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ABSTRACT

Since the last in-depth studies of measured TCP traffic some 6-
8 years ago, the Internet has experienced significant changes, in-
cluding the rapid deployment of backbone links with 1-2 orders
of magnitude more capacity, the emergence of bandwidth-intensive
streaming applications, and the massive penetration of new TCP
variants. These and other changes beg the question whether the
characteristics of measured TCP traffic in today’s Internet reflect
these changes or have largely remained the same. To answer this
question, we collected and analyzed packet traces from a number of
Internet backbone and access links, focused on the “heavy-hitter”
flows responsible for the majority of traffic. Next we analyzed their
within-flow packet dynamics, and observed the following features:
(1) in one of our datasets, up to 15.8% of flows have an initial con-
gestion window (ICW) size larger than the upper bound specified
by RFC 3390. (2) Among flows that encounter retransmission rates
of more than 10%, 5% of them exhibit irregular retransmission be-
havior where the sender does not slow down its sending rate during
retransmissions. (3) TCP flow clocking (i.e., regular spacing be-
tween flights of packets) can be caused by both RTT and non-RTT
factors such as application or link layer, and 60% of flows stud-
ied show no pronounced flow clocking. To arrive at these findings,
we developed novel techniques for analyzing unidirectional TCP
flows, including a technique for inferring ICW size, a method for
detecting irregular retransmissions, and a new approach for accu-
rately extracting flow clocks.

Categories and Subject Descriptors

C.2.2 [Computer Communication Networks]: Network Proto-
cols
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1. INTRODUCTION
IP networks today carry traffic from a diverse set of applications

ranging from non-real-time email and bulk data transfer like FTP
to applications with much more stringent real-time performance
and reliability requirements as Voice over IP (VoIP), Internet tele-
vision (IPTV), Internet games and critical business transactions.
A number of intertwined factors have contributed to this material
shift in the application mix from even a few years ago when best-
effort non-real-time applications like email, FTP and Web dom-
inated. These factors include the rapid deployment of backbone
links with 1-2 orders of magnitude more capacity, the increasing
reach of broadband access networks, the emergence of bandwidth-
intensive streaming applications, and a steady relentless economic-
technological move towards transitioning even mission-critical ap-
plications from dedicated networks to the Internet using architec-
tures like Virtual Private Networks (VPN).

Interestingly, even though the applications and their requirements
have multiplied, the Transmission Control Protocol (TCP) [8] has
remained the dominant transport-layer protocol in IP networks, be-
ing widely adopted by many of these new applications. Today TCP
accounts for majority of the traffic on the Internet. This has hap-
pened even though TCP was originally designed to support a reli-
able, in-order delivery of a byte-stream between two end-points in
a bandwidth friendly manner, and is not the ideal transport protocol
for applications with real-time constraints. Practical considerations
that favored TCP include (i) TCP is deployed almost everywhere
(ii) using TCP helps offload many low-level transport details that
an application developer would otherwise have to contend with, and
(iii) ease of maintaining reachability across firewalls which are rou-
tinely configured to allow TCP packets through but block non-TCP
flows. Fueled by the need to support more stringent performance
requirements of emerging applications, the past few years have also
witnessed the massive penetration of new TCP variants or new
TCP congestion control algorithms like FAST [34], HSTCP [15]
and CUBIC [16], and vendors promoting acceleration boxes that
offer proprietary optimizations to TCP. However, these and other
changes beg the question of whether, and more importantly, how
they impacted the characteristics of TCP traffic in today’s Internet,
or if the behavior has largely remained the same as found by earlier
in-depth studies of measured TCP traffic, the latest of which date
to some 6-8 years ago [35, 10]. Given the continuing dominance
of TCP, and its central role in preventing congestion collapse in the
Internet, understanding its behavior is vital for the proper manage-
ment, provisioning and capacity planning of these networks and for
developing insights to guide protocol design.

In this paper we undertake a detailed exploration of TCP behav-
ior from multiple vantage points in a large tier-1 ISP. We use a
predominantly passive measurement approach using actual traffic



traces for our analysis for reasons of scale, coverage and diversity.
Compared to active probing, the passive approach is non-intrusive
and more scalable requiring no additional coordination, instrumen-
tation or deployment of end host measurement points. We can uti-
lize in-network passive trace collection capabilities that are parts of
existing deployed infrastructure. Our trace collection is carefully
designed to get a diversity of network traffic mixes including back-
bone links, broadband access and enterprise traffic. The passive
measurement approach allows us to capture the entire spectrum of
TCP activity, in the relative proportions it is actually used, with-
out any distortion or artificial biases, over the observation period.
Given the existence of many TCP variants, some with multiple ver-
sions, and multiple parameters, and the lack of understanding of
either the relative distribution of these settings or how they impact
behavior, it would be very hard for a purely active probing approach
to cover all these possibilities or to focus on the (unknown) inter-
esting ones.

Along with its advantages, an in-network passive measurement
approach has its own challenges. For instance, access to bidirec-
tional traces is required by traditional techniques for analyzing cer-
tain types of TCP behavior (e.g., tracking the congestion window).
However, due to the prevalence of asymmetric routing, such traces
are difficult to obtain in practice, especially for backbone links. As
one contribution of this paper, we develop new analysis techniques
that are suitable for unidirectional flows. Passive measurement also
lacks a powerful aspect of active probing – with the latter, it is pos-
sible to tailor the probing activity carefully to force the protocol
to reveal more details about its actions under different scenarios.
We therefore augment our passive measurements with targeted ac-
tive probes as needed. In particular, we utilize active probing for
validation, where we gather the RTT, loss rate, frequency charac-
teristics, etc. as ground truth by controlling the active probes.

1.1 Contributions
Using existing techniques where applicable and developing ap-

propriate new methodologies where required, we explore the fol-
lowing main dimensions.

Have TCP flow sizes, durations and rates changed signifi-

cantly compared to those 6-8 years ago? In particular, what are
the corresponding distributions of “heavy-hitter” flows [31, 7] i.e.,

flows with exceptionally large size, long duration, fast speed and
strong burstiness compared to the earlier studies? Heavy-hitters
contribute to significant traffic volumes and understanding their
behavior is vital to many aspects of network management such
as effective traffic measurement [13], scalable load sensitive rout-
ing [31], network anomaly detection [22] and usage-based pricing
and accounting [12]. We compare our results with two previous
studies [35, 10] and pinpoint the evolution of Internet flow charac-
teristics that we observe.

What is the initial congestion window (ICW) distribution?

