excessive

delay.
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4.3.2 Lost retransmission

A common reason for triggering TCP RTO is the loss of a retransmitted segment.

Once a segment has been retransmitted, it can only be retransmitted again after

the RTO expires. Figure 4.2 compares the packet traces of the conventional RTO

recovery with the traces of the F-RTO recovery when a retransmitted segment is

lost and it is retransmitted again as triggered by RTO. One can notice that the

behavior of the conventional RTO recovery and the F-RTO recovery is similar. In

the scenario shown, both variants get to transmit two new segments after the RTO,

and then proceed with transmitting new data.

Figure 4.2(a) shows that when the RTO retransmission arrives at the receiver,

it acknowledges the whole window, and the conventional TCP sender can proceed

with sending new data in slow start. In the presented case the F-RTO recovery

shown in Figure 4.2(b) differs from the conventional recovery only by not enter-

ing slow start after the RTO2. Because the next ACK arriving at the sender after

the RTO acknowledges all outstanding packets, that is, advances SND.UNA, the

F-RTO sender transmits new segments using congestion avoidance. Instead of

setting the congestion window to one segment, F-RTO decreases it to half of its

previous size. As one can see, the practical difference between the recovery alter-

natives is negligible because the number of outstanding packets was rather small

when the first packet loss occurred in the presented scenario.

Using congestion avoidance instead of slow start after the F-RTO recovery

does not limit the TCP performance in cases where the number of outstanding

segments is larger than in the example above. However, because F-RTO sets the

congestion window to half of its previous size when the next acknowledgements

advance SND.UNA, and on the other hand, because we require using burst avoid-

ance with F-RTO, the conventional RTO recovery algorithm and F-RTO result in

similar performance. In our implementation the burst avoidance method decreases

the congestion window to allow transmitting at most three segments for the first

incoming ACK. If the congestion window size is reduced below the slow start

threshold, the sender uses slow start in adjusting the congestion window when the

next acknowledgements arrive, like the conventional RTO recovery does.

2This is the scenario targeted at by the additional condition given in the end of Section 4.2.



4.3 Discussion of F-RTO Behavior in Specific Scenarios 67

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

7000

8000

9000

10000

11000

12000

Time, s

S
e
q
u
e
n
c
e
 n

u
m

b
e
r,

 b
y
te

s

data sent
ack rcvd

fast retransmit

dropped

RTO expires

slow start

delay
pkt loss

(a) Conventional RTO recovery.

5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

7000

8000

9000

10000

11000

12000

Time, s

S
e
q
u
e
n
c
e
 n

u
m

b
e
r,

 b
y
te

s

data sent
ack rcvd

RTO expires

on first ACK

two new segments

F−RTO transmits

SND.UNA

advance

Next ACKs

F−RTO continues by

sending new data

delay
pkt loss

(b) F-RTO recovery.

Figure 4.2: Comparison of the conventional RTO and F-RTO after a lost retrans-

mission.
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4.3.3 Burst losses

Because losses of several successive packets can result in a retransmission time-

out, it is interesting to compare the F-RTO behavior with the conventional RTO

recovery in such a case. Figure 4.3 compares the packet trace of the conventional

recovery after a RTO caused by a window of lost segments with the packet trace

of the F-RTO recovery. One can see from Figure 4.3(a) that the segment retrans-

mitted after the second RTO is successfully acknowledged, after which the TCP

sender retransmits the rest of the lost segments in slow start3.

Figure 4.3(b) shows a similar scenario with a F-RTO sender. When the segment

retransmitted due to RTO is acknowledged, the F-RTO sender transmits two new

segments. Because several other segments were dropped in the last window, the

two new segments trigger duplicate ACKs. As given by the F-RTO algorithm, the

arrival of the duplicate ACK as the second acknowledgement following the RTO

makes the sender retransmit unacknowledged segments in slow start like the con-

ventional RTO recovery would do. When the second acknowledgement after the

RTO arrives, the sender has a congestion window of three segments, similarly to

the conventional RTO recovery after two round-trip times. From this point on the

congestion window is increased according to the standard TCP congestion control

specifications. More generally, if there are any packets lost in the last window of

data, the F-RTO sender enters slow start and retransmits the unacknowledged seg-

ments similarly to the conventional RTO recovery, because the two new segments

transmitted after the RTO would trigger duplicate ACKs at the receiver.

In a scenario where all segments of the original window have been lost, as pre-

sented here, F-RTO has a side-effect of triggering an acknowledgement for every

incoming retransmission at the TCP receiver, because the receiver is required to

send an immediate ACK when it has out-of-order segments in its buffers [11].

However, we believe this detail does not increase the stress on the network sig-

nificantly, since it only affects the TCP sender’s transmission rate during the slow

start.

3In this scenario also the first RTO retransmission happens to be lost, but the second retransmis-

sion succeeds. However, the behavior of the algorithms would be the same also in the case with a

successful first RTO retransmission.
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Figure 4.3: Comparison of the conventional RTO and F-RTO after a burst loss.
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4.3.4 Packet reordering

Packet reordering is a scenario worth discussing when evaluating the F-RTO be-

havior, although packet reordering does not usually cause the retransmission timer

to expire. A more detailed study on the effect of packet reordering on TCP perfor-

mance can be found in [20], hence we only discuss here how the F-RTO algorithm

relates to packet reordering.

A delayed segment that arrives at the TCP receiver out-of-order appears as a

hole in the sequence number space of incoming packets, thus having largely sim-

ilar effects on the TCP behavior to a dropped packet, as out-of-order segments

trigger duplicate acknowledgements. Packet reordering may cause fast retrans-

mit, but if there are no retransmission timeouts involved, the F-RTO algorithm

does not change the TCP behavior from the conventional recovery. A more inter-

esting scenario arises if the RTO timer expires while packets arrive at the receiver

out of order. If the out-of-order segments cause duplicate ACKs to arrive at the

sender after the RTO, the F-RTO sender reverts to conventional RTO recovery

and retransmits the unacknowledged segments. If the delayed packets trigger new

acknowledgements that arrive at the sender just after the RTO, the F-RTO sender

proceeds with sending new data. This is likely to be the correct action, because

the acknowledgements were triggered by a segment transmitted before the retrans-

mission timeout.

4.4 Performance Analysis

In order to validate the discussion in Section 4.3, we made experiments in net-

works with characteristics similar to those that could be expected when commu-

nicating over a bottleneck wireless link to a fixed server in a nearby network. This

is a typical environment where scenarios presented in Section 4.3 may occur. We

compared the F-RTO performance to the performance achieved with the conven-

tional RTO recovery, both with SACK TCP and with NewReno TCP. In addition,

we conducted experiments with the Eifel algorithm [111].

4.4.1 Test Arrangements

The general test setup is illustrated in Figure 4.4. We emulate the wireless link

and the last-hop router by using a real-time wireless network emulator [100]. The

end hosts are Linux systems, in which we implemented the F-RTO algorithm.

The fixed link is an isolated LAN that is connected to the remote host and to the

network emulator.
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Figure 4.4: Test setup.

We selected the link parameters to approximate the properties of a typical

wireless wide-area networking system, such as the General Packet Radio Ser-

vice (GPRS) [35]. The emulated wireless link has a bandwidth of 28,800 bps and

a propagation delay of 200 ms. The last-hop router has a router buffer for holding

seven packets, which is sufficient for storing the output link’s bandwidth-delay

product’s worth of data, to be able to keep the wireless link utilized on short pe-

riods of disruption in data transfer, for example after link-level retransmissions4 .

In addition to the router buffer, the emulated wireless link uses a link send buffer

and a link receive buffer for both uplink and downlink traffic. Any link that pro-

vides a retransmission mechanism needs to have a certain amount of buffering

capacity. The link send buffer holds frames that have not yet been acknowledged

as received, and the link receive buffer collects out-of-order frames for delivering

them to the upper layer receiver in the correct order. The link buffers have a size

of 1776 bytes, which is large enough to cover the bandwidth-delay product of the

link.

We use three different experimentation setups that correspond to the scenarios

presented in Section 4.3. We made one set of experiments with a wireless link

that does not drop packets, but randomly inflicts sudden delays for some packets.

Another set of experiments was made using an unreliable link that drops random

packets with given packet drop probabilities. Finally, experiments were conducted

by having periods of persistent packet loss on the link. The link scenarios are listed

below:

• Sudden delays. Since the primary motivation of the F-RTO algorithm is to

improve the TCP performance when sudden delays cause spurious retrans-

mission timeouts, we start by a scenario that involves sudden delays on the

link. We explained the possible reasons for a sudden delay on the wireless

access network in the introduction. Such a delay can occur, for example,

due to loss burst with a link layer protocol providing highly persistent re-

4We applied a MTU size of 296 bytes in these tests due to the slow bottleneck link used in our

setup. This is in accordance with the IETF recommendation [41].
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liability. During the delay the wireless link receiver does not deliver any

packets forward. In this scenario a packet is delayed with a probability of

0.02. The random delay lengths are exponentially distributed with a mean

delay length of 3.5 seconds. Exponential distribution has been reported to

characterize the length of the loss periods on a wireless link reasonably

well [102]. Even though the link is reliable in this scenario, packet losses

may occur due to congestion at the last-hop router.

• Packet losses. In this scenario a packet is randomly dropped by the link

with given probability. This scenario models the case of an unreliable link

layer over a lossy link. Therefore the packet delays on the link are fairly

constant. We tested packet loss probabilities of 2 %, 5 %, and 10 %. The

packet losses are uniformly distributed. The main purpose of these scenar-

ios is to test that F-RTO does not cause harmful effects on non-spurious

RTOs when the retransmission timeouts occur due to lost segments. These

timeouts occur mainly when retransmissions are lost, since lost original

packets are usually recovered by fast retransmit.

• Bursty losses. This scenario is to model the effect of link outages when

the link layer is not reliable and drops several successive packets. The link

conditions are split into two distinct states. In a good state no packets are

dropped at the link. When the link is in bad state, all packets in both direc-

tions are lost. The link layer does not retransmit any packets. The two states

alternate randomly. The good state length is uniformly distributed between

0.1 seconds and 20 seconds. The bad state duration is exponentially dis-

tributed with a mean of 3.5 seconds. This is a common loss pattern in some

scenarios with wireless hosts, and often results in a retransmission timeout.

In each of the scenarios presented above we test five TCP variants based on

the TCP implementation of Linux kernel version 2.4.7 [147]. For the purposes

of the experiments, we disabled the ratehalving algorithm used by default in the

Linux TCP implementation, and made small modifications to implement the Eifel

algorithm as it has been defined by its authors [111]5. In addition, we modified

the SACK loss recovery to behave similarly to the conservative algorithm recently

published by the IETF [23]. Firstly, we test a SACK TCP [117] with the conven-

tional RTO recovery, and with the F-RTO recovery. Secondly, we do experiments

with a NewReno TCP [56] with both conventional and F-RTO recovery algo-

rithms. Finally, we test a TCP variant using the TCP timestamp option both with

5The recent Linux kernels implement a timestamp-based detection algorithm similar to Eifel,

but there are a couple of minor differences to the algorithm described in the original article.
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the SACK TCP and with the NewReno TCP. This variant implements the Eifel

algorithm based on the use of TCP timestamps. Our Eifel sender implementation

continues transmitting new data and reverts the changes made on the congestion

window and ssthreshwhen it detects a spurious timeout from the timestamps.

The limited transmit algorithm [7] is used with all TCP alternatives.

We use unidirectional 100 KB bulk transfers from the fixed end source to the

mobile end sink as the workload. The data is transmitted using a single TCP

connection using a maximum segment size of 256 bytes. A small segment size

is recommended for slow links in order to achieve better interactive response

times [121], although this is a factor not significant in our tests. For each sce-

nario and TCP variant the experiment is repeated 30 times.

4.4.2 Results

We present the results of the experiments by using box-plot diagrams. The dia-

grams compare the throughput of each TCP variant evaluated in the experimen-

tation. The box-plot diagram shows the median throughput for the 30 repetitions

with a horizontal line splitting the filled box. The lower and upper edge of the box

represent the 1st and 3rd quartiles of the test results, respectively. The whiskers

are drawn at the minimum and the maximum throughput measured with the TCP

variant. On rare occasions some test runs were involved with a notably differ-

ent number of RTOs than the majority of the tests due to randomness of the link

events. Because the RTOs typically have a strong effect on the TCP performance,

the minimum or maximum throughput values may appear to differ considerably

from the results within the upper and lower quartiles in some cases.

In addition to the box-plot diagrams we show with each scenario a table pre-

senting the median values for connection elapsed time from sending the first SYN

packet to receiving the last FIN acknowledgement at the sender, the number of

packet losses, and the number of retransmitted segments of each TCP variant. If

the number of retransmissions is higher than the number of lost packets, at least

some of the retransmissions are made unnecessarily. On the other hand, the num-

ber of lost packets can be higher than the number of retransmissions, because lost

acknowledgements do not necessarily trigger retransmissions.

Sudden delays

Figure 4.5 shows the box-plot diagrams of the throughput measured with different

TCP variants. Additionally, Table 4.1 shows the median values for the connection

statistics described above. The results show that using F-RTO improves perfor-

mance over the conventional RTO recovery both with the SACK TCP and with
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the NewReno TCP. The number of unnecessary retransmissions with the F-RTO

algorithm is considerably smaller than with the conventional RTO recovery algo-

rithm, resulting in improved throughput with the F-RTO algorithm. Apart from

small random variance, there is no significant difference between the SACK TCP

and the NewReno TCP, when RTOs are triggered by excessive delays.
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Figure 4.5: TCP performance with different variants with excessive delays on the

link.

The Eifel TCP avoids most of the unnecessary retransmissions similarly to the

F-RTO algorithm. However, the Eifel sender reverts the congestion control pa-

rameters back to the values preceding the spurious RTO, and continues sending

at the previous rate although the last-hop router could not drain the queue dur-

ing the delay. Hence, Eifel typically has more packet losses due to congestion

than F-RTO, resulting in a slightly lower throughput than F-RTO. This suggests

that responding to the spurious RTO by directly reverting the congestion control

parameters may be too aggressive an action to take.
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Table 4.1: Results of the tests with sudden delays. The median values of 30

repetitions.

TCP Variant Time (s)

/ 100 KB

Pkts

Lost

Nr. of

Rexmits

Eifel w/ SACK 77.94 11 16

F-RTO w/ SACK 76.23 4 12

Regular SACK 94.13 9 57

Regular NewReno 90.72 10 60

F-RTO w/ NewReno 75.18 6 13

Eifel w/ NewReno 79.21 11 19

Table 4.2: Results of the tests with packet errors. The median values of 30 repeti-

tions.

TCP Variant Time (s)

/ 100 KB

Pkts

Lost

Nr. of

Rexmits

Eifel w/ SACK 80.68 39 26

F-RTO w/ SACK 75.69 36 24

Regular SACK 76.18 36 22

Regular NewReno 82.38 36 26

F-RTO w/ NewReno 81.67 36 26

Eifel w/ NewReno 89.64 38 27

Packet losses

Figure 4.6 illustrates the throughput distribution with different TCP variants when

the wireless link has a packet loss rate of 5 %. The trend with the packet loss rates

of 2 % and 10 % is similar: the performance of F-RTO is not different from the

performance achieved with the conventional RTO recovery, regardless of whether

SACK or NewReno TCP is used. In these tests the retransmission timeouts are

usually due to lost retransmissions. After the TCP sender has successfully re-

transmitted the segment that triggered the RTO, it can usually proceed with trans-

mitting new data. Table 4.2 shows that the number of retransmissions are similar

with all TCP variants tested. As expected, the SACK TCP improves the perfor-

mance over the NewReno TCP, since there are often multiple packet losses in one

round-trip time, and SACK recovers more efficiently in such a case.

Eifel TCP using SACK and TCP timestamps has a lower throughput than

SACK TCP without timestamps. However, a closer examination of the TCP
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Figure 4.6: TCP performance with different variants with packet drop probability

of 0.05.

packet traces does not show any problems related to the Eifel algorithm. The

difference is explained due to use of the TCP timestamps, which adds 12 bytes

of overhead to each packet transmitted, resulting in approximately a 4 % increase

in the number of packets to send with the small segment size we were using. By

using a larger segment size the additional packet overhead would have had less

effect on the results.

Bursty losses

Figure 4.7 shows that the TCP performance with F-RTO does not differ signifi-

cantly from the performance with the conventional RTO recovery when there are

link outages. As described in Section 4.3.3, the F-RTO sender transmits segments

at a similar rate as the conventional RTO recovery, although it transmits two new

segments before continuing retransmissions. The difference of whether to trans-

mit the two new segments before or after the retransmissions, does not affect the

throughput. Use of the SACK TCP does not notably improve the performance



4.4 Performance Analysis 77

with bursty losses, especially if the losses trigger a retransmission timeout. After

the RTO the TCP sender retransmits the unacknowledged segments in slow start,

regardless of whether SACK TCP or NewReno TCP is used. Table 4.3 shows the

median connection times and the retransmission statistics for the different TCP

variants.
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Figure 4.7: TCP performance with different variants with bursty losses on the

link.

The test results show that Eifel TCP gives a clearly worse throughput than the

conventional TCP when SACK TCP is used. Our experiments revealed a signifi-

cant problem when using TCP timestamps for detecting unnecessary retransmis-

sions in Eifel TCP. We will describe the problem below.

When the link is in the bad state as in our link outage scenario, all packets

are dropped for a period of time. Therefore, the latest cumulative acknowledge-

ments generated by the receiver are also dropped by the link. This usually leads

to a retransmission timeout and an unnecessary retransmission of a segment that

had already arrived at the receiver, but for which the acknowledgement was lost.

When this unnecessary retransmission arrives at the receiver, it appears as an out-

of-order segment and generates a duplicate ACK carrying a timestamp of an ear-
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Table 4.3: Results of the tests with bursty losses on the link. The median values

of 30 repetitions.

TCP Variant Time (s)

/ 100 KB

Pkts

Lost

Nr. of

Rexmits

Eifel w/ SACK 123.89 50 45

F-RTO w/ SACK 64.94 42 40

Regular SACK 71.23 42 39

Regular NewReno 74.48 42 43

F-RTO w/ NewReno 67.80 39 43

Eifel w/ NewReno 80.03 42 42

lier data segment6. Furthermore, because the earlier acknowledgements were lost

during the link outage, the duplicate ACK appears as an acknowledgement for

new data to the TCP sender. Therefore, the Eifel decision rules declare that the

retransmission was spurious, although a number of data segments were lost in the

last window.

The Eifel sender responds to the spurious retransmission indication by send-

ing new data and reverting the congestion control variables. However, in the case

described above the sender gets back duplicate ACKs because there were data

segments missing. The sender enters fast recovery due to the duplicate ACKs and

reduces the congestion window. At this point the sender stops sending data for

a while to balance the number of outstanding packets to the congestion window

size. Because the sender needs to wait for the halved congestion window’s worth

of acknowledgements to arrive before it can continue retransmitting, and on the

other hand, many of the packets were dropped due to link outage, the pipe runs out

of packets while the sender is waiting for incoming acknowledgements. There-

fore, the Eifel sender has to wait for another RTO to continue the retransmissions

for the rest of the lost segments. This leads to a significant degradation of through-

put. Unlike SACK, the NewReno TCP ensures that a retransmission is made for

each partial ACK. Therefore the Eifel sender often avoids the second RTO with

NewReno.