A larger ICW allows a flow to be more aggressive by sending a
larger burst of data at the beginning of the flow without any throt-
tling. A large proportion of flows today are short and end before
exiting TCP slow start. While such flows can benefit individually
from using an inappropriately large ICW size, the widespread use
of large ICWs will introduce large traffic bursts and may adversely
affect the network performance and is therefore not desired. The
existing approach for ICW estimation [26] involves active probing,
and therefore, we develop a new passive measurement based ICW
estimation scheme that uses only the timestamp information for the
first few packets in the connection of a unidirectional data flow. We
find that while most flows comply with TCP specifications [6, 5],
up to 15.8% of senders in our data have initial congestion window

greater than
min(4 ∗ MSS, max(2 ∗ MSS, 4380)), the upper size mandated
by the specifications [5]. We also observed ICWs as large as 9KB
in our datasets.

When encountering losses, do senders slow down appropri-

ately as mandated by TCP? This is a fundamental requirement
for all TCP implementations and its adherence is critical to avoid
congestion collapse in the network. The existing approaches to
measuring this behavior either use active probing [26], or use bi-
directional flows to precisely track the congestion window using a
FSM [17]. We develop a passive-measurement based statistical ap-
proach to identify situations where the sender does not slow down
its transmission rate when the retransmission rate increases. Our
approach requires only unidirectional flows and is independent of
the particular variant of TCP, unlike the existing schemes. Our
findings indicate that in most cases, the sender does slow down
its sending rate when retransmission rate increases. Among flows
with retransmission rates higher than 10%, we do find 2.5% to 5%
of the flows exhibit irregular retransmission behavior. Further in-
vestigations revealed that these cases could be attributed to by two
main causes (i) abnormal retransmission not conforming to RFC-
compliant TCP specifications (e.g., retransmitting packets that were
not lost); and (ii) under-utilization of the congestion window.

What is the distribution of the TCP flow clock and what is its

origin? We define the TCP flow clock to be the regular spacing that
may exist between flights of packets. The traditional view has been
that the RTT dominates the origin of flow clocks for most flows, and
existing RTT estimation algorithms [33, 36] implicitly use RTT as
the flow clock. However, if the flow clock is not generated by the
transport layer, these algorithms will have poor accuracy. One rea-
son this can happen is when applications like streaming media per-
form their own rate control and packet pacing on top of TCP. We
develop a novel frequency domain analysis technique to identify
the flow clock independent of its origin. Our analysis indicates that
less than 50% flows have distinguishable flow clocks, and reveals
that in practice RTT is not the main determinant of flow clocks in
many cases. Among our flows with a measurable flow clock, up to
60% have clocks originated by non-RTT factors such as software
clocks of applications, periodical OS events (e.g., keyboard scan-
ning), and “retiming” effects [35] of a bottleneck link.

2. RELATED WORK
We describe two areas of related work to our study.

Characterization of Internet Flows: Researchers started to inves-
tigate characteristics of TCP connections more than 10 years ago,
by passively measuring traffic patterns [32] or actively probing end-
to-end packet dynamics [29]. For more detailed characterization,
the T-RAT study [35] considers the distribution of flow rates, and
further analyzes the origins of different rates such as congestion
limited and transport limited. A more recent study [10] examines
characteristics of “heavy-hitter” TCP flows [12] in four dimensions,
namely size, duration, rate, and burstiness, along with their corre-
lations in detail. There has also been work investigating particular
application types of flows such as streaming [11], VoIP [23] and
gaming [9] flows. Compared to this, our study serves as a reex-
amination of observed TCP behavior, motivated by the significant
changes experienced by the Internet as mentioned in §1. We com-
pare our results with two most recent previous studies [35, 10] to
pinpoint the evolution of Internet flow characteristics that we ob-
serve.
Inferring TCP Behaviors: TCP is a complex protocol with vari-
ous implementation variants and tunable parameters. Researchers
have developed many techniques to infer TCP behaviors by actively



probing hosts or passively analyzing packet traces. For active prob-
ing tools, TBIT [26] strategically drops incoming packets and sends
fabricated packets over raw socket to infer Web servers’ TCP be-
havior. TBIT also uses known techniques [14] to identify the TCP
flavor (Tahoe, Reno and New Reno) based on sender’s response to
packet losses. A previous study [24] used TBIT to study the im-
pact of “middleboxes” (NATs, proxies, etc.) on TCP. Tools like
Nmap [2] and p0f [3] take another approach by using a signature
database to fingerprint the OS version of the target host, therefore
indirectly inferring the corresponding TCP implementation.

A wide range of passive analysis techniques also exist. For ex-
ample, tcpanaly [27] infers TCP implementation from packet traces
based on observed differences among 8 TCP implementations.
tcpflows [17] keeps track of the sender’s congestion window based
on predefined finite state machine of TCP Tahoe, Reno and New
Reno. Work by Lu and Li [21] statistically infers the correspon-
dency between the arrived ACK packet and the data packets sent
from packet traces using maximum-likelihood criterion. T-RAT [35]
also focuses on unidirectional packet traces, separating the trace
into flights, then inferring the TCP state of each flight (e.g., slow
start or congestion avoidance).

Compared to these previous studies, our work develops method-
ologies requiring minimum information from the trace which are
unidirectional traces containing only timestamp, sequence number,
acknowledgement number, packet size and TCP flags. Further-
more, we address a new problem that has not been well explored,
i.e., accurately extracting flow clocks originated from either RTT
or other factors.

3. DATA CHARACTERIZATION
We describe the data used in our study and perform basic char-

acterization of the data set.

3.1 Datasets Used
As summarized in Table 1, we use seven quite diverse datasets

named BU, BS1 to BS4, VPN and DSL in this study. BU (Back-
bone Unsampled) is a 30-minute unsampled TCP trace collected
from a 10Gbps backbone link of a Tier-1 ISP on June 17, 2008.
BS1 to BS4 (Backbone Sampled) are sampled TCP traces from the
same link collected on June 26, 2008. The duration of each dataset
is approximately 1 hour. Sampling was performed on a per-flow
basis with a sampling rate of 50% (one in two flows), so that all
packets from a sampled flow were captured. The VPN dataset is
an unsampled bidirectional trace collected from all the uplinks of
a VPN provider edge router (PE) on January 5, 2009. The DSL
dataset, also bidirectional and unsampled, was collected from a
BRAS (Broadband Remote Access Servers; an aggregation point
for approximately 20,000 DSL lines) on January 9, 2009. For each
packet, we record the following fields of IP and TCP headers, plus a
64-bit timestamp: source and destination IP, source and destination
port number, packet length, IPID, IP fragment flag/offset, sequence
number, acknowledgment number, receiver’s window size, TCP
payload length, TCP flags, and TCP options. From each dataset,
we extract flows based on a 5-tuple of src/dst IP, src/dst port num-
bers, and protocol (always TCP). Following previous studies [35,
10], we use a threshold of 60 seconds to decide that a flow has
terminated.

We discuss two limitations of our datasets. First, similar to pre-
vious measurements using passive traces (datasets in [35] were
30min to 2hours, plus a 1-day sampled trace; two datasets in [10]
were 20min and 2hours), our finite sampling durations (30min to
2h46min) may influence the distribution of flow characteristics.
Another limitation is that our datasets only contain TCP traffic,

while both [35] and [10] use a mixture of TCP and UDP traffic.
However, basic statistics of VPN dataset1 shows that UDP con-
tributes only 7.8% of the traffic, comparable with the fractions
in [10] (4% and 15%). We believe the above limitations (finite
dataset length and a lack of non-TCP traffic) do not qualitatively
affect our comparison with [35] and [10].