The events presented above showed up very frequently in our experiments with

bursty losses, which explains the poor throughput of Eifel TCP in these tests. The

reported behavior is specific to TCP timestamps used as an indication of spurious

6The specification for TCP round-trip time measurements [25] requires that the echoed time-

stamp should correspond to the most recent data segment that advanced the window
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retransmissions, and we do not believe it to show up, if some other mechanism was

used for indicating spurious retransmissions instead of TCP timestamps7. Further-

more, our preliminary tests show that if F-RTO recovery is combined with Eifel,

the problem described above does not appear.

4.4.3 Fairness towards conventional TCP

We expect the connections using the F-RTO algorithm to be friendly towards

the TCP connections with conventional RTO recovery, because F-RTO is ACK-

clocked and it transmits data at an equal rate as the conventional TCP. We back up

this reasoning by conducting experiments that use six parallel bulk TCP connec-

tions as a workload over the bottleneck wireless link. The workload is separated

in two connection sets having three connections each. The three TCP connections

in connection set 1 are started at the same time, and the other three TCP connec-

tions in connection set 2 are started three seconds after the first connection set.

The purpose of this study is to measure how much the connections in connection

set 2 interfere with the data transfer in connection set 1. Especially, the effect of

the new F-RTO connections on the ongoing TCP transmissions should not differ

from the effect of conventional TCP connections.

The test setup with multiple TCP connections is similar to the setup presented

earlier in Figure 4.4, with the exception that it consists of six TCP connections

separated in two connection sets. Connection set 1 consists of three TCP connec-

tions that use the conventional RTO recovery. Connection set 2 has another three

TCP connections that use F-RTO in test A, and the conventional RTO recovery in

test B. All connections transfer 50 KB of bulk data from the remote host to the

mobile host. This experiment was made both with and without additional sudden

delays on the link. As with the experiments described earlier, the bottleneck link

bandwidth is 28,800 bps and the input queue length is 7 packets. Injecting packets

from six bulk TCP connections on this kind of network results in severe conges-

tion that causes a number of packet losses and RTOs triggered at the TCP sender.

We repeated the experimentation 20 times.

For each connection set we measured the throughput of the TCP connection

that was the last to finish its data transfer, i.e. the slowest connection of its con-

nection set. This metric gives a coarse understanding about the fairness between

the TCP connections, because a low throughput of the slowest connection often

7Some TCP implementations do not strictly follow RFC 1323 by echoing the timestamp of

a retransmitted segment arriving out-of-order at the receiver. Such implementation would have

avoided the problem described here, but may have other negative implications to round-trip time

measurement.
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indicates that the other connections have used a larger share of the common band-

width. Correspondingly, a high throughput of the slowest connection indicates

that the equality between the parallel connections is better. In addition, we present

the throughput distribution of the fastest connections in the connection sets.

Figure 4.8 on page 82 shows the results of tests with additional delays. Fig-

ure 4.8(a) shows the throughput distribution of the fastest connection for both

connection sets in test A using F-RTO connections in connection set 2, and in

test B using the conventional RTO recovery in all TCP connections. Figure 4.8(b)

gives the throughput of the slowest connections in the connection sets. The box-

plot diagrams show that the connection sets between test A and test B give similar

performance. This indicates that the influence of the three new F-RTO connec-

tions on the existing TCP connections on the link is not different from the effect

of starting three new conventional TCP connections. Similarly, the results of the

experiments without random additional delays do not show significant difference

between the test runs involving F-RTO connections and the test runs having only

TCP connections with the conventional RTO recovery. The results support our

reasoning of F-RTO being friendly towards the TCP connections with the conven-

tional RTO recovery.

4.5 Summary

In this chapter we have shown that it is possible to avoid most of the unnecessary

retransmissions following the spurious TCP retransmission timeouts without any

additional information in the TCP packet headers. We presented the F-RTO algo-

rithm that avoids the unnecessary retransmissions following the spurious RTO by

determining based on the incoming acknowledgements whether to retransmit or

continue sending new data. In addition, because the use of the F-RTO algorithm

effectively avoids unnecessary retransmits, it obviates the NewReno “bugfix” rule

that disables fast retransmit during an RTO recovery. This allows more efficient

recovery from packet losses in some scenarios. An F-RTO sender follows the

conventional TCP congestion control principles by being clocked by incoming

acknowledgements and by sending data at an equal rate as the conventional TCP.

We showed by experiments that F-RTO improves the TCP performance when

there are sudden delays on the link, and it yields competitive performance if the

RTOs are caused because of other reasons than delays.

We compared F-RTO with the Eifel algorithm and concluded that their perfor-

mance is similar in the majority of cases. The Eifel algorithm can perform better

than F-RTO, if packet reordering or packet losses are present for the two next seg-

ments following the RTO. Eifel makes the detection of spurious RTO already on
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the first incoming ACK after RTO, whereas F-RTO is able to detect the spurious

RTO after two acknowledgements have arrived. However, in most of the cases

F-RTO avoids unnecessary retransmissions as successfully as Eifel does, and af-

ter one window has been transmitted, it has delivered the same amount of data

as Eifel. On the other hand, while making the detection at the first incoming ac-

knowledgement, the Eifel algorithm can end up at a false positive conclusion, if

the outstanding acknowledgements and data segments have been lost in the same

window due to a loss burst. The DSACK-based algorithms are not directly com-

parable with F-RTO, since they are not able to detect spurious retransmissions

until one window of data has been transmitted and therefore cannot be used for

avoiding unnecessary retransmissions.

In addition to the experimentation setup chosen for this chapter, we have con-

ducted less systematic tests on F-RTO during its development and testing process

in a variety of different network characteristics to verify that it does not harm

the TCP behavior under different circumstances. There are also tests conducted

by some commercial vendors who have decided to adopt F-RTO. NTT DoCoMo

has published their results [167, 72], and we are also aware of some unpublished

positive results. For example Microsoft discussed their positive experiences with

F-RTO in an IETF meeting8.

We have verified the F-RTO algorithm by implementing it in the Linux OS

and running experiments by emulating the expected behavior of the wireless link.

Taking this approach makes it possible to study the F-RTO performance in a real

network environment when the TCP traffic is generated by the commonly used

network applications. We have also contributed our implementation to the Linux

kernel development, and F-RTO is included in the Linux kernels starting from

version 2.4.21, and in all Linux 2.6 kernels. Therefore, it is possible for the reader

using Linux to try out the F-RTO algorithm by getting a recent version of the

Linux kernel.

8Presentation slides from Microsoft are available at the IETF online proceedings at

http://www3.ietf.org/proceedings/07mar/slides/tsvarea-3/sld9.htm
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Figure 4.8: Effect of parallel connections on TCP performance. Test A includes

three F-RTO connections, test B uses only conventional RTO recovery.



CHAPTER 5

Enhancements on F-RTO

Two problem cases were identified concerning the F-RTO algorithm in Chapter 4,

although they did not have a meaningful effect on performance in the presented

experiments. First, the presence of packet reordering can cause the F-RTO sender

to enter the conventional RTO recovery with go-back-N retransmissions even if

the RTO was spurious. Similarly, duplicate ACKs during TCP fast recovery often

prevent the F-RTO algorithm from working. Second, if the sender does not have

new data to transmit, or the receiver’s advertised window does not allow the sender

to transmit new data in F-RTO algorithm step 2, the sender may not proceed to

detect whether the RTO was spurious. We discuss both of these cases and possible

solutions for them in this chapter.

In this chapter we present an enhancement of the F-RTO logic that uses the

information in the TCP Selective acknowledgments (SACK) option [117], if avail-

able. By using SACK, the F-RTO algorithm may detect spurious RTOs that oc-

cur during loss recovery, which is not possible with the basic F-RTO algorithm.

Because packet losses may occur frequently on a congested network, this is a

considerable benefit.

Another topic investigated in this chapter are actions taken on congestion con-

trol after a spurious retransmission timeout. In our measurements in Chapter 4 we

reduced the congestion window and slow start threshold to half after a spurious

RTO was detected. We considered this conservative enough in various possible

scenarios. However, reducing the congestion control parameters may not be the

best alternative in all situations, especially when the connection path has a high

bandwidth-delay product. In the research and standardization forums there have

been different suggestions from entering slow start after a spurious RTO [157] to

fully reverting the congestion control parameters to the state preceding the spuri-

ous RTO [110].

83



84 5 Enhancements on F-RTO

The rest of this chapter is organized as follows. Section 5.1 describes the

SACK-enhanced version of the F-RTO algorithm. Section 5.2 discusses the dif-

ferent response alternatives to a spurious RTO that will be studied in this chapter.

Section 5.3 describes the measurement environment we are using to test the differ-

ent response alternatives. Section 5.4 describes the results of the measurements.

Section 5.5 discusses some additional considerations on SACK-based F-RTO, and

Section 5.6 gives a brief summary of this chapter.

5.1 Detecting Spurious RTO with TCP SACK

Option

Although we use the F-RTO algorithm for detecting spurious RTOs, most of the

congestion control related considerations in this study should be applicable to

other detection methods, such as the Eifel detection algorithm. The idea of the

F-RTO algorithm is that, if the sender gets an acknowledgment after an RTO for a

segment that was not yet retransmitted due to the RTO, the segment or the corre-

sponding acknowledgment must have been outstanding in the network while the

RTO occurs, and the RTO has likely been spurious. If no such indications ap-

pear within two round-trip times after the RTO, it is not declared spurious. As

described in Chapter 4, the F-RTO algorithm is also robust against packet losses.

If the RTO is not spurious, but caused by data loss, a successful RTO retrans-

mission results in advancement of the cumulative ACK point to the first non-

received segment. Because the F-RTO sender continues by transmitting previ-

ously unsent data, a duplicate ACK follows, since the segments appear at the

receiver as out-of-order segments. This causes the F-RTO sender to retransmit the

unacknowledged segments in the conventional way.

As discussed in the beginning of this chapter, the duplicate acknowledgements

from packets that have been reordered in the network but not lost can prevent the

F-RTO algorithm from working. A potential solution for enhancing F-RTO in the

face of reordering comes with the availability of the TCP SACK option. By using

the information in the SACK blocks after an RTO, the TCP sender can recognize

acknowledgments for segments transmitted before the RTO and thus detect a spu-

rious RTO according to the principles given in Section 4.2 even if there were du-

plicate ACKs arriving. Furthermore, availability of the SACK information makes

it possible to better utilize the F-RTO algorithm during fast recovery periods. In

this chapter we study the performance benefits of applying the SACK information

in the F-RTO algorithm.

If the TCP endpoints have the SACK option available, many of the F-RTO
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problem cases related to duplicate ACKs can be avoided. The SACK-enhanced

F-RTO algorithm is implemented at the sender as follows.

1. When the RTO expires, retransmit the first unacknowledged segment. Set

variable send high to indicate the highest segment transmitted so far.

Following the recommendation in SACK specification [117], reset the SACK

scoreboard.

2. Wait until the acknowledgment of the data retransmitted due to the time-

out arrives at the sender. If duplicate ACKs arrive before the cumulative

acknowledgment for retransmitted data, adjust the scoreboard and the es-

timate of the number of outstanding segments according to the incoming

SACK information. Stay in step 2 and wait for the next new acknowledg-

ment. If RTO expires again, go to step 1 of the algorithm.

(a) if a cumulative ACK acknowledges a sequence number (smaller than

send high, but larger than SND.UNA) transmit up to two new (previ-

ously unsent) segments and proceed to step 3. If the TCP sender is

not able to transmit any previously unsent data – either due to receiver

window limitation, or because it does not have any new data to send

– it is possible to apply some of the alternatives for handling window-

limited cases discussed in Section 5.5.2. The sender can also simply

refrain from entering step 3 of this algorithm, and continue with slow

start retransmissions following the conventional RTO recovery algo-

rithm. However, in the latter case the spurious retransmission timeout

remains undetected.

(b) else, if a cumulative ACK acknowledges a sequence number equal to

send high, revert to the conventional RTO recovery and set the con-

gestion window to no more than 2 * MSS, like a regular TCP would

do. Do not enter step 3 of this algorithm, but apply normal RTO re-

covery.

3. The next acknowledgment arrives at the sender. Either a duplicate ACK or

a new cumulative ACK (advancing the window) applies in this step.

(a) if the ACK does not acknowledge sequence numbers above

send high AND it acknowledges data that was not acknowledged

earlier (either with cumulative acknowledgment or using SACK blocks),

declare the timeout spurious and continue transmitting new data. The

retransmission timeout can be declared spurious, because the segment

acknowledged with this ACK was transmitted before the timeout.
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(b) if the ACK acknowledges a sequence number above send high,

either in SACK blocks or as a cumulative ACK, set the congestion

window to no more than 3 * MSS and proceed with the conventional

RTO recovery, retransmitting unacknowledged segments. Take this

branch also when the acknowledgment is a duplicate ACK and it does

not acknowledge any new, previously unacknowledged data below

send high in the SACK blocks. Apply normal TCP recovery.

If the retransmission timeout is declared spurious, the TCP sender continues

by sending new previously unsent data, and applies one of the congestion con-

trol alternatives described in Section 5.2. If during the above-mentioned steps

after the retransmission timeout there are unacknowledged holes between the re-

ceived SACK blocks, those segments are retransmitted similarly to the conven-

tional SACK recovery algorithm [23]. Similarly to the basic F-RTO algorithm,

if the SACK-based algorithm declares the RTO spurious, send high is set to

SND.UNA, thus allowing fast recovery on incoming duplicate acknowledgments.

This is possible because the problem of multiple fast retransmits cannot occur

in this case, as discussed in Section 4.2. The SACK-based recovery algorithm

specified by the IETF uses the RecoveryPoint variable for this purpose [23]. The

Linux implementation of this algorithm applies the Use It or Lose It-type burst

avoidance similarly to the basic F-RTO algorithm.

The SACK-based algorithm allows declaring an RTO spurious also when a

duplicate ACK arrives, if the SACK blocks indicate that some non-retransmitted

data segments have arrived at the receiver. Therefore it should enhance TCP per-

formance in cases where there was packet reordering or packet loss in addition

to the delay spike that caused the spurious timeout. Especially, the SACK-based

algorithm allows detecting a spurious RTO also during the TCP loss recovery

phase.

5.2 Responding to Spurious RTO

Once a spurious RTO is detected, the TCP sender should decide on actions fol-

lowing the spurious RTO. Obviously, no packets should be assumed lost, but

the sender should continue transmission as if the RTO never occurred. A more

challenging consideration is, how the TCP sender should adjust its congestion

control parameters and retransmission timer estimate. It has been suggested that

the congestion control parameters are reverted to the state preceding the spurious

RTO [111].
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Even though a related study shows that fully reverting the congestion control

state after a spurious RTO is the most efficient alternative in an environment with

relatively high bandwidth and delay [65], we are interested in studying what are

the performance effects of doing so when the wireless link bandwidth is lower

and the wireless access network is subject to competing traffic consisting of mul-

tiple parallel TCP transfers. Therefore, we evaluate the performance effects with

a more careful alternative of reducing the congestion window after a spurious

RTO. Additionally, we study resetting the congestion window to one segment and

continuing with slow start after a spurious RTO that has been proposed in the

TCP-related discussion forums.

We are studying three alternatives for handling congestion control after detect-

ing a spurious RTO. The congestion window and slow-start threshold are adjusted

according to the descriptions below, if the F-RTO algorithm declares the RTO

spurious in step (3a) of the algorithm presented above. Similar adjustments can

also be made in the basic F-RTO algorithm.

A related paper [65] has also selected similar congestion control alternatives

under study in a simulation environment with considerably higher bandwidth and

router capacity. We believe none of the alternatives below violates the TCP con-

gestion control principles, and all of them are less aggressive than a conventional

TCP sender that does not detect a spurious RTO, and thus unnecessarily retrans-

mits segments in slow start after the spurious RTO.

• CC 1: Reduce congestion window and slow start threshold to half. This

is similar to what is done when a packet is lost, or when an Explicit Con-

gestion Notification [136] arrives at the sender. When implementing this

alternative, a spurious RTO is taken as one kind of congestion notification,

and the TCP sender reduces its transmission rate. It could also be thought

that a spurious timeout caused by an unexpected delay spike contributes to

a minor transient congestion peak at the router before the blocked link, be-

cause the incoming acknowledgments of the outstanding segments trigger

transmission of new packets at the sender.

• CC 2: Revert congestion control. This response alternative does not take

the spurious RTO as a congestion notification, but restores the transmis-

sion rate to the state preceding the spurious RTO. After detecting a spurious

RTO, TCP slow start threshold and congestion window are set to the earlier

values stored when the RTO occurred. However, the sender avoids sending

bursts of packets due to increasing the congestion window by limiting the

congestion window to be no more than three segments over the amount of

outstanding data. We are interested in finding out how much this alterna-
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tive increases the number of congestion losses in the network, and on the

other hand, whether this response alternative improves the TCP throughput

regardless of the increased level of congestion.

• CC 3: Reset congestion window to one segment but set slow start thresh-

old to the value before RTO, if larger. This is similar to the traditional

way of adjusting the congestion window after an RTO, with the exception

that the TCP sender does not retransmit segments after detecting a spu-

rious RTO. The TCP sender awaits acknowledgments for all outstanding

segments before it continues transmission in slow start. This is expected

to be a useful action in cases where the spurious RTO is associated with a

change in the network conditions, such as when a wireless hand-off takes

place.

5.3 Test Methodology

When inspecting the differences between different congestion control alternatives,

we are primarily interested in the following performance metrics.

• Throughput of the TCP connections is often the most important perfor-

mance metric for the end-user. Because we use several concurrent TCP con-

nections in our performance tests, we report the lowest and highest through-

put measured from parallel TCP connections. Throughput of the slowest

TCP connection is often the most interesting, because it shows the nega-

tive effects of congestion and indicates the time taken to transmit all of the

data. Additionally, distance between the slowest and the highest through-

put gives some understanding about the fairness between the parallel TCP

connections.

• Number of packet losses. Since in this study we assume the wireless link-

layer protocol to be reliable, all packet losses are due to congestion. There-

fore the number of packet losses indicates the level of congestion in the

network.

• Number of retransmissions often depends on the number of packet losses,

but because the link is prone to spurious retransmission timeouts, there may

be substantial differences between the number of retransmissions and the

number of actual packet losses. The number of retransmissions is interest-

ing for the end-user not only because the retransmissions degrade the data

throughput, but because the wireless data user is often charged based on the
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Figure 5.1: Model of the simulation environment.

amount of bytes transmitted, regardless of whether the data is TCP retrans-

missions or original transmissions. The packet losses/retransmissions ratio

tells how much there have been unnecessary retransmissions. The lower

the ratio, the more inefficient the TCP sender is in terms of unnecessary

retransmissions.

The performance measurements are conducted using Linux end-hosts. The

wireless environment is simulated using the Seawind real-time emulator [100].

Seawind captures the IP packets transferred between the end hosts and simulates

the wireless network characteristics according to given parameters by delaying,

queueing and dropping packets in a real-time fashion. We have selected network

characteristics that roughly resemble the expected characteristics of the 2.5G and

3G networks, but since the detailed behavior of those networks depend on various

configuration parameters, we have our model at a rather generic level.