3.2 Flow Characteristics
We analyze four basic flow characteristics: size, duration, rate,

and burstiness. Size is simply defined as the total number of bytes
in the flow including headers; and duration is the time span between
first and last packet of the flow. Flow rate is computed by dividing
flow size by flow duration. Similar to previous work [35, 10], we
focus on longer-lived flows by ignoring flows with durations of less
than 100ms when computing the flow rate. We give the definition
of burstiness later. We first characterize the distributions of size,
duration, and rate of all flows before focusing on “heavy-hitter”
flows [31, 7] i.e., flows with exceptionally large size, long duration,
high speed, and strong burstiness. Understanding the behavior of
heavy-hitter flows are useful for various applications [13, 31, 22,
12], as described in §1. Due to the well-known heavy-tailed dis-
tribution of Internet flows, the number of such flows is very small.
They however may contribute to significant traffic volume.

Figure 1 plots the complementary cumulative distribution (CCDF)
of flow size, duration, and rate across 7 datasets (shown in thick
lines), compared with the T-RAT study which is a most recent TCP
study similar to ours on understanding the origin of Internet flow
rates conducted in 2001 [35], whose eight datasets are shown as
thin lines2. For flow size and duration, no qualitative difference
exists in log-log plot. We do observe much higher flow rate in
our dataset. For instance, in their datasets, only 4% to 10% flows
are faster than 100kbps; the percentage increases to at least 17%
in ours. This is mostly explained by higher speed backbone links
and increasingly popular broadband Internet access. Correspond-
ingly, high-speed TCP variations were deployed accommodating
faster link speed. For instance, BIT-TCP was used as the default
TCP implementation since Linux 2.6.8 in 2004 [16]. BIT-TCP
makes the congestion window grow faster by modifying the linear
growth function for existing congestion avoidance, thus mitigat-
ing the under-utilization problem for high speed and long distance
paths.

Note that the higher rate is observed by ignoring considerable
number of flows with duration less than 100ms. We will see a much
more significant increase of flow rate by looking at a smaller num-
ber of “heavy hitter” flows later.

Given the significant similarities across our seven datasets as ev-
idenced by closely placed thick lines representing them in Figure 1,
we attempt to quantify the similarity between two datasets by de-
tecting flows with the same unordered pair (IP1/24, IP2/24) i.e.,

only preserving 24-bit prefix. In particular, we define the Similar-
ity Index (SI) between dataset X and Y as SIX,Y = |Ω(X) ∩
Ω(Y )|/max{|Ω(X)|, |Ω(Y )|}, where Ω(X) denotes the set con-
taining unordered (IP1/24, IP2/24) pairs of all flows in X. We find
that the similarity index for any pair of datasets is less than 33%,
therefore we claim that our datasets are reasonably heterogeneous.

Next we examine heavy-hitter flows and compare our results
with a most recent study analyzing traces of a regional network and
Abilene OC48 backbone link collected in April 2003 and August
2002 respectively focusing on heavy-hitter flows [10]. This study

1We only have simple statistics of UDP traffic for VPN dataset.
2For both Figures 1 and 2, to ensure effective comparison, we su-
perimposed our data onto figures obtained from the original papers
preserving their scale.



Table 1: Basic statistics of datasets used
Name Date Length # Packets Volume Bidir Sampled # Flows Description

BU Jun 17, 2008 30min 643 M 377G No No 32.6 M Unsampled unidirectional backbone link trace
BS1 Jun 26, 2008 62min 635 M 371G No 1 in 2 flows 30.6 M Sampled unidirectional backbone link trace
BS2 Jun 26, 2008 59min 637 M 424G No 1 in 2 flows 30.0 M Sampled unidirectional backbone link trace
BS3 Jun 26, 2008 58min 636 M 346G No 1 in 2 flows 29.6 M Sampled unidirectional backbone link trace
BS4 Jun 26, 2008 47min 633 M 360G No 1 in 2 flows 24.0 M Sampled unidirectional backbone link trace
VPN Jan 05, 2009 2h46min 522 M 245G Yes No 29.6 M Unsampled bidirectional VPN link trace
DSL Jan 09, 2009 2h18min 745 M 496G Yes No 25.3 M Unsampled bidirectional DSL link trace

Figure 1: Complementary distribution of flow size, duration and rate (comparing with the T-RAT study in 2001). When computing

the flow rate, we only examine flows with durations of 100ms or longer.

Table 2: Contribution of heavy-hitter flows in flow count and

volume
Our datasets Elephant Tortoise Cheetah Porcupine

BU
Flows 0.09% 0.52% 0.60% 0.26%
Vol. 49.4% 37.3% 23.8% 0.83%

BS1 (Similar Flows 0.08% 0.24% 0.60% 0.15%
to BS2-BS4) Vol. 55.8% 38.7% 22.0% 1.35%

VPN
Flows 6e-3% 0.42% 1.15% 0.04%
Vol. 55.3% 50.4% 49.7% 0.24%

DSL
Flows 0.06% 0.34% 1.51% 0.12%
Vol. 58.9% 48.7% 35.0% 1.07%

Two datasets in [10] Elephant Tortoise Cheetah Porcupine

LosAngeles Flows 1% 4% 2% 0.9%
Regional’03 Vol. 71% 43% 16% 39%

Abilene OC48 Flows 4% 4% 2% 1%
Aug 2002 Vol. 82% 45% 36% 40%

by Lan et al. finds strong correlations among some combinations of
size, rate and burstiness, explained using transport and application-
level protocol mechanisms. Four types of heavy-hitter flows are
coined in that work: elephant, tortoise, cheetah, and porcupine, cor-
responding to flows with size, duration, rate, and burstiness greater
than the mean plus three standard deviation of the respective mea-
surement. In particular, the burstiness of a flow is calculated by
multiplying the average burst rate by the average inter-burst time,
where a burst consists of a train of packets whose inter-arrival time
are less than 1ms. Only bursts with more than one packet are con-
sidered. As shown in Table 2, although the number of heavy-hitter
flows is very small (except for porcupine flows), they contribute to
significant traffic volume.

Figure 2 illustrates distributions of size, rate, and burstiness for
four types of heavy-hitter flows in the BU trace (thick curves with
labels). We did not present the duration distribution due to the
bias introduced by limited duration of the BU trace (30min vs 2hr).
Measurements from Lan’s study [10] are also kept for comparison.
We observe qualitatively similar distributions compared to other

datasets and highlight key observations below.
As illustrated in Figure 2(a), the sizes of elephant, cheetah, and

tortoise flows increase by about an order of magnitude. Since most
are HTTP data flows with the source port 80, such increase is likely
due to file size increase on Web servers and the trend of using HTTP
to transfer large multimedia data. The growth in file size in both
local and network file systems are well documented by previous
measurements [4, 20]. The decrease in flow size for the overall
dataset is caused by the 30min duration of our trace compared to
the 2hr duration of data used in Lan’s study.

As depicted in Figure 2(b), the rate of elephant flows that con-
tribute to at least half of the traffic volume along with that of tor-
toise flows increases by one magnitude compared to Lan’s study [10],
most likely accounted for by the tremendous growth in link speed
within both the core and edge networks. In Lan’s study [10], the
authors explain the rate increase of tortoise flows with user behav-
ior (e.g., one types a character every 30 seconds), as only 6% of
tortoises are flows with size greater than 100KB. While in our re-
sults, we observe a trend in more long-lived flows (about 10% of
them) are likely multimedia streaming or gaming as verified using
the IP addresses and port numbers.

The most striking difference is the burstiness. First, as shown
in Table 2, the very small number of porcupines contribute to less
than 1.5% of the traffic volume, providing a sharp contrast to [10].
Second, as shown in Figure 2(a)(b), the size and rate of porcupine
flows differ significantly from previous study: there is an increase
in rate, but decrease in size. Finally, in Figure 2(c), the burstiness of
heavy-hitter flows also deviate much from Lan’s study, deserving
further investigation we plan to conduct as future work.

Similar to [35] and [10], we also observe correlation between
duration, rate and size. For each dataset, (logS, logR) has corre-
lation coefficient between 0.54 and 0.57, smaller than the values
observed in [35] and [10]; while (logR, logD) shows a stronger
negative correlation between −0.69 and −0.60. (logS, logD) are
slightly positively correlated with correlation coefficient between
0.21 and 0.40.

To summarize our major findings, we observe significant increase



Figure 2: Distributions of size, duration, rate and burstiness for four types of heavy-hitter flows in BU. The base of logarithm is 10.

of average flow rate. In particular, the rate of elephant flows in-
creases by a factor of 10, comparing with that of 6 years ago. Also,
the sizes of elephant, cheetah, and tortoise flows increase by an
order of magnitude. Our observations indicate the trend of upgrad-
ing Internet infrastructure at core and edge, the deployment of new
TCP variants, and the trend of using TCP to transfer larger content
such as video streaming and long-time online gaming.

4. NEW METHODS FOR FLOW ANALYSIS
In this section, we present three new algorithms for analyzing

unidirectional TCP flows. As discussed before, we focus on long-
lived flows which contribute much more traffic volume compared
to short-lived ones. An inherent challenge in analyzing unidirec-
tional flows is a general lack of information to reconstruct the TCP
states at both the sender and receiver side. For example, if there is
no pronounced flow clock or the flow clock does not originate from
the transport layer (RTT), it is challenging to accurately estimate
RTT. To overcome this difficulty, in §4.2 and §4.3, we adopt statis-
tical approaches that require observing enough packets to infer cer-
tain properties with sufficient accuracy and high confidence. Such
approaches are fundamentally different from existing deterministic
approaches [28, 18] that precisely track the TCP state, given bidi-
rectional trace. We validate the accuracy of our approaches in §5.

4.1 Inferring Initial Congestion Window Size
Inferring the initial congestion window (ICW) size helps detect

aggressive TCP flows that send a larger burst of data at the begin-
ning of the connection without any throttling. The value of ICW
is the number of bytes a TCP sender can send immediately after
establishing the connection, before receiving any ACKs from the
receiver. We devise the following algorithm shown as Algorithm 1
to measure ICW given a unidirectional flow trace. The key task
of this algorithm is to examine the normalized inter-arrival times
(IAT) between the first k + 1 data packets. The first “large” gap
(i.e., larger than θ, a threshold of normalized IAT as shown in Al-
gorithm 1) indicates that the sender has reached its congestion win-
dow and is waiting for ACKs from the receiver. If such a gap is
not detected, we pick the maximum gap among all k IATs. Note
that in Algorithm 1, I1, the IAT between the SYN-ACK packet and
the first data packet usually includes the extra delay caused by the
server OS and is therefore discarded. As a result, Algorithm 1 only
examines I2, ..., Ik. Based on our empirical findings in §5.1, we
choose k = 8 and θ = 0.2.

There are several limitations in Algorithm 1. (i) Our approach
only works for server-to-client data flows (i.e., the trace starts with
a SYN-ACK packet) due to lack of sufficient data from client to
server; (ii) there must be no retransmissions in the first k + 1 pack-

ets; (iii) the only factor that prevents the sender from sending more
data should be reaching the congestion window. This is ensured by
requiring that the first c − 1 packets have same size (i.e., equal to
the maximum segment size MSS), therefore c × MSS is the in-
ferred ICW (Line 6 to 7); (iv) if flight-based IAT is too small (e.g.,

RTT < 2ms) or packet-based IAT is too large, then the large gap
will be blurred. Note that the active probing technique for inferring
ICW described in the TBIT work [26] also requires that conditions
(i),(ii),(iii) hold. The accuracy (higher than 98%) of our method is
evaluated in § 5.1.

Algorithm 1 Infer the Initial Congestion Window Size

Require: Packet trace starts with SYN-ACK packet
Require: There are no retransmissions in first k + 1 packets
1: c ← null; Calculate inter-arrival time I2, ..., Ik

2: for j = 2 to k do

3: if Ij/
Pk

t=2 It > θ then c ← j − 1; exit for; endif
4: end for

5: if c = null then c ← argmax
2≤j≤k

{Ij} − 1; endif

6: if first c − 1 packets have the same packet size MSS then

7: return c × MSS; else return unknown ICW; endif

4.2 Detecting Irregular Retransmission
Slowing down during retransmission (especially during periods

with many retransmissions) is one of the fundamental requirements
for all RFC-compliant TCP implementations [8], since retransmis-
sions indicate packet loss as inferred by the TCP sender [17]. We
denote a TCP flow that does not slow down its sending rate during
retransmission as a flow with irregular retransmission.

We devised a new tool called the Rate Tracking Graph (RTG),
based on a statistical algorithm for detecting irregular retransmis-
sion behavior. The basic idea behind RTG is an intuitive observa-
tion that holds for all known TCP implementations: when retrans-
mission rate increases, the sender should decrease the upper bound

of its sending rate by reducing the congestion window [8]. This im-
plies a negative correlation between the retransmission rate and the
sending rate, i.e., a positive correlation between the retransmission
rate r and the time t required to successfully transfer a fixed size
of data (e.g., 50 KB). RTG samples all pairs of (t, r) by sliding a
tracking window W along the flow to test whether t and r exhibit
any strong positive correlation.