Figure 5.1 illustrates the network setup we have in our performance tests.

There are 1–3 TCP senders in the fixed network that transmit data concurrently.

Each TCP sender transmits a 200 KB-sized file to the wireless receiver using

packet MTU of 1500 bytes1. We model different wireless link bandwidths be-

tween 28 Kbps and 384 Kbps, whereas the fixed network between the TCP senders

and the wireless access router is a 100 Mbps LAN. The wireless link has one-way

propagation delay of 200 ms. In total, packet round-trip times are usually between

500 ms and 2000 ms, depending on the packet queue length at the access router

and the available wireless bandwidth.

There are two types of buffering in the access network next to the wireless link.

First, there are IP-level router buffers that are configured to hold 7–30 packets,

depending on the bandwidth-delay product in the test scenario in question. The

router buffer capacity is limited by the packet count, regardless of the size of

the packets. Second, there are layer 2 buffers that are sized according to the

1We assume a larger packet MTU than that used in Chapter 4, because we use larger link band-

widths in the experiments conducted in this chapter. 1500 bytes is a common value for MTU used

in various link technologies, including those based on Ethernet.
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bandwidth-delay product of the wireless link. Thus, the total buffer capacity in

front of the wireless link is between 18–80 KB, depending on the test scenario.

We model two kinds of delay sources on the wireless link that have been under

discussion in the TCP research community. Delay of type I is to model a mo-

mentary outage on the wireless link with a link level ARQ. During this period the

packets on the wireless link are lost. The link layer sender retransmits the packets

until they are successfully transmitted. The probability of a delay event is 1 % per

packet, and the length of a link outage is exponentially distributed with a mean

length of 3500 ms.

Delay of type II stands for a wireless handover and the related events in the

wireless access network. After a handover and the related short delay the link

bandwidth is randomly selected to either 28.8 Kbps, 64 Kbps, or 128 Kbps, re-

flecting the different conditions in different wireless cells. In these tests the delay

spike of random length may occur with a change in the available bandwidth. There

are no losses on the wireless link in addition to those that are caused by conges-

tion. The delay length is exponentially distributed with a mean length of 3500 ms.

We have a simple model of rather quick random movement of a wireless host. The

host remains in one simulated cell for a random time; in a 2-second period there is

a 30 % probability that the host moves to another cell and the bandwidth changes.

In our tests we primarily use a modified version of the Linux kernel that imple-

ments the standard retransmission timer algorithm [127]. As discussed in Chap-

ter 3, the retransmission timer in the unmodified Linux kernel implementation

contains a few enhancements that are expected to improve the performance when

the packet round-trip times are highly variable. According to our initial tests this

indeed appears to be the case, but a more detailed study of the different retrans-

mission timer estimators remains future work.

5.4 Test Results

We evaluated the regular SACK TCP and the SACK-enhanced F-RTO with three

different congestion control variants (CC 1, CC 2, and CC 3) as described in Sec-

tion 5.2. This section describes the most interesting findings in various tests made

with different network parameters. Mean values of 30 replications are shown in

the tables below. The tables show the throughput of the slowest and the fastest

TCP connection in bytes per second, the number of packet losses at the wireless

access router, and the number of retransmitted segments.

Table 5.1 shows results of two parallel TCP connections transmitted over a

128 Kbps link that occasionally has delay spikes of delay type I described in Sec-

tion 5.3. In this test, the IP router buffer size was 7 packets. As expected, the
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regular TCP suffers from a substantially larger number of unnecessary retrans-

missions and thus results in lower throughput. F-RTO helps to avoid most of

the unnecessary retransmissions, although some are still present, because the first

retransmission triggered by the RTO is often unnecessary also with F-RTO.

Table 5.1: Two TCP connections over 128 Kbps link, 7 IP buffers.

TCP

variant

Tput

low

(B/s)

Tput

high

(B/s)

Losses Rxmits Losses /

Rxmits

Regular 4067 4891 25.3 50.1 0.50

CC 1 4602 5293 18.6 25.2 0.74

CC 2 4480 5103 26.6 31.7 0.84

CC 3 4427 5052 25.2 32.6 0.77

CC 1 halves the congestion window and the slow start threshold after a spuri-

ous RTO, and thus results in least congestion losses. CC 1 also has the best overall

throughput, indicating that saving in the number of packet losses is more useful in

terms of throughput than reverting the congestion window to its full size. In these

tests the pipe capacity available per connection was rather small, so the advantage

gained by reverting the congestion window was not meaningful.

With the workload of one TCP connection over the 128 Kbps link CC 2 and

CC 3 yield better performance than CC 1, although they cause more packet losses.

With only one TCP connection the congestion losses are not as bad a problem for

the performance as the underutilization of the link when the congestion window

is reduced after a spurious RTO.

Table 5.2 presents the results with similar link setup to that in Table 5.1, but

with an IP router buffer size of 30 packets, that is, larger than what it recom-

mended for the wireless link in our model, considering its bandwidth-delay prod-

uct. With larger router buffer the packet round-trip times are generally higher due

to increased queueing delays. This makes the retransmission timer more conserva-

tive and causes less spurious RTOs due to delay spikes. In these tests, CC 3 results

in the best performance and least packet losses. With a large router buffer, the TCP

sender can carry on with slow start after the spurious RTO for several round-trip

times before suffering from packet losses due to congestion. On the other hand,

the narrow link between the sender and the receiver can be fully utilized by a

congestion window of 6 segments that can be achieved in a few round-trip times

during slow start.

Table 5.3 shows the results with a link bandwidth of 384 Kbps, router buffer
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Table 5.2: Two TCP connections over 128 Kbps link, 30 IP buffers.

TCP

variant

Tput

low

(B/s)

Tput

high

(B/s)

Losses Rxmits Losses /

Rxmits

Regular 4600 5358 22.0 47.3 0.47

CC 1 4864 5485 23.5 27.6 0.85

CC 2 4885 5409 28.6 33.1 0.86

CC 3 5256 5847 22.9 28.5 0.80

of 30 packets, and three parallel TCP connections. The link had delays of type

I, modeling sudden link outages. Again, the regular SACK TCP is very ineffi-

cient due to a large number of unnecessary retransmissions. CC 1 has the least

packet losses, but even though CC 2 has almost twice as many packet losses, it can

achieve slightly better throughput than CC 1 both for the fastest and the slowest

connection. With CC 2 the difference between the fastest and the slowest con-

nection is larger than with CC 1, which suggests that CC 2 can cause unfairness

between the different TCP connections. With CC 1 the full link capacity is not

efficiently used after a spurious RTO, because the sender reduces the congestion

window. Using slow start after a spurious RTO gives the worst results, because

in that case the large link capacity is used rather inefficiently. Furthermore, CC 3

has more congestion losses than CC 1 due to slow start overshoot [141, p. 11].

Table 5.3: Three TCP connections over 384 Kbps link, 30 IP buffers.

TCP

variant

Tput

low

(B/s)

Tput

high

(B/s)

Losses Rxmits Losses /

Rxmits

Regular 4939 6131 29.5 104.2 0.28

CC 1 5622 7073 22.7 37.0 0.61

CC 2 5767 7512 40.0 55.4 0.72

CC 3 5223 7082 30.7 46.5 0.66

Table 5.4 shows the performance metrics when transmitting two parallel TCP

connections over a bottleneck link with variable bandwidth of 28.8 Kbps, 64 Kbps,

or 128 Kbps. In this scenario we had type II delays, i.e. when a delay spike oc-

curs, the link bandwidth may change at the same time. In these tests CC 3 that

does slow start after a spurious RTO is the most efficient alternative. CC 1 that
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decreases the congestion window and slow start threshold after a spurious RTO

has the least congestion losses, but it uses the link capacity inefficiently, especially

when the bottleneck link bandwidth increases after a delay spike. CC 2 that re-

verts the congestion control parameters to the earlier values utilizes the link more

efficiently, but causes most congestion losses.

Table 5.4: Two TCP connections over link with bandwidth that changes between

28.8 Kbps, 64 Kbps, and 128 Kbps.

TCP

variant

Tput

low

(B/s)

Tput

high

(B/s)

Losses Rxmits Losses /

Rxmits

Regular 2660 3305 22.6 38.1 0.59

CC 1 2587 3535 19.0 22.5 0.84

CC 2 2654 3590 21.5 25.4 0.85

CC 3 2878 3789 20.6 24.5 0.84

We made a set of tests with the basic F-RTO with three parallel connections

to compare its performance with the SACK-enhanced F-RTO. Table 5.5 shows

that the basic variant results in slightly reduced performance, when compared to

results in Table 5.3 made with the same network parameters but using SACK.

Because of the undetected spurious RTOs that occur during the loss recovery

phase, the basic F-RTO has about 20 % more unnecessary retransmissions than

the SACK-enhanced F-RTO. Otherwise the conclusions are similar to those made

for Table 5.5.

Table 5.5: Basic F-RTO over 384 Kbps link.

TCP

variant

Tput

low

(B/s)

Tput

high

(B/s)

Losses Rxmits Losses /

Rxmits

Regular 4939 6131 29.5 104.2 0.28

CC 1 5514 7086 31.2 52.1 0.60

CC 2 5899 7420 31.5 48.8 0.65

CC 3 5359 6466 23.9 43.9 0.54
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5.5 Additional Considerations

F-RTO can also be used with the Stream Control Transmission Protocol

(SCTP) [153] that uses a SACK-based retransmission mechanism. This section

discusses the related issues on applying F-RTO on SCTP. We also discuss some

details that need to be considered when spurious timeout occurs during fast re-

covery, and possible alternatives a TCP sender can try, if it cannot transmit new

segments in F-RTO algorithm step 2 when being limited by the receiver’s adver-

tised window, or when the sender does not have new data to send.

5.5.1 SACK-enhanced F-RTO and Fast Recovery

As discussed earlier in this section, SACK-enhanced F-RTO algorithm can be

used to detect spurious timeouts also when RTO expires while an earlier loss

recovery is underway. However, there are issues that need to be considered if

F-RTO is applied in this case.

In step 3, the original SACK-based F-RTO algorithm requires that an ACK ac-

knowledges previously unacknowledged non-retransmitted data between

SND.UNA and send high. If RTO expires during earlier (SACK-based) loss re-

covery, the F-RTO sender must use only acknowledgments for non-retransmitted

segments transmitted before the SACK-based loss recovery started. This means

that in order to declare timeout spurious, the TCP sender must receive an acknowl-

edgment for a non-retransmitted segment between SND.UNA and send high in

algorithm step 3. In other words, if the TCP sender receives acknowledgment for

a segment that was transmitted more than one RTO ago, it can declare the timeout

spurious. Defining an efficient algorithm for checking these conditions remains

an object of future work.

When a spurious timeout is detected according to the rules given above, it may

be possible that the response algorithm needs to consider this case separately,

for example, in terms of which segments to retransmit after an RTO expires, and

whether it is safe to revert the congestion control parameters. This is also consid-

ered a topic for future research.

5.5.2 Discussion of Window-Limited Cases

When the advertised window limits the transmission of two new previously un-

sent segments, or there are no new data to send, the default option in F-RTO

algorithm step (2a) is that the TCP sender continues with the conventional RTO

recovery algorithm. The disadvantage is that the sender may continue unneces-

sary retransmissions due to possible spurious timeout. This section briefly dis-
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cusses the options that can potentially improve performance when transmitting

previously unsent data is not possible.

• The TCP sender could reserve an unused space of a size of one or two

segments in the advertised window to ensure the use of algorithms such as

F-RTO or Limited Transmit [7] in window-limited situations. On the other

hand, while doing this, the TCP sender should ensure that the window of

outstanding segments is large enough for proper utilization of the available

pipe.

• The TCP sender can use additional information if available, for example

TCP timestamps with the Eifel Detection algorithm, for detecting a spurious

timeout. However, Eifel detection may yield different results from F-RTO

when ACK losses and an RTO occur within the same round-trip time, as

discussed in Chapter 4.

• Retransmit data from the tail of the retransmission queue and continue with

step 3 of the F-RTO algorithm. It is possible that the retransmission will be

made unnecessarily. Thus, this option is not encouraged, except for hosts

that are known to operate in an environment that is prone to spurious time-

outs. On the other hand, with this method it is possible to limit unnecessary

retransmissions due to spurious timeout to one retransmission.

• Send a zero-sized segment below SND.UNA, similar to TCP Keep-Alive

probe, and continue with step 3 of the F-RTO algorithm. Because the re-

ceiver replies with a duplicate ACK, the sender is able to detect whether the

timeout was spurious from the incoming acknowledgment. This method

does not send data unnecessarily, but it delays the recovery by one round-

trip time in cases where the timeout was not spurious. Therefore, this

method is not encouraged.

• In receiver-limited cases, send one octet of new data, regardless of the ad-

vertised window limit, and continue with step 3 of the F-RTO algorithm. It

is possible that the receiver will have free buffer space to receive the data

by the time the segment has propagated through the network, in which case

no harm is done. If the receiver is not capable of receiving the segment, it

rejects the segment and sends a duplicate ACK.

5.5.3 Using F-RTO with SCTP

SCTP is a reliable transport protocol that has some advanced features compared

to TCP. With a modular packet format, SCTP is easier to extend with new fea-
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tures than TCP, which is limited by the 40 bytes of TCP option space. SCTP

preserves the upper layer message boundaries instead of transferring a continuous

byte stream, and it can support multi-homing of an end host, which improves the

robustness of connections. SCTP also supports a partial reliability mode, which

is more suitable for data streams with real-time requirements. SCTP’s charac-

teristics are ideal for signaling protocols, and it has been initially used for SS7

telephony signaling transport [44, Chapter 14]. There is also much signaling that

needs to be taken care of by the protocol layers above transport, for example re-

lated to instant messaging and voice-over-IP telephony. Therefore, in these cases

SCTP could also be used in mobile terminals that nowadays have multiple radio

access interfaces, for example, for SIP signaling [139]. In these cases the prob-

lems with using TCP over wireless links are also relevant for SCTP.

SCTP has similar retransmission algorithms and congestion control to TCP.

However, some of the terminology and details are slightly different. A single

upper-layer message is transmitted in data chunk. One SCTP packet can include

several data chunks among other SCTP control information that can be included in

chunks of other types. SCTP’s retransmission timer is called T3-rtx timer. The se-

quence numbers in SCTP are called Transmission Sequence Number (TSN). One

TSN per data chunk is assigned, which differs from TCP that assigned one se-

quence number per byte of transmitted data. SCTP uses a selective acknowledg-

ment mechanism, and the SCTP receiver is also able to report receiving duplicate

TSNs with a mechanism similar to DSACK in TCP [61].

The SCTP T3-rtx timer for one destination address is maintained in the same

way as the TCP retransmission timer, and after a T3-rtx expires, an SCTP sender

retransmits unacknowledged data chunks in slow start like TCP does. Therefore,

SCTP is vulnerable to the negative effects of the spurious retransmission timeouts

similarly to TCP. Due to similar RTO recovery algorithms, F-RTO algorithm logic

can be applied also to SCTP. Since SCTP uses selective acknowledgments, the

SACK-based variant of the algorithm is recommended, although the basic version

can also be applied to SCTP. However, SCTP contains features that are not present

with TCP that need to be discussed when applying the F-RTO algorithm. A recent

paper evaluates the effects of spurious retransmissions on SCTP [107].

SCTP associations can be multi-homed. The current retransmission policy

states that retransmissions should go to alternative addresses. This means that

the retransmission may follow a significantly lower latency path than the original

transmissions. If the retransmission was due to spurious timeout caused by a delay

spike, it is possible that the acknowledgment for the retransmission arrives back

at the sender before the acknowledgments of the original transmissions arrive.

If this happens, a possible loss of the original transmission of the data chunk
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that was retransmitted due to the spurious timeout may remain undetected when

applying the F-RTO algorithm. If the timeout was caused by a delay spike, and

it was spurious in that respect, a suitable response is to continue by sending new

data. However, if the original transmission was lost, fully reverting the congestion

control parameters is too aggressive. Therefore, taking conservative actions on

congestion control is recommended, if the SCTP association is multi-homed and

retransmissions go to alternative addresses2 . The information in duplicate TSN

notifications can then be used for reverting congestion control, if desired [21].

Note that the forward transmissions made after RTO in F-RTO algorithm step (2a)

should be destined to the primary address, since they are not retransmissions.

When making a retransmission, an SCTP sender can bundle a number of un-

acknowledged data chunks and include them in the same packet. This needs to

be considered when implementing F-RTO for SCTP. The basic principle of F-

RTO still holds: in order to declare the timeout spurious, the sender must get an

acknowledgment for a data chunk that was not retransmitted after the retransmis-

sion timeout. In other words, acknowledgments of data chunks that were bundled

in RTO retransmission must not be used for declaring the timeout spurious.

5.6 Summary

We presented a SACK-based enhancement to the F-RTO algorithm and evalu-

ated its use with three different alternatives for congestion control after a spuri-

ous retransmission timeout. Our results show that even though the basic F-RTO

performs rather well under delay spikes, the SACK-enhancement improves the

performance when spurious RTOs occur during TCP fast recovery.

The general trend between the three congestion control alternatives evaluated

was that when using a narrow link with appropriate buffer sizes, reducing the

congestion window and the slow start threshold lowers the number of congestion-

related packet losses and improves the overall performance. Reverting the con-

gestion control parameters improves the performance due to better link utilization

only at the highest link bandwidths tested. Going into slow start after a spurious

RTO gives good results when the link bandwidth varies during TCP connection

or when there are large buffers available to handle the instantly increasing queue

length caused by slow start.

2The same scenario is also possible in principle with TCP, when a vertical hand-off is done to a

low-latency link. If the original segments are sent to a high-latency path, and the RTO retransmis-

sion is sent to a path with significantly lower latency, it is possible that the acknowledgment of the

RTO retransmission arrives before the acknowledgments of the original segments.
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Our test results show that selecting the most efficient response to spurious RTO

is not an easy task when the real network characteristics are unknown to the TCP

sender. However, our results support taking conservative actions after a spurious

RTO when the wireless link bandwidth is not very high, because on the slower

links reverting the congestion control state does not improve the TCP throughput

significantly. It is possible, that a hybrid solution between the different conges-

tion control alternatives presented in this chapter would result in acceptable per-

formance in different scenarios. One such alternative might be to slightly reduce

the congestion window while keeping the slow start threshold at the level it was

when the spurious RTO occurred.

Finally, we discussed the applicability of F-RTO in a couple of special cases:

when RTO occurs during SACK-based fast recovery, and when the normal F-RTO

algorithm is prevented by the TCP receiver window. We also discussed how F-

RTO could be applied with the SCTP protocol. Because SCTP uses similar con-

gestion control and retransmission algorithms than TCP, we believe our results

would apply also with it. In addition, while most of the experiments have been

run in a setup modeled to be similar to the GPRS or EGPRS wireless link char-

acteristics, we believe that F-RTO is useful also in other network environments

that might suffer from spurious timeouts. Because F-RTO is based on the use of

the existing TCP mechanisms, and it does not depend on any specific characteris-

tics of the lower protocol layers, we believe that if F-RTO was used in links with

higher bandwidths, such as satellite links or fixed network environments, similar

trends in results could be found on F-RTO’s performance than presented in this

chapter. Chapter 4 discussed why we believe F-RTO does not harm the sender or

the network in any scenario, but at worst performs similarly as the normal TCP

would do.