The details of our RTG tool are described in Algorithm 2. The
input is a unidirectional TCP flow trace (server to client) with high
retransmission rate (e.g., >10%). This is because RTG requires
sufficient number of sample points (t, r) to generate statistically
confident results. A lower threshold of retransmission rate may de-
tect more irregular retransmissions, but the confidence of accuracy



decreases as well.
Algorithm 2 first identifies retransmitted bytes by examining re-

peated sequence numbers (Line 1 to 4). Subsequently, given a fixed
tracking window size W , it samples all pairs of (t, r) by sliding
the window of varying length t along the flow, where t is deter-
mined by the requirement that there are W non-retransmitted bytes
in the window, and where r is the retransmission rate of the window
(i.e., retransmitted bytes in the window divided by W ). In the case
of regular retransmissions illustrated in Figure 5(a), t and r have
strong positive correlation. We are interested in RTGs with small
positive or negative correlation coefficients, as illustrated with the
example shown in Figure 5(b).

It is important to point out cases where a well-behaved flow does
not exhibit a strongly positive correlation coefficient. If the flow
rate is not limited by the congestion window, it is not necessary
for the sender to slow down its rate, even if the congestion window
is reduced. In fact, in our scenario with high retransmission rate,
the rate limiting factor can also be [35] (i) the server application (it
does not generate data fast enough); (ii) the server’s sending buffer
in OS kernel; (iii) the receiver’s window; (iv) the bottleneck link.
In particular, case (i) accounts for 30% to 50% irregular retrans-
missions in our datasets, and will be discussed in detail in §6.2.

There exist other factors that may affect the correlation coeffi-
cient of RTG. First, the tracking window W should be large enough
to include more than one RTT, and be small enough so that sliding
the tracking window covers various retransmission rates. We em-
pirically choose 4 tracking window sizes: 50KB, 100KB, 200KB,
and 400KB, and conservatively claim an irregular transmission if
all tracking windows yield correlation coefficients less than 0.1.
Second, at the sender’s side, there may be pauses that enlarge t.
For interactive Web applications, e.g., the server may be idle for
seconds, with no data to send. We devise an Entropy-based cut-

ting algorithm that removes large gaps by separating the flow into
segments. We then generate RTGs for each sufficiently large seg-
ment (i.e., greater than 1MB) whose IATs are less intermittent than
those of the original flow. A flow’s IAT-Entropy is defined as the
following (Pi denotes the ith packet):

EIAT = −
X

Pi,Pi+1

iat(Pi, Pi+1)

d
log

„

iat(Pi, Pi+1)

d

«

where d is the flow duration. The algorithm iteratively cuts a seg-
ment S into S1 and S2 as long as max{EIAT (S1), EIAT (S2)}
> EIAT (S). Here, an increase in entropy indicates that the IATs in
the newly generated segments are more homogeneous. In practice,
such entropy-based cutting requires no tuning parameters and suc-
ceeds in removing large gaps. The remaining small gaps may add
“noise” to the RTG, but usually they do not significantly change the
correlation coefficients. The third factor concerns dramatic changes
in the sending rate, as illustrated with an example in Figure 10(g).
Given the rare occurrence of this case in our datasets, we will deal
with this as future work.

4.3 Flow Clock Extraction
We define the TCP flow clock to correspond to the regular spac-

ing between flights of packets. The most commonly accepted cause
of TCP flow clocking is RTT-based and hence inherently linked to
the transport layer [33, 36]. By devising a methodology for accu-
rately extracting TCP flow clock information from unidirectional
packet traces and applying it to actual data, we observe that TCP
flow clocking can also originate from the application layer or even
the link layer. Understanding the different root causes for TCP flow
clocks has far-reaching implications. For one, if the flow clock is
not generated by the transport layer, existing algorithms [33, 36]

Algorithm 2 Rate Tracking Graph

Input: Unidirectional Packet Trace T , Window size W
Output: Rate Tracking Graph
Require: T has significant retransmissions (> 10%)
1: for all byte b ∈ T do
2: if ∃byte b′ : (b′.seq = b.seq) ∧ (b′.ts > b.ts) then

3: b.lbl ← 0; else b.lbl ← 1; endif

4: end for

5: head ← 0; tail ← 1
6: while tail ≤ T.len do

7: head ← head + 1

8: while (tail ≤ T.len) ∧ (
tail
P

i=head

byte(i).lbl < W ) do

9: tail ← tail + 1
10: end while

11: if tail ≤ T.len then

12: r = tail − head + 1 − W ; t = byte(tail).ts − byte(h).ts
13: Plot (t, r) on Rate Tracking Graph
14: end if

15: end while

that implicitly associate RTT with flow clock will suffer from low
accuracy. Second, we find that flows with large non-RTT based
flow clock tend to have more consistent flight size. Also, these
flows are more likely to transfer data with an inappropriately large
congestion window, due to a larger timeout value not complying
with RFC [5], as illustrated in §6.3. Third, we envision that flow
clocks can serve as a new feature for traffic classification and net-
work anomaly detection.

The main idea behind our method for accurately extracting the
dominant flow clock (if it exists) is as follows. We view a packet
trace as a sequence of pulse signals in temporal domain. Next we
transform the signal into the frequency domain via Fourier Trans-
form. In the frequency domain, we design an algorithm that com-
bines pattern recognition techniques with our empirical knowledge
about TCP clocking to detect peaks (spikes) within relevant fre-
quency bands. Lastly, the flow clock is defined to be the fundamen-

tal frequency i.e., the lowest frequency in a harmonic series [25].
Our detailed implementation of this flow clock extraction algo-

rithm consists of 6 steps. (i) Given a unidirectional packet trace
T , the algorithm discretizes timestamps of T into a binary array
B using a sampling frequency of 500Hz; B(i) = 1 if and only if
there is at least one packet that arrived between times 2i and 2i+2
msec. (ii) We use the Discrete Fourier Transform (DFT) to trans-

form B into the frequency domain: F = DFT (B, 2⌈logB.len

2 ⌉),
then downsample F to 1,000 points (resolution of each point is
0.25Hz). (iii) Detect the local maxima (candidate peaks) by slid-
ing a window of size w and sensitivity s along the spectrum, and
mark points whose amplitude is larger than µ + sσ as candidate
peaks (µ: mean, σ: standard deviation of the points within the win-
dow). In our implementation, we apply 3 pairs of (w, s) to discover
both narrow and wide peaks: w = 4, 8, 16 and s = 8, 16, 32.
(iv) Cluster consecutive candidate peaks (distance of less than 5
points) into a single peak; remove peaks whose amplitude is less
than µ0 + 3σ0 (µ0: mean, σ0: standard deviation of all 1,000
points). (v) For each peak with frequency f , test whether f is a
fundamental frequency: for k = 2, 3, 4, if there exists a peak with
frequency f ′ ∈ (kf − δ, kf + δ) where the tolerance parameter δ
is set to three3. (vi) Return the minimum fundamental frequency if
found.