CHAPTER 6

Evaluating Quick-Start for TCP

As discussed in Sections 2.2 and 2.4, TCP is rather conservative in selecting its

initial sending rate, and increasing it using the slow-start or congestion avoidance

algorithms. This can be problematic on paths with high latencies, such as GPRS.

We now take a look at a mechanism that allows TCP to explicitly query for a larger

initial sending rate from the routers along the path, called Quick-Start. Although

Quick-Start could be used with a number of transport protocols such as Stream

Control Transmission Protocol (SCTP) [153] or Datagram Congestion Control

Protocol (DCCP) [99], we mainly consider its use with TCP.

In this chapter we describe the basic protocol and algorithms of Quick-Start,

and evaluate a number of design alternatives on a high-speed network with high

degree of multiplexing. In Chapter 7 we evaluate Quick-Start in wireless networks

with lower bandwidths and host mobility.

The rest of this chapter is organized as follows. Section 6.1 gives a general

overview of Quick-Start and motivates its need for paths with high bandwidth or

high latency. Section 6.2 details the Quick-Start mechanism and discusses design

issues. Section 6.3 discusses the potential costs and benefits of using Quick-Start.

Section 6.4 describes the simulation setup used in our study. Section 6.5 illus-

trates the potential advantages and disadvantages of Quick-Start and shows its

performance in specific situations. Section 6.6 discusses the handling of Quick-

Start Requests in the routers and evaluates several algorithms that could be em-

ployed by routers. Section 6.7 outlines the possible vulnerabilities of Quick-Start

to denial-of-service attacks and potential coping techniques. Finally, Section 6.8

offers conclusions and future work.

99
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6.1 Overview

Quick-Start is described in detail in Section 6.2, but the process is generally that

a TCP connection sends a packet that includes a Quick-Start Request in an IP

option containing the requested sending rate. Each router along the path either

agrees with the request, lowers the requested sending rate, or implicitly signals

that the Quick-Start option was not approved or processed. The data receiver

reports the information received in the Quick-Start Request back to the sender

using a Quick-Start Response in a TCP option, and the data sender determines if

all of the routers along the path have agreed to the request and sets the sending

rate appropriately.

The assumption behind Quick-Start is that routers will only approve Quick-

Start requests when they are under-utilized. Thus, Quick-Start should be generally

safe to deploy in general purpose networks, with a negligible risk of causing net-

work congestion. However, because Quick-Start requires support from all routers

along the path, this could present a high bar to deployment in the general Inter-

net. Possible deployment of Quick-Start could happen in (i) those Intranets and

operator networks with large amounts of under-utilized bandwidth and (ii) cellu-

lar wireless networks (such as GPRS/EDGE [150]) with long round-trip delays,

as discussed in Chapter 2. Based on the investigation presented in this chapter,

Quick-Start is expected to be of benefit in both these cases.

As noted above, Quick-Start is, broadly speaking, useful any time a connection

is significantly under-utilizing the network path and has the data required to con-

siderably increase the transmission rate. There are a few concrete cases where the

connection is likely to be significantly under-utilizing the network path capacity

and could benefit from Quick-Start:

• Typically in the beginning of a connection a TCP sender has little if any

knowledge of the network path characteristics. Therefore the sender has to

probe the path capacity by using slow-start. By applying Quick-Start the

slow-start phase could be significantly shortened.

• After the path characteristics are known to have changed significantly, for

example due to wireless hand-off. TCP could have a notification either

locally, or by using a mechanism such as Lightweight Mobility Detection

and Response (LMDR) [158] for a mobile end to notify its peer about the

link change. After such notification a Quick-Start Request can be sent to

resolve the new path capacity.

• After an idle period. It is recommended that TCP Congestion Window Val-

idation [67] is applied after an idle period in transfer to conservatively re-
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duce the congestion window. The thinking behind this is that the path status

could have changed during the idle period, and since TCP has not actively

probed the path capacity, it needs to re-establish the path capacity by apply-

ing slow-start again with reduced congestion window size.

While Quick-Start is a component of congestion control, Quick-Start is not a

complete congestion control mechanism, and it is not intended as a replacement

for TCP’s standard congestion control. Quick-Start is also not a Quality of Service

(QoS) or resource reservation mechanism. Quick-Start is in fact most effective in

those under-utilized environments where congestion control is not the overriding

issue, and where QoS mechanisms are needed the least. In the subsequent sections

we show this via simulation.

6.2 Quick-Start Protocol Details

Quick-Start is a collaborative effort between end hosts and routers. This section

describes the details of Quick-Start, and discusses the Quick-Start requirements.

Quick-Start has also been specified in the IETF [54].

6.2.1 Packet Format

Quick-Start Request is an IP option intended to be processed by each router along

the connection path. When the receiver gets the Quick-Start Request option, it

responds with a Quick-Start Response TCP option. Figure 6.1 shows the format

of Quick-Start option for IPv4 packet. IPv6 uses a similar packet format as hop-

by-hop option.

Quick-Start Rate Request (Rate), uses four bits in the Quick-Start Request

header, and four bits are reserved for future use. To allow for a larger range of

possible rate values, Quick-Start Rate Request is exponentially encoded to K ∗2N

bits per second, where K is selected to be 40 Kbps, and N is the value in the rate

request field. Thus, with N=1 the minimum rate to request is 80 Kbps and the

maximum rate to request is 1,310,720 Kbps, with N=15. Although this seems

a coarse-grained range, we believe it to be sufficient, since Quick-Start is not

intended to be a replacement for the normal congestion control mechanisms, but to

make a quick rough check if there is a considerable amount of unused bandwidth

on the path.

Recently the Quick-Start specification [54] has extended the packet format

with a 32-bit nonce, and a function field that allows the sender to report the fi-

nal rate that was approved for the TCP connection. The routers closer to the
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Quick−Start Request for IPv4

Quick−Start Response for TCP

LengthOption

0 8 16 24 32

QS TTLRate

LengthKind TTL Diff

0 8 16 24 32

RateResv

Resv

Figure 6.1: Quick-Start packet format.

sender may benefit from this information, since they cannot know if a downstream

router has reduced the rate request, and thus make incorrect assumptions on the

available bandwidth when making decisions on subsequent Quick-Start requests.

These fields were not used in the simulations presented in this chapter, and we

will not discuss them any further. However, the problem of unnecessarily high

rate requests is discussed shortly.

6.2.2 Quick-Start Processing at the Sender

The Quick-Start Rate Request is initialized by the sender to the desired sending

rate in bytes per second (Bps). The sender also initializes a Quick-Start TTL

to a random value and saves the difference between the initial Quick-Start TTL

and the initial IP TTL as TTLDiff . As discussed in the next subsection, the

routers along the network path between the sender and receiver alter the Rate

Request, as appropriate. When the Quick-Start Request arrives at the transport

receiver, the receiver echoes the rate request back to the sender along with the

difference between the Quick-Start TTL and the IP TTL, TTLDiff ′, in an option

in the transport header. Upon reception of an echoed Quick-Start Rate Request

the sender verifies that all routers along the path have approved the Quick-Start

Request by comparing TTLDiff and TTLDiff ′. If these two values are not

the same then the request was not approved by all routers in the network path and

data transmission will continue using TCP’s standard algorithms.

When the TTLDiff and TTLDiff ′ match, the TCP sender then calculates

the appropriate congestion window (cwnd) based on the approved sending rate
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and measured round-trip time as follows:

cwnd =
Rate ∗RTT

MSS + H
(6.1)

where Rate is the approved rate request in bytes per second, RTT is the recently

measured round-trip time in seconds, MSS is the maximum segment size for the

TCP connection and H is the estimated header overhead for the packets in the

connection in bytes. The TCP sender paces out the Quick-Start packets at the

approved sending rate over the next RTT1. Upon receipt of an acknowledgment for

the first Quick-Start packet, the TCP sender returns to ACK-clocked transmission.

Knowing the Rate to Request

One of the problems of Quick-Start is that unnecessary or unnecessarily-large

Quick-Start Requests can “waste” potential Quick-Start bandwidth. Because

routers must keep track of the aggregate bandwidth represented by recently ap-

proved Quick-Start requests (so that the router does not over-subscribe the avail-

able capacity), each approved request reduces the chances of approval for sub-

sequent requests. Ideally, a sender should not use Quick-Start for data streams

that are not expected to benefit from it, such as those that have only a few pack-

ets of data to send. The TCP sender should, in theory, also avoid requesting an

unnecessarily high sending rate. However, it can be difficult for the TCP sender

to determine how much data will ultimately be transmitted and therefore to form

a reasonable rate request. For example, in request-response protocols such as

HTTP [18], the server does not know the size of the requested object during the

TCP handshake, because it has not received the data request yet. Once the web

server does know the requested object, the application would need to determine

the size of the object and then inform TCP as to how many bytes will be sent, be-

cause the objects are rarely written to TCP socket buffers in a single atomic call.

Even if the web server was able to determine the size of the objects, there may

still be more data that the web server does not yet know about. Finally, sometimes

the application cannot even obtain the size of an object because the object is being

read from a pipe or some live source. In Section 6.5.2 we illustrate the problems

of not making a reasonably accurate rate request and offer some strategies for

coping.

1Note that TCPs are required to implement an additional timer for paced transmission when

using Quick-Start.
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6.2.3 Quick-Start Processing at Routers

A router that receives a packet with a Quick-Start Rate Request has several op-

tions. Routers that do not understand the Quick-Start Request option simply leave

the option untouched, ultimately causing the Quick-Start Request to be rejected

because TTLDiff ′ will not match TTLDiff . Routers that do not approve the

request can either leave the Quick-Start Request option untouched, zero the Rate

Request, or delete the option from the IP header. Routers that approve the rate

in the request decrement the Quick-Start TTL and forward the packet. Finally, a

router can approve a rate that is less than the rate in the request by reducing the

rate, as well as decrementing the Quick-Start TTL.

Routers should only approve a Quick-Start Request when the output link has

been underutilized over some recent time period. In order to approve a Quick-

Start rate request, a router generally should know the bandwidth of the outgoing

link and the utilization of the link over a recent period of time. At a minimum,

the router must also keep track of the aggregate bandwidth recently approved for

Quick-Start Requests, to avoid approving too many requests when many Quick-

Start Requests arrive within a small window of time. Section 6.6 discusses in

more detail the range of algorithms that could be used by routers in approving or

denying a Quick-Start request.

Later this chapter speaks of “allocating” capacity, but it is noted that Quick-

Start routers do not in fact reserve capacity for a particular flow and then police

the usage to ensure that the given flow is able to use the granted capacity. Rather,

the router simply tracks the aggregate amount of promised capacity (in the recent

past) in an effort not to promise more than the output link can absorb. If, however,

a burst of unexpected traffic arrives the Quick-Start “allocations” may prove to

be empty promises when the end hosts attempt to use the granted bandwidth and

detect congestion.

6.3 Challenges

Practical deployment of Quick-Start would face some real-world challenges. The

most significant identified challenges are discussed below.

• Increased Periods of Congestion. Quick-Start should be approved only in

situations where the network path is under-utilized, thus allowing a connec-

tion to quickly use spare capacity. Therefore, the correct use of Quick-Start

should not result in increased packet drop rates in the network. In other

words, Quick-Start should not cause congestion, but rather should allow
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a connection to quickly use the spare capacity in the path. In Section 6.5

we show that proper use of Quick-Start does not increase the aggregate drop

rate in a network. However, misconfiguration at Quick-Start routers or some

other bug in Quick-Start could introduce inappropriate traffic to congested

situations. To mitigate this, such a situation causes a full reset to standard

slow start.

• Misbehaving Nodes and Routers. Quick-Start may provide new ways for

two types of misbehavior. First, misbehaving receivers or routers could

try to lead Quick-Start to benefit the connections using Quick-Start. Non-

conformant routers or hosts might try to modify the Quick-Start messages

to benefit particular connections. For instance, a receiver may increase the

rate given in an arriving Quick-Start Request before echoing it back to the

sender in an effort to increase the connection’s performance. Similarly, a

router close to the sender and acting on the sender’s behalf could increase

the approved sending rate and/or adjust the reported TTLDiff ′ from the

receiver to match the original TTLDiff in an effort to mask the network’s

lack of Quick-Start support. While it is possible to attempt to misuse Quick-

Start, it is not without risk of lower performance since the TCP sender is

required to go back to slow-start if the inappropriately high sending rate

causes packet losses in the Quick-Start window. In addition, recently ad-

ditional mechanisms have been added to Quick-Start IETF specification to

make misuse more difficult [54]. A second type of misbehavior comes from

attackers attempting to prevent legitimate use of Quick-Start. This aspect

of Quick-Start is further discussed in Section 6.7.

• Added complexity at routers and end-nodes. One of the main costs of

Quick-Start is that the required changes to both end-hosts and routers may

moderately increase implementation complexity. For end-hosts the addi-

tional complexity may be justified by (i) the possible benefits of Quick-Start

and (ii) that end hosts often have spare processing capability (although this

is not universally true — especially for busy servers). However, the addi-

tional complexity at routers can be a difficult issue, since performance and

scalability requirements in routers have to be carefully balanced. Packets

containing a Quick-Start Request represent an extra burden for routers and

could result in extra delay for end-hosts. Of course, all packets would not

contain Quick-Start Requests. Additionally, Quick-Start should only be ap-

proved in times of under-utilization and therefore the routers may be able to

perform an efficient quick check of the utilization and only act on requests

when the router is under-utilized (and can likely better absorb the additional
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processing requirement).

• Interactions with Middleboxes. It is known that there are middleboxes

in the current network that drop packets containing known or unknown IP

options [118]. This could result in significant delay for connections using

Quick-Start requests, as packets using Quick-Start requests would have to

be retransmitted without the Quick-Start Request Option (and if the option

is transmitted on a SYN segment the initial retransmission timeout of 3 sec-

onds [127] makes this a lengthy process). One consequence is that initial

deployments of Quick-Start may be in controlled environments, where it is

known that packets with Quick-Start options would be forwarded.

• IP Tunnels. Some IP tunneling mechanisms encapsulate the IP packets

without decrementing the IP TTL of the IP header. Therefore it is possible

that an IP tunnel that is not aware of Quick-Start encapsulates the packet so

that the Quick-Start TTL Diff does not change. As a result, the Quick-Start

request can pass the tunnel without being processed by the routers along

the tunnel path, while to the sender it seems that all routers have approved

the request. There is no known way to reliably handle Quick-Start Requests

on paths with such transparent tunnels. Some common types of tunnels are

those used by IPsec [93] and IP in IP encapsulation [128].

• Deployment. An additional downside of the Quick-Start approach is that

the scheme is not conducive to incremental deployment. Since both end

systems and all the routers along some path have to support Quick-Start

for the mechanism to work there is quite a high barrier to general use. We

expect that initial deployments of Quick-Start would happen within closed

networks whereby hosts and routers both have an interest in aiding perfor-

mance.

6.4 Simulation Setup

In the following sections we use the ns-2 simulator to explore various aspects of

Quick-Start. We use a network comprised of three routers, R1–R3, arranged in a

chain. The two links between the routers have a bandwidth of Lbw and a one-way

link delay of Ld. Unless otherwise noted, Lbw=10 Mbps and Ld=20 msec. The

routers employ drop-tail queuing2 with a maximum queue size of 150 packets.

2We believe that drop-tail queueing is used in the majority of the network routers because of its

simple and efficient characteristics.
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For most simulations, web clients and servers are connected to the ends of

the network (to R1 and R3) with dedicated 1000 Mbps links with a mean one-

way link delay of 12 msec and a maximum delay of 110 msec. The actual link

delays are chosen to give a range of round-trip times that matches those from

measurements, using the process from [58]. A varying number of web servers,

N , are connected to R1 with a corresponding number of web clients connected

to R3. The measurements presented in the subsequent sections all refer to the

traffic from the web servers connected to R1. We also attach N
2 web clients to

R1 and N
2 web servers to R3 to provide background traffic on the return path.

When Quick-Start is enabled, all web servers attempt to use Quick-Start. The

standard web traffic generator included with ns-2 is used in our simulations, with

the following parameter settings: an average of 30 web pages per session, an

inter-page parameter of 0.8, an average page size of 10 objects, an average object

size of 400 packets and a ParetoII shape parameter of 1.002. We use HTTP/1.0-

like transactions, with one web object per TCP connection. These parameters

are not picked to match any particular network’s traffic distribution, but rather to

explore Quick-Start’s impact on a wide range of connection sizes. Our web traffic

simulations are run for 150 seconds.

In addition, a few simulations make use of a single transfer at a time. These

simulations use FTP to transfer a file of given size over the network given above

with no reverse traffic present.

Finally, all TCP connections use ns-2’s sack1 TCP variant with an initial cwnd

of 3 segments (per [9]), an MSS of 1460 bytes, an advertised window of 10,000 seg-

ments3, and the receiver acknowledging each segment. All simulations are re-

peated 12 times, with averages and standard deviations shown in the graphs.

All simulations presented in the remainder of the chapter use this setup unless

otherwise noted.

6.5 Connection Performance

In this section we explore when Quick-Start is and is not of benefit. In addition, we

consider how to choose the Quick-Start request size, the implications of Quick-

Start on aggregate network traffic and the implications of Quick-Start failures.

3This is high enough to make the advertised window a non-issue in our simulations.
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6.5.1 Ideal Behavior

In an ideal Quick-Start scenario over an under-utilized network path, the TCP

sender would be able to transmit as much of its data in the initial congestion win-

dow as the spare network capacity can absorb. Figure 6.2 illustrates an example

of the ideal Quick-Start behavior by displaying time-sequence plots of two con-

nections4 . The first connection is a standard TCP connection that uses slow start

to begin transmission (with an initial cwnd of 3 segments, per [9]). The second

connection on the plot shows a case where an approved Quick-Start Request al-

lows the sender to transmit 25 of its 30 packet transfer in the first round-trip time.

When the first acknowledgment for data arrives at the TCP sender, the sender

continues in slow-start, sending two packets for each acknowledgment. The con-

nection using Quick-Start completes in just over half the time required by the

non-Quick-Start connection.
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Figure 6.2: Normal TCP Slow-Start (left) vs. Quick-Start (right).

Equation (6.3) gives the number of round-trip times, NumRtts, required for

transmitting N packets of data in TCP slow-start assuming an ACK for each seg-

ment transmitted5, in addition to the initial SYN exchange, given an initial con-

gestion window of W packets (and, where N and W are both at least 1 segment).

4In this scenario the link bandwidth was 384 Kbps and the round-trip delay one second, roughly

motivated by a GPRS/EDGE wireless scenario [150].
5This assumes that there is no congestion in either direction and the receiver’s advertised window

does not constrain the congestion window.
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NumRtts =

⌈

log2

(

N

W
+ 1

)⌉

(6.2)

From this equation we note the clear attraction to maximizing W as much as is

appropriate over a given network path.

Next we use the ns-2 simulator to investigate the ideal impact of Quick-Start.