In the above approach, after downsampling the spectrum to 1,000

3In our implementation, for a fundamental frequency, we only re-
quire 2 out of 3 values of k correspond to peaks to increase robust-
ness to errors.



points, the resolution of each point is 0.25Hz. Therefore the ex-
tracted fundamental frequency may be inaccurate when the flow
clock is large. We solve this problem by performing additional
postprocessing if the fundamental frequency is less than 5Hz. First,
we separate the flow into flights based on the rough estimation of
flow clock using the algorithm introduced in §4.1 of [35], except
that here we rely on an estimation of the flow clock instead of
using blind search as it is in [35]. Next, the refined flow clock
is calculated as the average time difference between the begin-
ning of consecutive flights after removing outliers falling outside
(µ − 3σ, µ + 3σ).

We tuned the above parameters based on the empirical findings
described in §5.3. In rare cases, a flow may possess two or more
fundamental frequencies e.g., both RTT-based clocks and application-
based clocks are observable in the flow. We find that the small-
est fundamental frequency usually obscures the detection of larger
ones, so that discovering a second or third fundamental frequencies
may not be accurate or informative in practice. We intend to pursue
this issue in future work.

5. METHODOLOGY VALIDATION
We systematically evaluate our algorithms introduced in §4. We

first validate the ICW estimation algorithm by comparing with ac-
tive probing in the TBIT approach [26], followed by an analysis of
false positives in RTGs by triggering retransmissions through in-
jected packet losses to thousands of HTTP downloading sessions,
and finally validate flow clock detection by comparing with ground
truths obtained from flow traces of different types.

The same dataset for active probing, consisting of 3,131 URLs,
each pointing to a file with size greater than 1MB, is used for first
two sets of experiments in §5.1 and §5.2. We performed DNS
lookup for the domain part of each URL and replaced it with one
or more IP addresses to eliminate DNS based server load balanc-
ing. This expanded the dataset to 5,844 URLs. We set up a testbed
for URL query experiments based on the TBIT [26] tool which
infers TCP behavior of Web servers by active probing. For exam-
ple, TBIT infers ICW by sending an HTTP GET request packet
and not acknowledging any further packet. The Web server will
only be able to send packets that fit within its ICW before retrans-
mitting the first data packet. We added two new tests to TBIT:
ICWPassive and RTG. After establishing the connection to the
Web server, ICWPassive receives k + 1 packets, closes the con-
nection by sending a TCP RST and estimates ICW passively as
described in §4.1; RTG receives data as a normal TCP receiver but
randomly drops packets at a certain loss rate, then generates RTG
based on §4.2 after connection termination. Besides these enhance-
ment, we also improved TBIT in several other aspects, e.g., made
the format conform to Konqueror 3.5.8 for FreeBSD 7.

5.1 Inferring Initial Congestion Window Size
As shown in Table 3, the experiment was performed using 3 dif-

ferent MSS values: 1460B, 512B and 128B. For each MSS, each
URL was probed 5 times. We eliminate cases where probing fails
due to HTTP errors (less than 30%), or either algorithm reports in-
consistent results in 5 trials (less than 0.7%). For the remaining
URLs, we regard a probing as accurate if both algorithms produce
the same result. We report the accuracy for MSS=1460B, 512B
and 128B to be 98.4%, 98.8% and 99.2%, respectively. Inconsis-
tent cases are conservatively considered as inaccurate.

Algorithm 1 has two parameters k and θ. For k, we tried k =
7, 8, 9, 10 and finally chose k = 8 since it results in the highest ac-
curacy for all three MSS. We chose θ = 0.2 based on the distribu-
tion of normalized IAT for I2, ..., I8 where Inorm

j = Ij/
P8

a=2
Ia

Figure 3: (a) Distribution of normalized IAT for the first 9

packets (excluding IAT of SYN-ACK and first data packet) (b)

Distribution of normalized IAT for the first 9 packets

Table 3: Compare the ICW algorithm with TBIT
MSS 1460B 512B 128B

Total URLs 5,844 5,844 5,844
HTTP errors 1,523 1,494 1,783
Inconsistent results by TBIT 11 11 6
Inconsistent results by Algorithm 1 9 6 8
Both return inconsistent results 20 8 12
Remaining URLs 4,281 4,325 4,035
Accuracy 98.4% 98.8% 99.2%

for 2 ≤ j ≤ 8 (Figure 3(a)), since θ = 0.2 well separates two fre-
quently occurred ranges (0, 0.1) and (0.4, 0.55), which correspond
to packet-based IAT and flight-based IAT, respectively. The com-

plementary CDF of normalized IAT including I1 where Inorm′

j =

Ij/
P

8

a=1
Ia for 1 ≤ j ≤ 8 is shown in Figure 3(b). In most cases

I1 is much larger, due to the extra delay caused by the server OS /
applications, explaining the need for discarding I1 in Algorithm 1.
Also in Figure 3(b), curves of I3 and I6 depict the typical increase
in congestion window size at the beginning of slow start i.e., from
2 MSS to 3 MSS (instead of 4 MSS due to delayed ACKs [6]).

5.2 Rate Tracking Graph
We first validate whether under high retransmission rate, RTGs

of most flows exhibit positive correlation coefficients. Our testbed
downloaded each URL described previously. During the file down-
load, the testbed dropped packets at loss rate of 5%, 10%, and
15% respectively, and also generated RTG for the downloading
trace. Such approach only introduces random losses not conges-
tion losses. However, all known TCP implementations do not dis-
tinguish them (both are triggered by duplicated ACKs or timeout)4.
Next we show results for the loss rate of 10%. For other loss rates,
qualitatively similar observations are made.

We successfully downloaded 4,462 out of 5,844 URLs. For each

4We created a 1Mbps bottleneck link to increase congestion losses.
In that case, well behaved flows also exhibit strong positive corre-
lation coefficients when both congestion and random losses exist.
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Figure 4: Distribution of correlation coefficients of RTGs

Figure 5: (a) A normal Rate Tracking Graph (window size

W = 50KB, correlation coefficient=0.88) (b) An abnormal

Rate Tracking Graph (window size W = 100KB, correlation

coefficient=-0.04)

downloading trace, four tracking window sizes of 50KB, 100KB,
200KB and 400KB are used, generating 17,848 RTGs. Figure 4
plots the distribution of correlation coefficients for each window
size, clearly indicating that in most cases, the sender slows down
the rate when retransmissions increase. Correlation coefficients for
any pair of tracking window sizes (Wx, Wy) are positively corre-
lated between (0.75, 0.92). After entropy-based cutting, the aver-
age entropy only slightly increases from 6.06 to 6.11 (0.8%), be-
cause it is unlikely that large gaps occur in these HTTP download
traces. However, for our seven passive collected datasets, the aver-
age entropy increases by 5% to 9%.

We examine the maximum of correlation coefficients for four
window sizes to discover irregular retransmissions. All flows have
max{CC50,CC100,CC200,CC400 > 0.3} except for one with
CC50 = 0.09, CC100 = 0.08, CC200 = −0.04, and CC400 =
−0.27 (CCW denotes RTG’s correlation coefficient for tracking
window size W ) as shown in Figure 5(b), which provides a con-
trast for a typical RTG with high positive correlation coefficient
illustrated in Figure 5(a). From the sequence diagram of the ir-
regular flow shown in Figure 6, we observe that in fast retrans-
mission, instead of retransmitting the lost packet (indicated by the
duplicated ACK), the server retransmits all packets from the lost
packet to the current packet with the maximum sequence number.
This can be caused by problematic TCP implementation. In fact,
the OS fingerprinted by Nmap [2] looks very strange (“HP 9100c
Digital Sender multifunction printer” with confi-
dence of 93%)5.

5.3 Flow Clock Extraction
To evaluate the flow clock extraction algorithm (§4.3), we cap-

ture flows of different applications (listed in Table 4) where the

5We use Nmap 4.85 with -O -host-timeout 600000.
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Figure 6: Irregular retransmission detected by RTG

Table 4: Validation of the flow clock extraction algorithm
Application Flow Clocks Errors

Web/FTP bulk transfer RTT 0 / 20
Interactive Web session RTT / NoClk 1 / 20

SSH NonRTT / NoClk 0 / 20
Remote Desktop RTT / NoClk 0 / 20

VoIP (Skype) NonRTT / NoClk 1 / 20
Multimedia streaming RTT / NonRTT 0 / 20

Gaming NonRTT / NoClk 0 / 20

flow clocks and their origins are known, then compare the ground
truth with extracted flow clocks. We collected 10 flows for each ap-
plication type. By measuring the RTT using ping and examining
the frequency spectrum and packet sequence diagram, it is easy to
determine the dominating flow clock and its origin. Similar to the
algorithm described in §4.3, we declare the existence of flow clock
by observing at least two human-observable harmonic frequencies
among 2f0, 3f0, 4f0, where f0 is the human-observable fundamen-
tal frequency6 . We declare that our algorithm correctly extracts the
flow clock if the difference between human judgment (choosing the
local maximum) and algorithm output is less than 10%. We declare
that the clock is originated from transport layer if the difference be-
tween flow clock and RTT is less than 10%. The whole experiment
was conducted twice at one author’s department (optical fiber con-
nection for campus network) and home (broadband cable connec-
tion). The validation results are reported in Table 4, from which we
select eight representative cases illustrated in Figures 7(a) to (h).
For each plot in Figure 7, the bullets on spikes denote candidate
peaks (after clustering) as described in §4.3 step (iv); the arrows
point to the extracted flow clocks (fundamental frequencies); and
two horizontal lines indicate µ0 and µ0 + 3σ0 (explained in §4.3
step (iv)).

For Web/FTP bulk transfer, we collected flows downloading or
uploading files larger than 1MB with RTT varying from 20ms (Fig-
ure 7(a)) to 400ms (Figure 7(b)). Clocks of all flows clearly cor-
respond to RTT. For interactive Web sessions such as GMail, RTT-
based clocks in both directions are blurred by user’s interaction at
varying degrees (Figure 7(c)). For SSH flows7, we observed intense
amplitude at 62.5Hz (16ms) from client to server (Figure 7(d))
since IATs of most packets are multiples of the fundamental fre-
quency at 16ms regardless of RTT. As shown in Figure 7(e), Skype
flows from caller to callee exhibit dominant frequency character-
istics at 50Hz (other peaks in Figure 7(e) are not fundamental fre-
quencies), while we did not observe such behavior for reverse flows

6We admit that such an approach introduces subjective elements;
however, in most cases, such determination by human is trivial.
7We use SSH Secure Shell version 3.2.9 on Windows XP SP3 as
client; we tried both Solaris 10 and Linux 2.6.20 as server.



Figure 7: Frequency spectrum and flow clocks for different applications

(callee to caller, Figure 7(f)). Such small non-RTT based clocks
may be caused by software clocks of the user application or OS.
For multimedia flows, as examples shown in Figures 7(g)(h), their
clocks can either be RTT-based (e.g., PPLive) or application-based
(e.g., Winamp Radio).

We investigated the origin of the 16ms-clock for SSH flows. By
hooking the socket send() API and WM_KEYDOWN message (a
keyboard event) in SSHClient.exe using Detours [1] (a binary
interception tool for Windows functions), we observe that both
events happen at a granularity of 16ms, indicating that the clock
is caused by the timing granularity of keyboard scanning event in
Windows XP.

Clearly, Figure 7 only lists several possible but not all flow clock
configurations. Flow clocks are affected by multiple factors includ-
ing link speed, packet loss rate, RTT, applications and user interac-
tion. In §6.3, we present characterizations of flow clocks observed
in our datasets.

6. ANALYSIS OF LONG-LIVED FLOWS
In this section, we apply methodologies introduced in §4 on our

datasets and present the results. We only examine long-lived flows
defined to be with duration of more than 30 sec and size larger
than 1MB (The numbers of such flows are shown in the first row
in Table 6). There are several reasons that we focus on long-lived
flows. First, they contribute to considerable traffic volume, as for
each dataset, the long-lived flows accounts for at most 0.16% of all
flows, but contributes at least 55% of traffic volume; second, long-
lived flows provide enough information as required by our statisti-
cal approaches; third, the reduction of the number of flows signif-
icantly saves analysis time without losing the global view on the
datasets. §6.1, §6.2 and §6.3 discuss the results for ICW inference,
irregular retransmission and flow clocks, respectively.

6.1 Initial Congestion Window Size
All our passively collected datasets exhibit IAT distributions very

similar to those of active probing datasets as shown in Figures 3(a)(b).
So we choose the same parameters k = 8 and θ = 0.2.



Table 5: Distributions of Initial Congestion Window
ICW Total 1-2 3 4 5 6 7

BU 18234 88.3% 8.0% 3.1% .2% .3% .08%
BS1 18609 86.0% 10.2% 3.4% .1% .3% .05%
BS2 18342 86.2% 9.2% 4.1% .2% .3% .02%
BS3 18468 83.9% 9.1% 6.4% .2% .3% .05%
BS4 15763 85.1% 8.6% 5.6% .3% .3% .04%
VPN 2135 94.5% 3.2% 2.0% 0% .4% 0%
DSL 18004 77.2% 6.9% 14.2% .6% 1.0% .03%
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RFC 2581 [6] requires that ICW must be less than or equal to
2*MSS bytes and not exceed 2 segments. RFC 3390 [5] updates
RFC 2581 by changing the upper bound to min(4∗MSS, max(2∗
MSS, 4380 bytes))8. In our measurement results shown in Ta-
ble 5, most flows have ICW of 2 MSS, while we also observe
small fraction of flows (0.4% to 1.63%) whose slow start begins
with ICW of more than 4 MSS. Figure 8 plots the distribution of
ICW size in bytes, where ICWs mainly concentrate in two clusters:
2520 to 2920 bytes and 1460 × 3 = 4380 bytes, corresponding to
2*MSS and the numerical upper bound defined in RFC 3390, re-
spectively. For DSL, about 14% flows form a third cluster around
5800 bytes (4*MSS, as shown in Table 5), which is an inappropri-
ately large ICW. We also observe extreme cases where ICW is as
large as 9KB. For each dataset, we report the percentage of flows
with ICW greater than min(4∗MSS, max(2∗MSS, 4380 bytes))
as follows. BU: 3.6%, BS1: 3.8%, BS2: 4.6%, BS3: 6.9%, BS4:
6.2% VPN: 2.3%, DSL: 15.8%. OS detection results (Nmap only
fingerprints 24% of servers) show that almost all OS implementa-
tions of flows with inappropriately large ICWs are Linux 2.6.x or
FreeBSD 6/7 (ICW is controlled by sysctl_tcp_iw variable in
Linux kernel).