We use a simple scenario with link capacity set at either 384 Kbps or 100 Mbps,

various link delays, routers with unlimited buffers, routers willing to allocate 90%

of their capacity to Quick-Start requests and TCP making Quick-Start Requests

of 20 MB/sec. Figure 6.3 shows the results of the simulations. Although the sim-

ulation scenario is not necessarily realistic, it illustrates the potential impact of

using Quick-Start. The results confirm the theoretical analysis above, showing

that increasing the initial cwnd aids performance — especially for medium-sized

transfers that are close to the delay-bandwidth product of the network path. In

addition, the plots show that Quick-Start is less beneficial for excessively short or

long transfers. Short transfers leave little room for improvement since they take

little time. The performance of the long transfers in these simulations is dictated

by the bottleneck link rate. Therefore, the longer the connection lasts the less im-

pact the startup scheme has on overall performance since the connections perform

identically after the startup phase. These results are similar to those presented in

a study of an initial implementation of Quick-Start [156].

Figure 6.4 shows a similar graph, but with an analytical estimate of the per-

formance improvement provided by Quick-Start. The number of round-trip times

R required to transmit N packets of data is approximated using equation 6.3,

where W is the size of the initial congestion window (from either Quick-Start or

from the default initial window), and M is the delay-bandwidth product of the

path. The number of round-trips R includes one round-trip for the initial TCP

SYN/SYN-ACK handshake. For Equation 6.3, we assume that the connection is

the only traffic, and that the routers each include a delay-bandwidth product of

buffering. As a result, once the congestion window reaches the delay-bandwidth

product, the TCP connection continues to keep the pipe full, transferring a delay-

bandwidth product of data for each time unit equal to the initial round-trip time.

M = bandwidth ∗RTT/packet size

R = log2

(

max
(

min(N,M)
W

+ 1, 2
))

+
⌈

N
M

⌉ (6.3)

Figure 6.4 assumes a packet size of 1500 bytes, an initial congestion window

W of three segments without Quick-Start, and an approved Quick-Start request

of 1.3 Gbps, the maximum request size allowed by the specification [54]. Thus,

Figure 6.4 illustrates an upper bound on possible improvement with Quick-Start
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Figure 6.3: Relative improvement with Quick-Start, for a 384 Kbps link and a

100 Mbps link with a range of round-trip times.

– it is not recommended that routers approve Quick-Start requests equal to the

entire link bandwidth.

6.5.2 The Size of the Quick-Start Request

We next consider how the sender chooses the Quick-Start request size, and how

the size of Quick-Start requests affects the aggregate usefulness of Quick-Start.

As discussed in Section 6.2.2, an ideal Quick-Start request would contain the pre-

cise sending rate the connection would like to use. However, knowing such a

sending rate is non-trivial and depends on a number of factors. A simple Quick-

Start implementation for TCP could send a fixed Quick-Start request each time
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Figure 6.4: Upper bound for relative improvement with Quick-Start, for a single

flow over a 10 Gbps link, with a range of round-trip times.

a request is transmitted. This would not be unreasonable for initial Quick-Start

requests, since in many cases, the TCP sender has no knowledge about the appli-

cation or the network path when the TCP SYN segment is sent. For Quick-Start

requests sent in the middle of a connection, e.g., after an idle period, the sender

may be able to make a more informed Quick-Start Request.

To illustrate the problem with overly large Quick-Start requests we simulate

two scenarios involving web traffic that uses one TCP connection for each web

object transferred. Figure 6.5 shows the results. Each vertical line on the plots

represents a separate TCP connection’s length, and each circle indicates the quan-

tity of Quick-Start data transmitted over the given connection. In the first case

(top plot), TCP connections use a static Quick-Start request of 2 MB/sec for each

connection. In the second scenario (bottom plot) the requests are ideal (even if

unrealistic) for the amount of data the given connection will ultimately transmit.

In addition, Quick-Start is not used if the connection is able to send all data in

3 segments (per the initial cwnd allowed by [9]). This example uses an average

web object size of 60 packets.

As shown in the top plot, Quick-Start requests are generally granted for only

the first connection in each group. The router is generally unable to approve re-

quests of later connections in each group, because the first connection is granted

all of the available Quick-Start bandwidth even though the first connection can-

not use such a large allocation. As a result, the extra allocation is “wasted”, in

that subsequent Quick-Start requests are denied unnecessarily. The bottom plot
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Figure 6.5: TCP connection lengths and starting times. Connections with Quick-

Start packets are marked with a circle.

shows that when making ideal Quick-Start requests the Quick-Start requests are

approved more often because there are fewer wasted approvals.

While the ideal case above is preferable, TCP connections do not, in general,

have enough information to make ideal requests. However, there are several ways

systems can cope. First, if an end-host is configured to understand the maxi-

mum capacity of its last-mile hop, C bytes/sec, requests could be chosen to be

no larger than C . Going even further, a policy decision could be made to disal-

low any one TCP connection from using more than some fraction of the capacity

and that could be used as an upper bound on the Quick-Start request (e.g., on

a large web server). In addition, a sender could leverage the size of the local

socket send buffer, S bytes, and the receiver’s advertised window, W bytes, when
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choosing a request size6. Given an RTT of R sec7 TCP can send no faster than

min (S,W ) / R bytes/sec (assuming W is non-zero and using S if the advertised

window is not yet known). Finally, and more speculatively, if an application in-

formed the sender of the size of a particular object (when known), say O bytes, the

sender could request precisely the rate required to transmit the object in a single

RTT as (O + (O/MSS) ∗ H)/R bytes/sec for a given MSS size and estimated

header size of H bytes. While these techniques do not necessarily provide for an

ideal Quick-Start request they could well provide a more reasonable request than

simple picking a static rate for all cases.

6.5.3 Loss of Quick-Start Packets

We now consider the response of a TCP sender to the loss of a Quick-Start packet,

that is, a packet sent in the RTT after a Quick-Start Response triggers an increased

sending rate.

Routers should only approve a Quick-Start Request when the output link is sig-

nificantly underutilized and therefore there should be few congestion losses due

to transmitting at the rate determined by Quick-Start. However, it is possible for

there to be losses of Quick-Start packets because the allocations are not reserva-

tions. If a Quick-Start packet is lost after an approved Quick-Start Request, we

call this a Quick-Start failure. This situation can arise for a number of reasons, for

instance because a burst of traffic arrives at a router immediately after the router

approves a Quick-Start Request or because a buggy or broken router simply ap-

proves all Quick-Start requests or mis-calculates the rate that should be approved.

An explicit congestion notification [136] for a Quick-Start packet is also a Quick-

Start failure, and the TCP sender should revert to default TCP congestion control

if it gets such a congestion notification.

Generally, after detecting a lost packet from three consecutive duplicate ac-

knowledgements, the TCP sender halves its congestion window and transmission

continues using the congestion avoidance algorithm [81, 11], increasing the con-

gestion window by roughly one segment each round-trip time. However, when

a Quick-Start failure occurs, the sender cannot make strong assumptions about

the current path capacity; in particular, the sender cannot fall back of the fact

that a congestion window of half the current size was successfully transmitted in

the previous round-trip time, as is the case during slow-start. As a result, halv-

ing the congestion window would not necessarily be an appropriate response to

6When sending a request in the initial SYN segment of a connection the sender will not know

the peer’s advertised window.
7Or, an approximation if the connection has not yet taken an RTT measurement.
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a Quick-Start failure. Instead, as specified in [54], after a Quick-Start failure the

TCP sender returns to slow-start, using the default initial window, as it would have

done if Quick-Start had not been approved.

Figure 6.6 shows time-sequence plots of several different TCP variants to il-

lustrate TCP’s response to a loss of a Quick-Start packet. The top plot in the figure

shows a Quick-Start failure followed by fast retransmit and fast recovery (i.e., a

simple halving of the congestion window). The second figure shows a Quick-Start

failure followed by the proposed response of a slow start from the standard initial

congestion window. Finally, the bottom plot shows a connection using standard

slow start without Quick-Start. Because after fast recovery the congestion window

increases in a linear fashion while Slow-Start increases cwnd exponentially, the

Slow-Start response may find the appropriate sending rate faster than congestion

avoidance, and hence offer better performance (as is illustrated in the figure). In

addition, depending on the size of the congestion window used by Quick-Start,

a simple halving may not be enough to alleviate congestion within the network

and so several multiplicative decreases could be required before TCP finds an ap-

propriate value for cwnd. With a Slow-Start response to a Quick-Start failure,

the sender loses roughly two round-trip times because of the Quick-Start failure8,

compared to a transfer without Quick-Start (shown in the bottom graph of Fig-

ure 6.6). While a Quick-Start failure should be a rare event, Figure 6.6 shows that

standard slow start without Quick-Start can be a better choice over a path with a

badly behaving or buggy router.

Finally, we note that ECN [136] can be used with Quick-Start. As is always

the case with ECN, the sender’s congestion control response to an ECN-marked

Quick-Start packet is the same as the response to a dropped Quick-Start packet,

thus reverting to slow start in the case of Quick-Start packets marked as experi-

encing congestion.

8This assumes SACK-based loss recovery that can detect and repair multiple losses within one

RTT [23]. More generally, the connection is lengthened by one Quick-Start RTT and the time

required by the loss recovery operation when compared to standard TCP.
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Figure 6.6: The TCP Response to a Quick-Start Failure. Top: Halving the window

after a loss. Middle: Slow-Start after a loss. Bottom: Slow-Start without Quick-

Start, without losses.
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6.5.4 Aggregate Impact of Quick-Start

Because Quick-Start requests are only approved when the output link is signif-

icantly underutilized, Quick-Start should have little effect on the long-term ag-

gregate utilization and drop rates on a link. In particular, when link utilization is

high, routers should not approve Quick-Start requests; thus, Quick-Start is not a

mechanism designed to help a router maintain a high-throughput low-delay state

on the output link. In Section 6.6 we study various methods for routers to use to

choose whether to approve Quick-Start requests and how much capacity to grant

each request. In addition, we illustrate the implications of using Quick-Start when

the router is not significantly under-utilized.

For the traffic models used in this chapter, the amount of data requested by a

user is independent of whether Quick-Start is used, and independent of the the fate

of the Quick-Start requests. While the use of Quick-Start or particular allocations

from the routers will have an impact on the time required for particular transfers,

the aggregate amount of data requested is not affected. Given this model, although

the use of Quick-Start might be of great benefit to the individual user, Quick-Start

should have little effect on the long-term aggregate link utilization or packet drop

rates.

Figure 6.7 shows the overall utilization and aggregate drop rates with and with-

out Quick-Start, for a simulation scenario with web traffic with an average object

size of 400 packets (as described in Section 6.4) on a 10 Mbps shared link as a

function of the number of web sessions. As shown in the figure, the utilization

and drop rates are largely independent of whether or not Quick-Start is employed.

The line labeled “QS Bandwidth” in the top graph of Figure 6.7 shows the relative

bandwidth used by Quick-Start packets in the simulations using Quick-Start — in-

dicating that Quick-Start is being put to use at the beginning of transmission. We

also conducted simulations with smaller average web object sizes (of 60 packets)

and obtained similar results.

Figure 6.8 shows per-connection performance of all traffic involved in a sim-

ulation of 3 web servers. Each point on the plot represents the duration of a sin-

gle connection, with the point type indicating whether Quick-Start is used. The

top plot shows the results from a simulation run over 10 Mbps while the bot-

tom plot uses a 100 Mbps bottleneck. For medium to large transfers the plots

show Quick-Start improves performance — by a factor of 2–3 in many cases,

with larger savings over the higher bandwidth path. These plots show that even

though the overall bandwidth usage and drop rates are similar with and without

Quick-Start, per-connection performance is increased when using Quick-Start.
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Figure 6.7: Comparison of utilization and drop rates with a 10 Mbps shared link.

6.6 Router Algorithms

This section discusses several possible Quick-Start algorithms for routers to use

to choose when to approve Quick-Start requests and how much capacity should be

allocated when approving requests. We start with a basic algorithm that requires

minimal state, and proceed to an extreme Quick-Start algorithm that keeps per-

flow state for approved Quick-Start requests. It is desirable for routers to be able

to process Quick-Start requests efficiently. At the same time, the Extreme Quick-

Start algorithm explores the ability of the router to selectively approve Quick-Start

requests in order to maximize the use of Quick-Start bandwidth by the end-nodes.

A final consideration is attackers that wish to leverage Quick-Start in denial-of-

service attacks, which we investigate in the next section.



118 6 Evaluating Quick-Start for TCP

2000 5000 10000 20000 50000 100000 200000

0
.0

0
.2

0
.4

0
.6

File size (Bytes)

D
u

ra
ti
o

n
 (

s
)

x
xxx xx

x
x

x x
xxxxxx

x
x

x
xx xx

x x
xxx

x
x x

x
xx

x
xxxxxxx xx

x
xxxx

x
x

xx
xx xxx

x
x

x x
xx

x
x

x
x xxx

x
x

x x
x xx

xx
x xxx

x
xx

x
xx x

x
xxxx

x
xx xxx

x
xxx

x
x

xx
x

x
xx

x
x

xx x xx
xx x

x
x

x
xx xx

x
xx xxxxxxx xxxxx

x x
xxxxxx x

x x
xxxxxxx x

x
x

x
xx

xx
xxx

xx
xx

x
x

xx
xxxxx

x
xxx x

x
xxxxxxxx xxx xxxxx

x
xxxx

x
xx

xx
xxxx

x
xx

x x
xx

x
x

x
xxx xxx

x
x xxx xx

x
x xx xx

x
x

x
xxxxxxx

x
xx xxx

x
x xxxxx

x
xx

x
xx

x
xxx

xx
xxxxxx xxx

x
xx

x
xx

x
x

x
x

x
xxx xxxx

x
x xxxx x

x
xxxxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx xxx

x
x

x
xxxxx

xx
xxx

x
xxxx x

x
xxxxxx

x
xxxx

x
x

x
x xx

x
xxx

x x
xxxx

x
xx

xx
xxxxxx xxxxx xxx

x
xx

x
x

x x
xx xxx

x
xxx

xx
xx

x
x x

x
x

x
xxxx xxx x

x
x x

x
xxx

x
x xx xxxxxxxx xx xxxx

x
x

x
xx x

x
xxx xxxx

xx x
x

x
x xxxxx x

x
xx xx

x
xx

x
xx

x
xx xxx

x
x

x
x xxx

x
xxxxx

xx
x xxx

xx
xxxxxx

x
xxxx xxx xxx

x xx
x

x
x

x
x

x
x

x
x

x
x

x x
x xx xxxxxx

x x
xx xxx

x
x

x
xxxx

x
xx xxx

x
x

x
x

xx
xxxxx

x
xx

x
xxx xxx

x
xxxxx

x
x

x
xx

x x
x x

x
xxxx

x
x

x
x xx

x
xx

x x
xx xxx

x
xx

x
xx xxx x

x
xx

x
xxx

x
xxx

x
x

x
xx

x x
x

xx x
xxxxx

x x
xxxxx x

x
xx x

x
x

x
xx

x
xx

x
x

x x
xx

x
x

xx
x

x
x

x
xx

x
xx

x
x

xx
x

x
x

x x
x

xx
x

xx
xxx

x
x

x
xx xxx xxxxxx x

x
xxxxxxxxx xxxxxxx xxxxx

x
xx

x
x

x
x

x xx
x

x
x

x
xx

xx
xxxx x

x
xx

x
xxxx

x
xxxxxx

x
xx

x
xx xxxx

x
xx x

xx
xx

x
xxxxxx xx

x
xx

xxx x
x

x
xxxx xxxxx

x
xxxx

x
x xxxx

x
x

x
x

x
x

x
xxxx

x
Regular TCP
Quick−Start

2000 5000 10000 20000 50000 100000 200000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

File size (Bytes)

D
u

ra
ti
o

n
 (

s
)

xx

x

x
x

x

xx

xx xxxxxxx xxxxxx x

x

x

x

xxxxx

x

x

x

x x
x

x xxx

x

x xx

x

xx x

x

x

x

x

x

xx

x x

xxx
x

xxx
x

xxxxxx

xx x x

x xxx x

x

xx

x x

x

x

xx
x x

x
x

xxx
x x

x

xx

x

x

x
x

x x
x

x

xxxxxxx
x

xx

x

xx xx

x

xxxxxx

xxxx
x

x

xx

x

x
x

xxxx xx

xx
xxxx

x

xxxx xxxx

x

x
x

x
x x

x

xx

xxxxxxx

x
xxx xx

x

xx

x x

x

x xx xx
x

xxxx

x

xx

x

x xxx x
xx x

x
x

xx

x

xxxxx
xx

xxx x

x

x

xx

x
x

x
x x xx

xx

x

xxxx xxxxx

x
xxxxx

x

x x

x

x

x xxx

x

x

x xxxx

x

xx x
x x

xx

x

xxx x
xx x

xx xx

x

xxx x

x

x xxxx
x xx

xxxx xx
x

xx xxxxx xxx
x

xxxxxx xxxx
x x x

xxxxx

x xx

xx
x

x
x x

xxx

xx

xx
x

xx x
x

x xxxxxx xxxxxx x

x

xxxxx
x

xxx xxxxx xx

x

xx

x

xx
x x

xxxxxxx
x

xx
x

x

x

xxxxxx

x

x xx x

x

xx
x

xxxxxxxxx xx
x

xxxxxx

x

x
x

x

x

xx
x

xx
x x

x
x

xxxxxxxx xx
x

x

x

xx xx

x

xx xxxx
xx

xxxx
x

xxx

x
xxx

x

xx

x

xx

x

xx x

x

xxxxx x

x
x xx

xx
x

x x

x

x

x xx xxxxxxxxxx xx

x

xx xx
xxx xx
xx

x
x xxxx x

x
xxx

x
xxx x

x
xxx

x

x
xx

xxx
x

xxxx x
x

xxxxxxxxxx
x

xxx xxxxxx xxxx x
x

x xxx xx
x

x
x

xx x
x

xx

x

xx
x xx x

xx
x

x
x xx

x xxx
x

xx

x

x
x x

xxx
x

xx
x x

xxxxxx
x

xx

xxx

xxxx

xx
xxx xx

x

x
x x

x

x

x

x

x

x

xxxx

x

x xxx x
x

x xxx
x

x
x x

x

x

xx
x xx

x
x

xxxx

x

xxx x
x

xxxx
x

xxxxxxxx

x

xxx

x

x
xx

x xx

x

xxxx

xx
xx

x

x

x x

xx xx x

x

x xx

x

xxxx

xx

xx
x

xxx xxx xxxx

x

x xx xxxxxx
x

xxx xxx xxxx xxxx
x

x

x x

xx
x

xx
x

x
x

xxxxxxxx

x

xxxxxx

x

x x

x

xxx

x

x

x

x

x

xx
x

x

x

x
x

x

x

x

x

x

x

x

xx

x

x

xx
xx

xx
xxx

x
Regular TCP
Quick−Start

100 Mbps

10 Mbps

Figure 6.8: Per-connection performance. 10 Mbps and 100 Mbps shared link with

3 web sessions.

6.6.1 Basic router algorithms

Quick-Start requests represent an increased packet processing burden for routers

that may also result in an increased end-to-end delay for packets with Quick-Start

requests. Therefore, it is important that the algorithm for processing the Quick-

Start requests at routers be as efficient as possible, with a small memory footprint.

To know if there is sufficient bandwidth available on the output link to approve

a Quick-Start request, the router needs to know the raw bandwidth and have an

estimate of the current utilization of the link. The router also has to remember

the aggregate bandwidth approved for use by end hosts in the recent past to avoid

approving too many requests and over-subscribing the available capacity. In this
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section we consider the algorithms used by routers to process Quick-Start requests

for point-to-point links; algorithms for multi-access links are left as future work.

The first router design choice concerns the router’s method for estimating the

recent link utilization. There are a range of measurement and estimation algo-

rithms from which to choose, including alternatives for the length of the mea-

surement period. We discuss two methods for estimating the link utilization, the

moving average and measuring the peak utilization. We also note that assessing

alternate algorithms is an area for future work.

The moving average estimation technique uses a standard exponentially

weighted moving average to assess the utilization over the recent past. This

scheme was originally used for Quick-Start in [156]. We define U(t) as the uti-

lization at time t, M(t) as the link utilization measurement at time t, δ as the

interval between utilization measurements and w as the weight for the moving

average. The utilization is defined as:

U(t + δ)← w ∗M(t + δ) + (1− w) ∗ U(t) (6.4)

We note that the weight w should depend on the interval δ, so that the utilization

is estimated over the desired interval of time.

The peak utilization estimation technique records the link utilization mea-

surements over the most recent N time intervals. Thus, if each time interval is s

seconds, then the peak utilization method takes the peak s-second link utilization

over the most recent N ∗ s seconds. The peak utilization method reacts quickly

to a sudden increase of link utilization, but also remembers a period of high uti-

lization in the recent past. Unless otherwise noted, we use N = 5 intervals of

150 msec each.

In addition to the two methods for estimating link utilization, we consider

two different algorithms for deciding whether to approve a given Quick-Start re-

quest and how much capacity to grant in an approval. Both these algorithms rely

on knowing recent qs approvals, the aggregate bandwidth promised in recently-

approved Quick-Start requests — ideally over a time interval at least as long as

the typical round-trip times for the traffic on the link. If the time interval for this

assessment is too small, then the router forgets recent Quick-Start approvals too

quickly, and could approve too many requests, thus over-subscribing the available

bandwidth. On the other hand, if the time interval is too large, the router errs on

the conservative side and remembers recent Quick-Start approvals for too long.

In this case the router counts some of the Quick-Start bandwidth twice, in the re-

membered request and also in the measured utilization, and as a result may deny

subsequent Quick-Start requests unnecessarily. Unless otherwise noted, we use

150 ms as the length of recent qs approvals.
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The Share algorithm is introduced in [156] and given in Figure 6.9. The al-

gorithm uses the output link’s raw bandwidth and the recent utilization estimate

to allocate up to a pre-set fraction ALLOC RATE of the unused bandwidth for

each arriving request. The rate request variable represents the incoming request

and approved represents the approved rate request that will be forwarded with the

packet. The Share algorithm does not follow the design criteria we have sketched

thus far in this chapter that Quick-Start requests should only be approved when a

given link is significantly under-utilized; the Share algorithm approves a request

for up to a fixed fraction of the available bandwidth, regardless of the levels of uti-

lization. We include an assessment of the Share algorithm in this chapter in order

to (i) compare the router algorithms we introduce with previous work and (ii) to

validate our design criteria that Quick-Start should in fact only be used when all

routers along a path are significantly under-utilized.

The Target algorithm, given in Figure 6.10, approves Quick-Start requests

only when the link utilization, including the potential bandwidth of recently-

granted Quick-Start requests, is less than some configured percentage of the link’s

bandwidth, denoted qs thresh. This gives a router direct control over the notion

of “significantly under-utilized”. When a Quick-Start request is approved, the ap-

proved rate is reduced, if necessary, so that the total projected link utilization does

not exceed qs thresh.

Figures 6.11 and 6.12 show simulations with the Share and Target algorithms,

respectively. The simulations use a range of values for the ALLOC RATE pa-

rameter in the Share algorithm and a range of values for the qs thresh parameter

in the Target algorithm. Both the Share and the Target algorithms use the peak

utilization method for estimating link utilization.

The top graph in Figures 6.11 and 6.12 shows the overall link utilization for

each simulation. The middle graph shows the fraction of Quick-Start Requests

approved. Finally, the bottom plot shows the fraction of Quick-Start failures. The

main difference between the two algorithms is that the Share algorithm approves

more Quick-Start requests and experiences a larger number of Quick-Start failures

than the Target algorithm as the network becomes more congested. We note that

the ALLOC RATE parameter does not control whether the Share router approves

a Quick-Start request; it only controls the size of the approved request. The Share

algorithm approves Quick-Start Requests even at high utilization levels. Even

though the approved requests are for progressively smaller portions of the band-

width the rate of failure increases. Finally, we note that the fraction of failure

for both algorithms is relatively small. However, given that both algorithms have

roughly the same complexity, the Target algorithm would be preferred given the

results in Figures 6.11 and 6.12.
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avail_bw = bandwidth * (1 - utilization);
avail_bw = avail_bw - recent_qs_approvals;
approved = avail_bw * ALLOC_RATE;
if (rate_request < approved) {
approved = rate_request;

}
recent_qs_approvals += approved;

Figure 6.9: The Share algorithm for processing Quick-Start requests.

util_bw = bandwidth * utilization;
util_bw = util_bw + recent_qs_approvals;
if (util_bw < qs_thresh * bandwidth) {
// Approve Quick-Start Request
approved =

qs_thresh * bandwidth - util_bw;
if (rate_request < approved) {

approved = rate_request;
}
recent_qs_approvals += approved;

}

Figure 6.10: The Target algorithm for processing Quick-Start requests.
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Figure 6.11: Performance of Share algorithm.
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Figure 6.12: Performance of Target algorithm.
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Figures 6.13 and 6.14 compare the moving average and peak utilization meth-

ods for estimating link utilization. The simulations use the Target algorithm with

a 10 Mbps shared link and a target level of 90 %. The top graphs show the frac-

tion of Quick-Start requests approved, and the bottom graphs show the fraction of

approved Quick-Start requests with dropped packets. The moving average simu-

lations were run with a range of values for the weight w, and the peak utilization

simulations were run with a range of values for the number of 150-msec inter-

vals over which the peak utilization was chosen. As the figures show, the method

for estimating the link utilization does not significantly affect the approval rate of

Quick-Start requests, but it does affect the failure rate; simulations using the mov-

ing average link utilization have a higher fraction of Quick-Start failures. The

legend in each figure shows the overall time interval for the estimation; for the

moving average graph, this is estimated as the time needed for−1/ln(1−w) mea-

surements, where a measurement is taken for each departure from the queue [171].

Figure 6.13 shows that the selection of the weight w in the moving average

equation does not have a strong effect on the number of Quick-Start failures. The

weight controls the time interval over which the link utilization is estimated, but

the moving average method still estimates the average utilization; it does not take

into account the variance of traffic intensity that can be present, particularly on

links with low to moderate levels of link utilization. For Quick-Start, where the

router does not want to approve Quick-Start requests that could result in even

transient congestion, tracking the average link utilization can result in unwanted

Quick-Start failures.

For the simulations with the peak utilization method, the Quick-Start failure

ratio is generally lower than with the moving average method. When there are

more than 50 web servers, using only three recent measurements for peak utiliza-

tion causes more Quick-Start failures than when a larger number of intervals are

used. With twenty intervals there are hardly any Quick-Start failures. However,

when ten or more intervals are used, the approval algorithm is also significantly

more conservative, with fewer Quick-Start requests being approved.

6.6.2 Extreme Quick-Start in routers

We use the term Extreme Quick-Start for a Quick-Start router that maintains per-

flow state about Quick-Start requests. With Extreme Quick-Start we can analyze

how much Quick-Start performance could be improved if router efficiency was

not a limiting factor. For example, an Extreme Quick-Start router could perform

the following actions:

• A router could keep track of individual approved Quick-Start requests, and
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Figure 6.13: Performance of moving average utilization metric.

note when the Quick-Start bandwidth resulting from that request begins

to arrive at the router (if in fact it does). This allows the router to more

accurately estimate the potential Quick-Start bandwidth from Quick-Start

requests that have been approved but not yet used at the end nodes.

• A router could keep track of the fairness of Quick-Start request approvals. If

it appears that there are a number of requests that are not approved because

earlier requests have allocated all of the available Quick-Start bandwidth,

the router could reduce the rate approved for individual requests in order to

achieve better fairness between flows.

Our Extreme Quick-Start implementation tracks the Quick-Start Requests made

for each traffic flow, and for each arriving packet it calculates how much data for

a flow has been transmitted after a Quick-Start Request. For each flow the router
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Figure 6.14: Performance of peak utilization metric.

updates a variable qsr used that tracks how much the flow has used from the

allocated rate. In order to know how much data is expected to arrive after the in-

coming rate request the router needs to have an estimate of flow’s round-trip time,

because the senders are in the Quick-Start state for the duration of one round-

trip time during which they are assumed to have used the bandwidth they have

requested. For each incoming Quick-Start Request, the router uses the current

qsr used values from all open flows and compares them to the currently open

Quick-Start requests for each flow to get an exact estimate on how much of the

requested bandwidth has already arrived, and is therefore accounted for in the cur-

rent utilization calculation at the router. This way the router can more accurately

estimate the currently available bandwidth instead of using rough aggregate esti-

mate of the outstanding Quick-Start approvals, as done in the basic Quick-Start.
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Using the above described information for each flow, our Extreme Quick-Start

implementation calculates a simple score for each sender based on the fraction of

Quick-Start Requests made by the sender and the actually used bandwidth dur-

ing the first round-time. This score can be used to identify senders that have a

tendency to request more bandwidth that they are going to use, and adjust the

approved rate in future requests from those senders accordingly. Section 6.7 de-

scribes the use of this algorithm in more detail.

As mentioned above, it is useful for an Extreme Quick-Start router to know the

RTTs of flows, in order to set the length of the interval for measuring the arrival

rate of packets from a flow after an approved Quick-Start request. There are a

number of techniques for routers to estimate flows’ RTTs [84]. In the analysis be-

low, we assume that the Extreme Quick-Start router implements a reliable method

for evaluating RTTs.

Figure 6.15 compares the basic Quick-Start algorithm and the Extreme Quick-

Start algorithm for scenarios with a small range of RTTs. When the RTTs are

known (or easily guessed) by the router, and the router can accurately set the

length of recent qs approvals state to roughly match the round-trip time. In these

simulations, the basic Quick-Start variant uses the Target algorithm with the peak

utilization method. The Extreme Quick-Start variant uses a router that keeps track

of approved Quick-Start requests separately for each flow, updating its state dur-

ing the transmission of the Quick-Start window as the packets arrive, and achiev-

ing a more accurate estimate of the overall amount of Quick-Start traffic that is

still expected to arrive. Figure 6.15 shows a scenario with a range of round-trip

times from 80 to 120 msec, and with the length of recent qs approvals set to 100

msec for basic Quick-Start. From the top plot we see that the utilization is nearly

the same regardless of whether basic Quick-Start or Extreme Quick-Start is em-

ployed. However, the bottom figure shows that the fraction of bytes transmitted

using Quick-Start is greater when Extreme Quick-Start is used by the router to

track each allocation in detail. This illustrates Extreme Quick-Start’s power in

terms of more closely tracking resources such that more requests are approved

than when using basic Quick-Start. This kind of scenario is certainly not typical,

but there could be some initial Quick-Start deployment scenarios, such as in lim-

ited intranets, where there is a limited range of RTTs, and also where the traffic

and network characteristics could be accurately estimated.

As a point of contrast we changed the length of recent qs approvals to 1.5 sec-

onds to investigate Extreme Quick-Start in the context of a basic Quick-Start

router that does not have a “typical” RTT and therefore chooses a conservative

setting (i.e., this setting results in few Quick-Start failures, but also fewer Quick-

Start request approvals). Figure 6.16 shows Quick-Start traffic as a fraction of the
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Figure 6.15: Extreme Quick-Start and Basic Quick-Start with highly tuned pa-

rameters.

total amount of data transmitted. In this simulation we also found the utilization of

basic Quick-Start and Extreme Quick-Start to be nearly identical. The plot shows

that the fraction of bytes sent during the Quick-Start phase of the connections is

greater when using Extreme Quick-Start. The reason for this is that the Extreme

Quick-Start router is able to keep track of the unused allocation separately for

each flow as the packets arrive. Therefore, less wasted capacity is allocated by

Quick-Start which allows more connections to be approved to use Quick-Start.

The difference between basic Quick-Start and Extreme Quick-Start in this figure

is larger than the difference shown in Figure 6.15 due to the more conservative

setting for the length of recent qs approvals.

While the basic Quick-Start is relatively light-weight algorithm at routers with

only a few bytes of additional aggregate state to maintain, Extreme Quick-Start
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Figure 6.16: Basic Quick-Start and Extreme Quick-Start with conservative pa-

rameters.

needs to maintain some state separately for each flow passing the router. This

likely makes Extreme Quick-Start an infeasible algorithm to be implemented at

all routers, although we have not analyzed the actual processing requirements of

Extreme Quick-Start in detail. However, it is possible for different routers to use

different algorithms to evaluate the Quick-Start Requests. Therefore it would be

possible to implement Extreme Quick-Start at selected points in the network, for

example close to the wireless link with possibly less traffic load, to gain some of

its advantages while using the basic Quick-Start elsewhere in the network.

6.7 Attacks on Quick-Start

Quick-Start is vulnerable to denial-of-service attacks along two vectors: (i) in-

creasing the routers processing and state load and (ii) causing temporary false

allocations of Quick-Start capacity that will never be used but may prevent legit-

imate flows from having their Quick-Start requests approved. Since Quick-Start

requests represent a processing burden on the routers involved, a storm of requests

may cause a router’s load to increase to the point of impacting legitimate traffic.

Given the processing burden imposed by Quick-Start this could well be worse

than a simple packet-flooding attack. A simple limit on the rate Quick-Start re-

quests could be considered (with a policy of ignoring requests sent in excess of

this rate) to mitigate the attack on the router itself. In the case of Extreme Quick-

Start another problematic aspect of a storm of packets is the memory requirement
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to track false “connections”.

The second type of attack is more difficult to defend against. In this attack

arbitrarily large Quick-Start requests are sent by the attacker through the network

without any further data transmission. With a relatively low-rate stream of pack-

ets, this can cause a router to allocate capacity to the attacker’s connections and

thus temporarily reduce the amount of capacity that can be allocated to legitimate

Quick-Start users. Note that the attack does not actually consume the requested

bandwidth and therefore the performance of connections competing with attacks

is no worse than connections that simply do not make use of Quick-Start. These

attacks are particularly difficult to defend against for two reasons. First, the at-

tack packets do not have to belong to an existing connection to do damage. And,

second, since the attack just involves a Quick-Start request traversing the network

path in one direction only to trigger bogus allocations, a response is not required.

Therefore, spoofed source addresses are a possible aggravating factor for both hid-

ing the location the attack is originating from and causing a simple blacklisting

defense to fail.

An additional problematic aspect of Quick-Start is that legitimate requests

could well cause the same impact as attack packets. Consider a Quick-Start re-

quest that is approved by the first router for some given rate, R, which the router

then marks as “allocated” for some period of time. Now assume the same request

hits a downstream router that either does not understand Quick-Start requests, re-

duces the rate to less than R or decides it cannot approve any Quick-Start request.

In this case, the first router has allocated some amount of capacity that will not

be used because of the conditions elsewhere in the network. From the perspective

of the first router this is similar to the attack described above. In other words,

capacity allocated for Quick-Start goes unused and therefore reduces the router’s

ability to approve further Quick-Start requests9 .

Since Quick-Start is a loosely-connected distributed approach, routers have

few options to deal with allocations that are never used (or, not fully used). One

approach is to use the notions of Extreme Quick-Start to track a host’s use of

Quick-Start and to disallow Quick-Start for hosts that have previously used less

than their previous allocations. This approach is barely useful if an attacker can

spoof source addresses because each attack packet could simply use a random

source address. Further, it opens the door for another attack type — namely, that

an attacker can prevent a particular host from ever using Quick-Start by making a

9At first glance, allowing the router to watch the Quick-Start responses offers more information.

However, due to asymmetric routing we cannot assume that a router will see the Quick-Start re-

sponses. In addition, an arbitrary router has no idea how to tell if the TTLDiff ′ in the response is

valid and therefore whether the sender will ultimately make use of the response.
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bogus request on the victim’s behalf, thereby getting the victim blacklisted. In ad-

dition, using a blacklist approach seems heavy-handed in the context of legitimate

traffic that does not fully use their Quick-Start allocation (as sketched above).

Another approach is for Extreme Quick-Start routers to track the fraction of

Quick-Start allocations hosts use and then make this a factor in the approval of

subsequent requests. For instance, if some host requests a rate of X bytes/sec

but uses only X/2 bytes/sec because of a downstream limitation, a router may

decide to halve future rate requests from that host. An Extreme Quick-Start router

has the required information to identify hosts that frequently make Quick-Start

requests for more bandwidth than is actually consumed. Therefore, the Extreme

Quick-Start router can reduce subsequent rate requests approved for these hosts.

Furthermore, an extension to the Quick-Start protocol itself has been proposed

to mitigate the effect of false Quick-Start Requests by adding a third pass to the

protocol to follow the Quick-Start response [54]. In this approach, after getting the

Quick-Start response, the TCP sender sends a third message to report the approved

rate to all routers along the path.

We implemented the following algorithm in the Extreme Quick-Start router.

The router stores both the Quick-Start allocation, A(F ), and the amount of band-

width used, B(F ), during the Quick-Start phase for each flow, F . After the mon-

itoring period has elapsed, the router calculates the fraction of the allocation ac-

tually consumed as C = B(F )/A(F ), limiting the maximum C to 1. The router

maintains a score S(H) for each sending host H as follows:

S(H)← w ∗max(C,S(H)) + (1− w) ∗min(C,S(H)) (6.5)

In our simulations we set the gain w to 0.2 and used a measurement interval of

1.5 seconds. Instead of a pure moving average, we selected a function that reacts

quickly to hosts that often make larger requests than they end up using. When a

new request arrives, the router decreases the incoming rate request by the factor

S(H) for the given host H .

Figure 6.17 compares the performance of basic Quick-Start and the variant of

Extreme Quick-Start sketched above. The web servers make static Quick-Start

requests of 2 Mbps for all TCP connections, regardless of the object size. As the

figure shows, when adjusting the allocation approved based on previous usage,

Extreme Quick Start is able to allow a greater fraction of traffic to utilize Quick-

Start compared to the case when the router does not track allocation usage.

Tracking per-host and per-connection state to mitigate this problem may be a

high barrier. However, we note that (i) developing schemes based on aggregate

traffic that do not require fine-grained tracking may be possible and (ii) even if

fine-grained tracking is required a router that is able to approve Quick-Start should
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Figure 6.17: Impact of large Quick-Start requests for all TCP connections when

accounting for abuse.

be under-utilized and therefore may have some cycles to spare (and could simply

turn off all Quick-Start activity when busy). We defer an in-depth study of such

schemes to future work.

6.8 Summary and Open Issues

In this chapter we have described the Quick-Start protocol and discussed some

of the design alternatives in the protocol. We also presented some alternatives

for algorithms to be implemented at end hosts and routers for protocol process-

ing, and evaluated the performance and relative difference of the Quick-Start al-

gorithms. We have discussed the potential costs and benefits of Quick-Start on

performance in an uncongested environment, the appropriate response to the loss

or ECN-marking of a Quick-Start packet, and the range of algorithms for routers

for processing Quick-Start requests. However, there are many issues we could not

thoroughly study in this work, and we list some of the more significant below as

pointers for future research topics.

• How effective would Quick-Start be in practice in realistic scenarios of five

or ten years from now? Would Quick-Start be of great benefit to users

who could send an entire large transfer in a single round-trip time over an

under-utilized path? Or would most of the potential Quick-Start bandwidth
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be “wasted” by legitimate requests denied by downstream routers, by re-

quests from aggressive senders sending a request each round-trip time, and

by malicious requests whose sole purpose is to deny Quick-Start bandwidth

for other users? Recently the Quick-Start algorithm was enhanced with a

Quick-Start Rate Report, that aims to improve the effectiveness of Quick-

Start by adding a third phase to the protocol to inform the routers what was

the actual rate that was approved [54]. However, we have not studied the

possibilities or requirements the Rate Report could introduce to Quick-Start

processing at routers, for example with the Extreme Quick-Start algorithm.

• Would routers have sufficient incentives to implement Quick-Start, consid-

ering the potential benefits, but also the additional processing costs and

possible security concerns Quick-Start may introduce? Our current belief

is that Quick-Start could be first deployed in networks where the routers and

the end-hosts have clear mutual interest in speeding up connection startup.

The initial customer demand for the router and end host vendors could be-

come, for example, from a wireless operator that could deploy Quick-Start

in its own network to enhance the download times of the content and ser-

vices provided by the operator itself. Similarly, an organization could take

Quick-Start into use in its intranet to be able to use the local content and

services efficiently. A possible further research item would be to investi-

gate what are the typical capacities and utilizations in different parts of the

network: would a wireless UMTS operator be able to use Quick-Start, or

even Extreme Quick-Start with the current equipment at its access routers,

or would Quick-Start require additional hardware capacity? Would the sit-

uation be more difficult in the UMTS core network? Would it be feasible,

within some years of time, to deploy Quick-Start in the backbone network

with highly optimized router implementations?

• What would be the minimal sufficient implementation at the routers and

would there be sufficient benefit in deploying more complex algorithms in

routers?

• Would it be possible to implement faster congestion control startup with a

smaller amount of information in packets, such as proposed in the AntiECN

or VCP mechanisms? There are 16 bits in the Quick-Start option that comes

as an overhead from the generic option processing, and 16 bits of data spe-

cific to Quick-Start. The 8-bit TTL field is needed for checking that all

network hops have processed the Quick-Start request and at the same time,

used as one kind of nonce to give some protection against a misbehaving

receiver that tries to forge the Quick-Start responses. Considering the large
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space of different kinds of links that may reside on the same connection

path, it is also useful to have more than one bit to indicate the approved

sending rate. We believe that the current option format is close to the mini-

mum possible to make Quick-Start useful.

• Would we still need an explicit congestion control protocol, such as XCP, if

Quick-Start gets adopted by a significant portion of network hosts? Quick-

Start has most use for medium-sized connections, and for connections with

long lifetime an advanced mechanism would provide finer control than

Quick-Start does. However, Quick-Start could be invoked in the middle of a

connection, and in combination of explicit congestion notification the trans-

port protocol could be able to speed up and slow down the transmission rate

dynamically without having to suffer from packet losses. If the path char-

acteristics changed frequently during a transport connection, we expect a

fine-grained explicit congestion control method to adapt to the present con-

ditions more efficiently than the standard TCP congestion control enhanced

with Quick-Start and ECN.

• How severe are the additional security issues due to Quick-Start? What are

the policing mechanisms that could be deployed in end-nodes and in routers

to address these security issues?

• A router should not approve Quick-Start requests if it cannot reliably deter-

mine the link utilization all the way to the next hop. What would this mean,

in practice, when there is an Ethernet switch, an ATM cloud, or some other

non-IP queue between the router and the next-hop IP router? A related prob-

lem arises with the IP tunnels such as those used in Virtual Private Network

(VPN) solutions. Currently it is unknown if we can ensure proper treatment

of Quick-Start in such cases: Quick-Start Request should be processed in

every router, but an IP tunnel hides the Quick-Start Request inside an outer

IP header, possible encrypting the inner packet header, potentially causing

misbehavior of Quick-Start. The tunnel ingress and egress nodes should be

enhanced to process Quick-Start Requests appropriately, but that would be

a further deployment challenge.

While there are a number of open issues and challenges in the practical de-

ployment of Quick-Start, we believe that the analysis in this chapter helps in fur-

ther evaluation of the possible usefulness of Quick-Start. One environment where

Quick-Start can be expected to be useful, are high-speed wireless links: in many

cases the wireless channel is shared by a small number of users, and is therefore

underutilized for most of the time. On these links it takes relatively long time
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for TCP’s congestion window to reach a size that allows effective channel uti-

lization. Therefore Quick-Start could significantly improve the communication

performance in such setup.

It is probably unrealistic to expect that Quick-Start would be deployed in the

world-wide Internet, but it seems possible to see Quick-Start deployments in lim-

ited and better controlled environments, as discussed above. Deploying protocol

changes or enhancements in the Internet is a difficult topic, because looking at

the past experience, a reasonable belief is that the protocols run in the Internet

core routers are not going to be changed more than once in a generation, if even

then. It remains for future research to show whether Quick-Start is the right and

sufficient change to make in that case, or whether it would be better to use the

rare opportunity of change somehow differently, maybe by trying to roll in more

fundamental changes, such as XCP, to the congestion control framework.
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CHAPTER 7

Using Quick-Start to Improve TCP

Performance with Vertical Hand-offs

Public mobile network access is gaining increased diversity in terms of the types

of access technologies and scattered deployments within one access technology.

This access network diversity combined with an increasing number of multi-radio

mobile nodes (MNs) that are equipped with multiple interfaces representing both

short range radio (such as Wireless LAN - WLAN) and Wireless WAN (WWAN)

access technologies creates an environment, where mobility between access tech-

nologies becomes justifiable. Mobility between access networks may involve both

horizontal and vertical hand-offs, that is, hand-offs within the same access tech-

nology and between different access technologies, respectively.

In this chapter we investigate the use of the Quick-Start algorithm in wireless

network environments. Although initially Quick-Start was proposed to start up

the TCP connections rapidly, we apply it to quickly probe the capacity of the new

network path after a wireless vertical hand-off. We employ an explicit notification

that is delivered to TCP to inform it about the hand-off event and to trigger the

Quick-Start. Quick-Start is expected to be useful in this case, because the delay

and bandwidth characteristics of the different wireless link technologies are often

substantially different, and the traditional TCP is known to converge slowly to the

new network conditions after a vertical hand-off [48].

Quick-Start allows the TCP sender to find an appropriate congestion window

size quickly without having to rely fully on the regular TCP congestion control

algorithms that react slowly in high-latency environments. We also propose an

enhancement to the Quick-Start algorithm that sets the TCP’s slow-start threshold

(ssthresh) in addition to the congestion window. We study by simulations how

TCP performance is affected on vertical hand-offs between WLAN and EGPRS

137
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and how TCP performance can be improved with Quick-Start. As an alternative

to Quick-Start, we apply TCP slow-start on the explicit trigger.

The rest of this chapter is structured as follows. Section 7.1 gives some back-

ground about vertical hand-offs and past related work. Section 7.2 shortly dis-

cusses the IP mobility mechanisms. Section 7.3 describes some of the design

issues with explicit notification mechanisms used to help TCP congestion control,

and Section 7.4 presents results of our simulation studies conducted with Quick-

Start. Finally, Section 7.5 wraps up our investigation.

7.1 TCP Performance on Mobile Hand-offs

Depending on the network environment, a mobile node may be reachable through

multiple network interfaces simultaneously or through a single interface at a time,

changing the active interface every once in a while. It is also common that one of

the network interfaces maintains stable connectivity to the same point of attach-

ment in the Internet (for example, WWAN systems like GPRS/EDGE [29, 150]),

while the other network interfaces may change their point of attachment (and the

IP address) quite frequently (for example, short range systems like WLAN).

Generally there are two types of hand-off: make-before-break, where new IP

connectivity is established before the old one is broken, allowing simultaneous

communication over the old and new link during the hand-off, and break-before-

make, where the IP connectivity over the old link is lost before the new one be-

comes operable, often resulting in packet losses due to the period of disconnec-

tion. In a multi-access environment the make-before-break approach is an inher-

ent choice, provided that the applied mobility solution supports using multiple

link interfaces simultaneously and the link-level connectivity can be maintained

during the hand-off.

Different access networks often represent disparity in link characteristics. For

example, link bandwidth, latency, bit-error rate and the degree of bandwidth asym-

metry may differ considerably. Therefore, sudden changes in the access link char-

acteristics due to vertical or even horizontal hand-offs may interfere with the trans-

port layer protocols and with the applications that base their protocol behavior on

the measured end-to-end path conditions.

Because the TCP congestion window starts from a small initial size and the

detection of the correct network capacity is based on packet loss events, adjusting

the congestion window is sometimes slow and inefficient in the lack of explicit

congestion signals. The ineffectiveness of congestion control is a particular prob-

lem in high-latency environments with relatively slow links, such as GPRS/EDGE
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(EGPRS). Furthermore, when an MN moves during a TCP connection and exe-

cutes a vertical hand-off, a typical TCP implementation is unaware of the hand-off

event and the potential change in the end-to-end path properties. This causes fur-

ther challenges to TCP that converges relatively slowly, sometimes after several

packet losses, to the correct network capacity.

While there are a number of papers that discuss the interaction of TCP and

hand-offs in general (for example [13, 16, 32, 33]), there are less papers that

specifically focus on TCP and vertical hand-offs between different access tech-

nologies. A thorough discussion on the effect of hand-off on TCP performance

is given in [68]. This paper mainly discusses the problems with packet reorder-

ing due to the decrease in the propagation delay and congestion-related packet

losses due to the decrease in the bandwidth-delay product (BDP). It proposes

two schemes, namely, congestion window reduction and nodupack schemes to

improve TCP performance during make-before-break hand-offs. When the hand-

off occurs from a high BDP to low BDP network, the remote TCP sender gets

an explicit congestion window reduction trigger from the MN and reduces the

congestion window. The nodupack scheme limits the transmission of duplicate

ACKs during the hand-off to avoid unnecessary retransmissions caused by packet

reordering. The hand-off is detected either by the TCP receiver noticing that pack-

ets arrive through a new network interface or by an explicit trigger from the MN,

but the paper does not mention how the trigger is communicated to the remote

end.

A comparative study on the effect of vertical hand-off on transport protocols

such as TCP and TCP-friendly rate control (TFRC) is presented in [63]. This

paper proposes over-buffering to reduce the problem due to the change in BDP

to enable smooth changeover between links with different BDP. A drawback of

this scheme is that it is difficult to know in advance how much over-buffering is

needed.

Huang and Cai [74] propose three schemes to mitigate the effect of increased

RTT in make-before-break hand-offs from a fast link to a slow link. These schemes

are aimed to soften the dramatic increase in RTT between the old link and new

link. First, the fast response scheme requires sending the ACKs over the old link

for a short period after the hand-off. In the second scheme, called slow response, a

few ACKs are sent over the new link just prior to the hand-off. These two schemes

may have practical problems if the old link is not available after the hand-off or if

the new link cannot be used prior to the hand-off. The third scheme, called ACK

delaying, softens the RTT change by delaying the few first acknowledgments over

the new fast link.

The Lightweight Mobility Detection and Response algorithm [158] has been
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proposed for making TCP aware of the path change during a vertical hand-off.

It is assumed that the MN notices the subnet changes and relays this information

to the TCP sender through a TCP option. It recommends that after the hand-off

the TCP connection should be treated as a new connection and the TCP sender

should reset the congestion control state and the RTO timer and set ssthresh to a

large value.

7.2 IP Mobility

IP Mobility support is becoming an integral part of the wireless IP data commu-

nication [1]. In a multi-access networking environment the MN often needs to

reconfigure its IP addresses after changing the point of attachment to the network,

or when performing an IP-level hand-off between IP subnetworks. There are sev-

eral IP Mobility solutions and protocols. Some of them address the IP Mobility

problem at the network layer (e.g., Mobile IPv4 [129], Mobile IPv6 [85]), some at

the transport layer (e.g., SCTP with dynamic address reconfiguration [154]), and

some solutions virtualize remote networks or separate the location and identity

transparently from the rest of the system (e.g., MOBIKE [47] and Host Identity

Protocol [134]).

Among the IP Mobility solutions and protocols listed earlier there are different

approaches to handle mobility. It is possible (i) to have a topologically stable

anchor node, like a Mobile IP Home Agent, that the MN registers to. The anchor

node represents the mobile terminal while the terminal is outside its home net-

work. Packets are tunneled between the MN and the anchor node when needed.

This kind of solution requires deployment of anchor nodes and generally causes

inefficient routing of packets. The communicating protocols can (ii) handle mo-

bility directly between the communicating end nodes, and whenever the other end

moves the required IP-level information is signaled with the peer. DCCP with mo-

bility extension is an example of such a solution at transport protocol level [98].

The positive sides are the lack of mandatory infrastructure and no need for tun-

neling, but on the other hand, the lack of a stable anchor node or a rendezvous

point complicates locating the moving MN. Finally, (iii) localized mobility man-

agement (LMM) [91] handles mobility locally and as much as possible on the

access network side without MN’s active participation, using tunnels between the

access network routers and the anchor nodes. This approach is appealing because

it allows terminal mobility also for IP-Mobility-unaware terminals. However, the

downside is the new required support and intelligence on the access network.

One of the problems with most existing IP Mobility protocols is that they

mainly concentrate on fixing the IP routing and reachability. There are protocols
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for reducing the number of packet losses during a hand-off, such as Mobile IP

utilizing simultaneous bindings and bi-casting feature, and protocols for enabling

low latency hand-offs [103]. However, these solutions still neglect the transport

and application layer needs during hand-offs.

7.3 Applying Quick-Start for Wireless Links

When a vertical hand-off occurs, the path characteristics, such as bandwidth and

propagation delay, may change dramatically. This causes problems to TCP that

typically needs several round-trip times to adapt its transmission rate if the change

is significant enough. Also in the connection startup it takes several round-trip

times from a TCP’s slow-start algorithm to reach an appropriate transmission rate

on a high-latency wireless link. The TCP adaptation speed can be improved by an

explicit indication from the network that the path characteristics have changed, to

indicate that the earlier congestion control state may have become invalid.

The explicit notification mechanisms can be categorized into in-band and out-

of-band signaling. Out-of-band signaling could be carried, for example, in ICMP

or RSVP packets, whereas in-band notifications are piggy-packed, for example, as

IP options, along with the data traffic. We consider in-band mechanisms to have

better characteristics for our needs.

Out-of-band mechanisms would have various kinds of difficulties in bearing

the explicit information in a hop-by-hop manner. To mention a few, out-of-band

signaling would contribute to the overhead in the network, especially since the

packets would also need to carry parts of the transport header to make it possible

for the end-hosts to identify the correct transport protocol session. In addition,

ICMP or RSVP packets might be blocked by some middle-boxes in the network

and they would be hidden by IP tunnels, especially with IPsec. While the latter

can also be a problem with IP options, we believe that implementing proper ways

of handling the notifications in these cases would be somewhat easier with in-band

signaling. The in-band versus out-of-band issues are discussed more thoroughly

for example in [54].

We assume that the TCP sender gets information about the hand-off event by

some way. A mobile host usually is aware of the mobility through its own mo-

bility mechanisms. Instead of hiding the mobility information from the upper

layers, the mobile host would need to support internal APIs to allow the mobility

management protocol notify the TCP implementation about the mobility events.

Often the majority of data is sent by a fixed server in the network. In this case

the mobility event would need to be signaled across the network. There have been



142

7 Using Quick-Start to Improve TCP Performance with Vertical

Hand-offs

some proposals how this could be done [48, 148, 105]. One possibility is to de-

liver information of changed last-hop link characteristics in-band as part of the

normal IP-mobility-related signaling. Other option would be to use a TCP option

to indicate that one end of a connection has moved.

After TCP has received a mobility indication, another form of explicit commu-

nication is needed to resolve the new path characteristics faster than TCP normally

would do. Some of the earlier research based on the older wireless technologies

has assumed that the wireless link is the bottleneck on the communication path

(for example [4]). This assumption does not necessarily hold today, as the wireless

networking technologies have become significantly faster. Because TCP needs to

conform to the congestion control principles, and it must not endanger causing

severe congestion on the communication path, the information about the last-hop

wireless link is not always enough, but the state of the whole path needs to be

known in order to determine the appropriate sending rate.

We described the Quick-Start protocol in Chapter 6 and evaluated a number of

algorithms that could be applied with Quick-Start at routers and the TCP sender.

We now turn to evaluate Quick-Start in wireless networks where hand-offs can

cause sudden path changes in the middle of connection. Quick-Start can also

be applied in the middle of a connection upon some special events, and we are

investigating one such event, namely vertical hand-off between two paths with

radically different properties. Quick-Start can potentially improve the communi-

cation performance in these environments that are known to be challenging for

TCP, as described above.

Because it has been observed that slow-start overshoot is a serious problem

with high-latency links [41], we propose an enhancement to Quick-Start that sets

the ssthresh in addition to the congestion window. We apply a simple logic where

the ssthresh is set based on the Quick-Start Response using the same equation as

for setting the congestion window, so that after an approved Quick-Start request

the congestion window and ssthresh are equally sized. While this is a simple

approach, we believe it is an appropriate heuristic over wireless links that do not

typically have large amounts of background load. Therefore limiting the TCP con-

gestion window’s growth rate based on approved Quick-Start request is expected

to prevent congestion losses without significantly limiting the performance. How-

ever, if Quick-Start Request temporarily returns a lower rate than what the full link

capacity is, it is possible that our approach leads to suboptimal use of the wireless

link capacity. Therefore, in future we intend to study more advanced mechanisms

for setting the slow-start threshold, for example by applying the Limited Slow-

Start [53].

The main challenge with Quick-Start is that all routers on the whole network
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path need to support it. As discussed above, in order to be able quickly increase

the transmission rate, this requirement follows from the principle that conges-

tion can happen on any router or any link from the connection path. However, it

would be safe to limit the slow-start threshold without knowing the capacity of the

whole connection path. For example, there has been some past work proposing to

avoid slow-start overshoot by limiting the TCP’s advertised window at the wire-

less receiver [141]. We discuss more about the general applicability and possible

incentives to deploy Quick-Start mobile networks in Section 7.5.

7.4 Simulation Results

This section shows simulation results acquired with ns-2 network simulator. We

first discuss the connection startup performance on wireless links, and then move

on to investigating different types of vertical hand-offs.

7.4.1 Simulation Arrangements

We are assuming a network topology where the MN is capable of using both

Wireless LAN and EGPRS wireless access technologies. The WLAN and EGPRS

links both have dedicated base stations that are connected to a common wireless

access router with a 100 Mbps link. The router has a 100 Mbps connection to a

server in the fixed network. The one-way propagation delay over each link in the

fixed network is 2 ms. The WLAN link has a bandwidth of 5 Mbps with one-way

propagation delay of 10 ms. The IP packet send queue at the WLAN link has room

for 30 packets. The EGPRS link is capable of transmitting 200 Kbps with 300 ms

propagation delay. The EGPRS packet queue is capable of holding 32 packets.

We believe these parameters approximate fairly well the actual characteristics of

EGPRS and WLAN link technologies in a detail that is sufficient for the analysis

in this chapter.

Although our simulation model can be considered to be a simplification of

a corresponding real-world setup, we think it has the relevant components for

evaluating the effect of the vertical hand-offs between two access technologies

on TCP performance. We believe that additional complexity on the network side

does not have significant effect on the simulation results that are dominated by the

wireless link characteristics.

We analyze the behavior of a single TCP connection over the wireless link.

Although this might seem a simple setup, it is rather common that the mobile

terminals with a limited processing capacity and user interface have only one or

few applications and TCP connections active at a time. In addition, the case with
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a single TCP connection is most interesting for Quick-Start, as it is intended for

under-utilized network paths. With several parallel TCP connections the utiliza-

tion of the wireless link would often be too high for the Quick-Start requests being

approved at the wireless access router, and therefore Quick-Start is not expected

to be as useful in such scenarios with wireless links. However, as mobile devices

become more efficient and richer in features, the expected number of active TCP

connections in a mobile host is expected to increase. Therefore an important topic

of future research is to investigate the TCP behavior with Quick-Start and several

simultaneous flows on the wireless network. An interesting special use case dis-

cussed recently is to use the mobile device as a wireless router. In this case not

only the degree of multiplexing on the wireless link is higher, but the mobility

of the wireless router is hidden from the hosts behind the mobile router. With

mobile router some different form of explicit signaling would be needed from the

router to inform the TCP end hosts about mobility. However, we will defer this

discussion to future work.

SACK TCP is used in the simulations. When Quick-Start is not active, the

TCP initial window selection follows RFC 3390, using an initial window of three

1460-byte segments. In these tests the TCP advertised window is 128 packets,

assuming the use of TCP’s window scale option [25].

We model the explicit trigger sent by the MN to the server at the fixed network

during the hand-off procedure when the server starts to use the new path. When

the trigger arrives the Quick-Start sender makes a rate request for 2 MB/sec that

covers the whole path capacity in all cases. The routers may approve the request

with the requested or a smaller rate, or reject the request. The routers use the

Target algorithm at routers with 95% target utilization, and the peak utilization

measurement method for three recent time intervals of 250 ms. The routers also

remember the recent Quick-Start requests from the past 250 ms. Chapter 6 gives

a detailed description of the Quick-Start algorithms and the above-mentioned pa-

rameters.

We primarily test the following four different variants of TCP:

• none: The standard ns-2 Sack1 TCP that does not use any explicit informa-

tion about hand-offs.

• slowstart: The TCP sender gets a notification of vertical hand-off and sets

congestion window to one MSS after vertical hand-off, after which it con-

tinues in slow-start.

• qs: The TCP sender gets a notification of a vertical hand-off and makes a

new Quick-Start request in response. The TCP sender also makes a Quick-

Start request at the beginning of the connection in this variant.
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• qsthresh: Like qs, but the TCP sender sets a slow-start threshold to the

value received in the Quick-Start response. After an approved Quick-Start

response the congestion window and slow-start threshold have the same

size.

7.4.2 Connection Startup

Figure 7.1 shows the connection startup throughput with EGPRS and WLAN link.

The horizontal axis shows the length of a TCP connection (file size) and vertical

axis the TCP throughput for the given amount of data. In these runs only a single

TCP connection is used and no vertical hand-off between the access technologies

occurs.

A couple of observations can be made from the graphs. First, the basic Quick-

Start appears to slightly improve the connection start-up performance. Second,

the graphs show the devastating effect of slow-start overshoot on performance,

especially for moderate-sized transfers (file size roughly 200KB) on a Wireless

LAN link. The graphs also show that setting the slow-start threshold based on

the Quick-Start response effectively avoids the performance degradation caused

by the slow-start overshoot.

Figure 7.2 shows the time-sequence diagrams for one of the cases in Figure 7.1

(file size = 188KB), where the WLAN throughput is at its worst level. The figure

shows why the normal TCP performs badly: the TCP sender stays in slow-start,

shooting the bottleneck queue full of packets, until it gets three duplicate ACKs

as an indication of the first packet loss due to overflow of the bottleneck queue.

The sender makes one retransmission, but it is not able to avoid a retransmission

timeout because a significant number of packets have been lost during the slow-

start overshoot and the small file size prevents the receiver from getting enough

data to trigger the duplicate acknowledgments required to allow SACK recovery

to proceed. Retransmission timeout is an expensive operation due to the minimum

RTO value of one second, causing serious performance degradation.

The qsthresh variant, on the other hand, avoids the slow-start overshoot be-

cause it moves to congestion avoidance immediately after the Quick-Start phase.

One can see that there are no packet losses, and the TCP connection is finished in

520 ms, versus the 1600 ms in the normal TCP case.

7.4.3 Vertical Hand-off

Figure 7.3 illustrates TCP hand-off performance from EGPRS to WLAN link with

the make-before-break hand-off. The x-axis indicates the time of the hand-off,

measured from the beginning of the connection. The top figure illustrates the
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WLAN

EGPRS

Figure 7.1: Throughput without hand-offs with different file sizes.

total long-term throughput of the TCP connections. The middle figure illustrates

the number of packet losses in a 13-second test run, and the bottom figure shows

the amount of data transmitted in a 3-second period following the hand-off, thus

showing the TCP efficiency immediately after the hand-off event.

In these simulations the regular TCP suffers from packet reordering: pack-

ets traveling through a WLAN link arrive to the receiver before the packets sent

earlier to the much slower EGPRS link, appearing as out-of-order segments that

trigger duplicate acknowledgments at the receiver. Duplicate acknowledgments,

in turn, trigger unnecessary fast retransmissions at the sender.

A few observations can be made from the figures. First, the basic Quick-Start

suffers from bad performance when the connection has lasted more than 7 seconds

before the hand-off occurs. This happens because the EGPRS link queue has

become full, and a slow-start overshoot follows, causing loss of tens of packets.

The TCP sender with the basic Quick-Start yields poor hand-off performance as
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qsthresh

none

Figure 7.2: Slow-start overshoot with standard TCP and effect of qsthresh.

it further worsens the severity of the slow-start overshoot by continuing in slow-

start after the hand-off, forcing the TCP sender to wait for a costly retransmission

timeout to recover. In many other cases the use of the basic Quick-Start also

results in several packet losses, even though the path was unutilized when the

Quick-Start request was made. The slowstart variant performs slightly worse than

the regular TCP, because the wireless link is utilized less effectively when slow-

start is employed after the hand-off.

A second observation can be made on qsthresh. Most packet losses due to

buffer overflow can be avoided with qsthresh, because the TCP sender is in con-

gestion avoidance for most of the time after the initial round-trip time, and in

particular after the hand-off. Therefore, the problems regarding hand-off perfor-

mance and throughput can be avoided.
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Figure 7.3: Make-before-break hand-off from EGPRS to WLAN.
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Figure 7.4 illustrates the throughput of the whole data transfer, the number of

packet losses during the transfer, and the amount of data transmitted in a 3-second

period following the hand-off in case a break-before-make hand-off occurs from

a WLAN link to a EGPRS link. The connection from the WLAN link is lost

500 milliseconds before the EGPRS link is up for transmission. All data sent

from the wireless access router is lost during that time period. The figure shows

that although the long-term throughput is roughly similar with different variants,

both qs and qsthresh substantially improve the transmission performance after the

hand-off. The qsthresh variant also has two to three times less packet losses than

the other variants.

In the break-before-make hand-off scenario the slow-start overshoot after the

hand-off is not a problem, because roughly one window’s worth of segments is

lost in any case due to the period of disconnection before the hand-off completes,

and there is nothing the TCP sender can do to prevent this.

We also conducted simulations on WLAN to EGPRS make-before-break hand-

offs. On some of the hand-off scenarios we observed packet losses that were

caused due to inappropriately large congestion window, which was valid on the

WLAN link, but too large for the EGPRS link. Other phenomena seen in these

simulations were spurious TCP retransmission timeouts caused by a sudden in-

crease of round-trip time after the hand-off.

7.5 Summary

In this chapter we investigated the possible benefits of using Quick-Start after a

vertical hand-off that can occur with mobile multi-radio terminals. Quick-Start

significantly improves the start-up performance of a connection, and it can be

used to quickly resolve the correct path capacity after the vertical hand-off by

using an explicit cross-layer notification to trigger the Quick-Start. However, we

observed that packet losses due to the slow-start overshoot have a significant effect

on connection performance on high-latency links such as EGPRS. We proposed an

enhanced response to Quick-Start that also sets the slow-start threshold based on

the approved Quick-Start request, thus extending the use of a Quick-Start response

to limit the growth of the sending rate beyond the path capacity. This enhancement

resulted in excellent results in our network environment. It should be noted that

limiting the slow-start threshold may also have a negative performance effect, for

example if the approved Quick-Start request does not cover the full bottleneck

link capacity. Therefore, an interesting future research topic would be to explore

alternative mechanisms, such as Limited Slow-Start [53].
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Figure 7.4: Break-before-make hand-off from WLAN to EGPRS.
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While Quick-Start has a lot of potential, there are many challenges for its de-

ployment in the Internet, such as various types of IP tunnels, or misbehaving hosts

trying to exploit Quick-Start [54]. Therefore, we believe it is likely that for now

Quick-Start would be useful in short-range network communication such as in

enterprise intranets, or in wireless operator networks, where the challenges can

be more easily controlled and dealt with. Considering that many of the wire-

less operator services, including Web proxies, are located in the operator’s local

network domain, there are benefits in introducing Quick-Start locally in these en-

vironments.

Because it is quite uncertain whether Quick-Start will ever be deployed in the

worldwide Internet, its usefulness may seem limited also in wireless networks,

since most services are provided outside the local operator domain. As discussed

in Section 7.3, the same limitation applies to any other scheme that aims to speed

up the TCP congestion control and therefore needs a permission from all routers

on the network path. As we have shown that Quick-Start can bring significant per-

formance advantages to TCP over wireless links, it seems interesting to find ways

to go around this limitation. An inappropriate option would be to try to directly

“cheat” the Quick-Start mechanism, for example by having a middlebox close to

the egress of the operator network that modifies the contents of the Quick-Start

Response option to make it seem that Quick-Start Request sent by the wireless

host was approved in a case where some of the routers did not process the option.

This would be a congestion control violation and therefore strongly discouraged.

A second possibility would be to place a split-connection proxy to process all

TCP traffic at the wireless operator egress. The proxy would split an end-to-end

connection into a part between the wireless host and the proxy, and to the part

between the proxy to the other host in the Internet, in a similar way done, for

example, in I-TCP [13]. If the communication path between the proxy and the

fixed host would have relatively short round-trip delays compared to the delays

on the wireless part of the connection, applying Quick-Start on the wireless part

would help to improve the TCP performance. Having a Quick-Start proxy in the

operator network would seem a relatively straight-forward deployment path, but

also problematic, because the split-connection proxies are known to have several

problems involved with them [24].

Even if the incorrect TTL Diff indicated that there were routers that did not pro-

cess the Quick-Start Request, the incoming rate information could still be useful

in avoiding the slow-start overshoot. From the reduced value of the Quick-Start

Request option the sender knows that one of the routers on the connection path

has indicated that it has a preferred upper bound on the transmission rate, so there

is no reason to continue in slow-start beyond that limit, even if the TTL Diff value
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was incorrect. If slow-start overshoot can be avoided, a number of packet losses

can be prevented, which might be a good enough incentive for the end hosts and

key routers to implement the Quick-Start option. On the other hand, while in this

chapter we applied a single evaluation algorithm at the router, it might be more

efficient to have separate evaluation algorithms for instantly available bandwidth

that can be admitted for Quick-Start, and for the recommended upper bound for

slow-start. Therefore it might be justifiable to have separate option values for the

two uses. We leave these considerations to be investigated by future work.



CHAPTER 8

Conclusions and Future Work

This dissertation has proposed and thoroughly investigated mechanisms for im-

proving TCP performance in network environments with challenging transmission

delay behavior, such as the GPRS networks. We have primarily focused on three

problems in TCP performance in these environments: (i) spurious retransmission

timeouts caused by the sudden delay spikes in lower layer packet transmission,

(ii) improving the slow-start, that utilizes the link capacity inefficiently in the be-

ginning of connections on high delay-bandwidth paths, and (iii) quickly finding

an appropriate sending rate after a vertical hand-off between two different link

technologies. We supplemented our analysis with a thorough description of the

Linux TCP implementation that was used in many of the experiments conducted

for this work.

This dissertation described and analyzed the Forward RTO-Recovery (F-RTO)

algorithm that can be applied at the TCP sender to detect spurious retransmission

timeouts and thus avoid unnecessary retransmissions and congestion control ac-

tions that a spurious retransmission timeout would cause. We analyzed F-RTO

in different network scenarios to validate its robustness in different kinds of net-

works and evaluated different alternatives for responding to spurious retransmis-

sion timeout, and showed that F-RTO is effective in avoiding the negative effects

of spurious retransmission timeouts. We also discussed a SACK-based enhance-

ment of F-RTO and a few limitations F-RTO has.

As with many other TCP problems, it is difficult to quantify how severe prob-

lem spurious retransmission timeouts are in live wireless networks. We have

referred to earlier research that analyzed link behavior in a GPRS network and

observed spurious timeouts in the measurements, but the link behavior depends

on many factors that are unknown or difficult model, such as the network con-

figuration used by the operator, or the movement patterns of the mobile device.

153
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However, several network device vendors have had interest in solving the problem

of spurious timeouts in some way, which indicates that they have observed simi-

lar behavior also in their networks using GPRS and other wireless technologies.

Although there are alternative ways to improve performance on spurious retrans-

mission timeouts, it appears that many of the big operating system vendors have

chosen F-RTO as their solution. In addition to the Linux implementation made

by the author, there already are several commercial implementations of F-RTO.

Some companies have also requested F-RTO to be made a Proposed Standard in

the IETF. Finally, we note that it is important that F-RTO detects spurious timeouts

using TCP’s own mechanisms, and can therefore be useful also in other contexts

than wireless networks. Equally important is that we believe F-RTO to not harm

TCP performance in any case, even in networks where spurious retransmission

timeouts are a rare phenomenon.

The second part of this dissertation evaluated the Quick-Start algorithm, a co-

operative effort between the TCP end-hosts and the routers to quickly establish

the available bandwidth on the network path and thus instantly find appropriate

values for TCP’s congestion control parameters. We evaluated various different

router algorithms and settings, and discussed the possible deployment and security

threats such a scheme may have.

While we acknowledge that deployment of Quick-Start in real networks is very

challenging, we believe this work is a useful contribution to the ongoing discus-

sion on the next generation of network resource and congestion control. There

have been increasing number of proposals in the EU and USA to take actions on

revising the Internet architecture to better accommodate today’s needs that were

not envisioned when the core protocols were designed. One of the features that

are under pressure to be changed is the current congestion control model that is

based on the use of minimal information, being slow to react to rapid changes in

the path characteristics and relying on the honesty of the end hosts that might have

conflicting interests to send faster than what the congestion control rules allow. If

a change becomes possible, it needs to be carefully designed, because the core

Internet protocols have had tendency to last at least for a duration of one human

generation. We believe that the lessons learned during this work, for example

related to deployability and trustworthiness of the explicit network congestion in-

formation, are helpful when considering the future network congestion control

algorithms.

The third part of this dissertation applied the Quick-Start algorithm in the

context of vertical hand-offs between wireless technologies such as GPRS and

WLAN. These environments are challenging for TCP, because they have very

different bandwidth and delay characteristics, causing TCP’s slowly converging



155

congestion control parameters to have inappropriate values after a vertical hand-

off. With the Quick-Start algorithm applied after the vertical hand-off, significant

performance improvements were achieved.

Because wireless networks often have specific problems, there are benefits to

have such enhancements and mitigations that could be implemented on the wire-

less host or at the wireless network. While we showed Quick-Start to be effective,

it is a demanding mechanism due to the requirement of being supported by ev-

ery router on the connection path. On the other hand, in order to instantly start

sending at a high rate there needs to be some procedure to ensure that the flow

does not cause severe network congestion. We believe this is not possible with-

out having some information from all of the routers on the connection path that

have the potential to get congested. We briefly discussed about the possibility to

use a Quick-Start proxy close to the wireless link, and further investigation of the

benefits and costs of such arrangement could be an useful topic of future work.

While the above-mentioned technologies have been evaluated in the context of

TCP, the same principles can be applied to other transport protocols. For example,

F-RTO can be applied to Stream Control Transmission Protocol (SCTP) [153],

which is a new transport protocol with similar algorithms to TCP. Quick-Start can

also be used with SCTP, and to establish a correct sending rate in Datagram Con-

gestion Control Protocol (DCCP) [99] with its two congestion control profiles,

window-based congestion control [59], and TCP-friendly rate control [60, 55].

The research presented in this dissertation could be followed up by different

research topics:

• Revising TCP’s retransmission algorithm. F-RTO and the many other

proposals to improve TCP’s performance are incremental modifications to

TCP’s base algorithms. After being appended with a number of such algo-

rithms in the past decades, one could claim that today’s TCP implementa-

tions and specifications are patchy chunks of code, and it might be useful

to try to invent a completely new retransmission algorithm that works bet-

ter in today’s heterogeneous network environment, without having to carry

the legacy of TCP. An interesting question is, would this new algorithm be

totally different from the current TCP algorithms, or would it end up rather

similar.

• Investigating the range of explicit congestion control mechanisms.

Quick-Start is a small modification to TCP to employ explicit cross-layer

communication between the TCP end-hosts and the network. Recently

there have been other related proposals from just slightly extending ECN

to deploying a full-fledged explicit congestion control protocol. A compar-
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ative analysis of the powerfulness of different mechanisms would be useful

to gain knowledge about the possibilities of different approaches and the

challenges such mechanisms have to face.

• Investigating a common framework for future cross-layer communica-

tion mechanisms. When investigating Quick-Start, we identified certain

deployment and security challenges involved with it, as discussed in Chap-

ter 6. It seems possible that many of these challenges are common to a wider

range of similar explicit mechanisms. Therefore a possibly useful exercise

would be to seek for a common framework for in-band explicit light-weight

signaling, to be used as a basis in specifying the future revisions of the

Internet protocols, for example related to IP tunneling.

A bigger issue behind the individual topics discussed in this dissertation and

the future work items listed above is how strictly future Internet design should

still stick to the traditional end-to-end principle and end-host-based congestion

control that has been applied in TCP and the other transport protocols. In this

dissertation we investigated one mechanism that is purely a TCP-sender-based

solution, and another mechanism that requires collaboration from the network

routers. There are many recent research ideas that require active participation by

the network to support efficient data transfer, but a careful consideration should

be taken regarding the compromises it might cause to network scalability and

robustness.

The possibilities to improve TCP and other transport protocols in the current

Internet architecture just by making end-host modifications are limited. Therefore

the author would like to encourage the future research to be ambitious in challeng-

ing the current assumptions in the Internet design, and fearlessly exploit radical

ideas in the search of substantial advances to Internet communication technologies

for the future generations.
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