6.2 Irregular Retransmission
Recall that in §4.2, irregular retransmissions deviate from the

usual case where the sender slows down its sending rate when the
retransmission increases. Rate tracking graph (RTG) statistically
detects irregular retransmissions for flows with overall high retrans-
mission rate. We first present characterizations of retransmission
rate and an overview of correlation coefficients of RTGs, then ana-
lyze the irregular retransmissions detected by our algorithm.

Figure 9(a) plots the distribution of retransmission rate. More
than 55% of flows have almost no (less than 0.01%) retransmission.
At least 80% of flows have retransmission rate of less than 1%.
There exists little diversity in retransmission behavior across seven

8Some network cards (e.g., Intel Pro 1000 NIC) provide a function
called TCP Segmentation Offload (TSO) that allows the kernel to
transmit packets with very large MSS (e.g., 64KB). However, the
NIC will eventually break the data down into proper MTU-sized
packets (e.g., 1448 bytes).

Table 6: Distribution of different types of irregular retransmis-

sion
BU BS1 BS2 BS3 BS4 VPN DSL

Long-lived 31K 29K 29K 29K 26K 4.1K 33K
High Retran 977 1009 908 821 692 16 1672

Breakdown of flows with high retransmission rate

Non-irregular 928 953 847 778 651 15 1622
Irregular 49 56 61 43 41 1 50

Breakdown of flows with irregular retransmission

Non-Conform 16 19 20 12 9 0 16
Sender Limit 17 18 25 20 16 1 29

Partial Overlap 5 5 5 3 6 0 0
Gaps/Rate Chg 2 4 2 3 2 0 3

Unknown 9 10 9 5 8 0 2

Figure 9: (a) Distribution of packet retransmission rate (b) Dis-

tribution of correlation coefficient of RTG for different window

size W

datasets. The retransmission rate of VPN is lowest on average,
while DSL has more flows with retransmission rate higher than 5%.

Next, we pick flows with retransmission rate higher than 10%
and generate their RTGs by applying Algorithm 2 with preprocess-
ing described in §4.2. Figure 9(b) plots the distribution of cor-
relation coefficients of all RTGs for BU (lowest on average) and
DSL (highest on average), using tracking window sizes of 50KB,
100KB, 200KB and 400KB. Clearly, for each window size W ,
majority of flows exhibit strong positive correlation between the
transmission time for W bytes and the retransmission rate. On the
other hand, we are more interested in understanding the opposite
part, irregular retransmissions, which are conservatively defined
here as max{CC50KB , CC100KB , CC200KB , CC400KB} < 0.1.
As shown in Table 6, those irregular flows account for 2.5% to 5%
of flows with retransmission rate higher than 10%. By carefully
analyzing each irregular flow, we classify them into five categories.

Category 1. There exists clear indication that the retransmission

behavior does not conform to RFC-compliant TCP specifications.

In particular, we observe cases where (i) the sender retransmits a
train of packets within one RTT; (ii) the sender retransmits packets
not lost; (iii) the sender injects large duplicated bursts to the link.
Except for VPN, they account for 20% to 50% cases in each dataset.
Three examples are shown in Figures 10(a) to (c). In Figure 10(a),
at t1 = 25.54s, the sender retransmits 18 identical packets sent at
t2 = 25.44s. Note that the interval is t1 − t2 = 0.1s, less than
RTT = 0.2s that can be measured from the slow starts observed
in the flow. In Figure 10(b), at t = 11.27s, the sender retransmits
received packets (indicated by the ACKs) sent between t = 10.58s
to t = 10.81s, resulting in a large number of duplicated ACKs
observed from t = 11.84s. In Figure 10(b), there is no observed
duplicated ACKs that may trigger retransmission. In Figure 10(c),
the sender injects two large overlapped bursts of 500KB into the



Figure 10: Examples of irregular retransmissions

link at t = 2.44s and t = 2.66s. Above behaviors may be caused
by bugs or intentionally aggressive implementation of TCP.9

Category 2. Rate limited by sender. As discussed in §4.2, the
sender does not fully utilize the congestion window even if the
congestion window is reduced due to packet loss, since the sender
does not produce data fast enough. Therefore, when the loss is de-
tectable, the sender can possibly keep retransmitting packets with-
out slowing down. Two examples are illustrated in Figures 10(d)
and (e). We identify this category by observing (i) the flow clock
is detected; thus we can separate the flow into flights based on the
clock; (ii) the last packet of each flight is not transferred in MSS;
(iii) the flow does not fall into Category 1 or 3. This category ac-
counts for 30% to 50% of irregular flows for each dataset except
for VPN.

Note that the congestion window reduction described in RFC
2581 [6] is based on FlightSize, defined as is the amount of out-
standing data on the wire. Even if an application is not fully utiliz-
ing current congestion window, a loss should also cause a reduction
in the observed transmission rate. Therefore, we believe that this

9Nmap shows that flows in Category 1 are mostly generated by
Linux 2.6.x and Windows 2003, while we also observe other OS
versions such as firmware OS for embedded network devices (e.g.,
routers). It is difficult for us to reproduce the buggy TCP behaviors
because many servers return HTTP 4xx codes, and the bugs seem
to be triggered nondeterministically.

category also corresponds to non-standard TCP implementations.
Category 3. Partial Overlap of Sequence Numbers. Irregular

flows in this category have strong frequency characteristics based
on which we can separate the flow into flights. The flow exhibits
a strange pattern that the sequence numbers of consecutive flights
partially overlap. For example, in Figure 10(f), each flight contains
16 ≤ k ≤ 20 packets; after sending flight i : [m, m + k), the
sender retransmits packet m + k − c and the next flight starts from
m+k− c+1. We observe 3 to 6 such flows in each unidirectional
dataset.

Category 4. Gaps or Rate change (false positives). The gener-
ated RTG shows a negative correlation due to gaps that were not
removed, or due to a dramatic rate change. An example is shown
in Figure 10(g). Before t = 30s, the sending rate and retransmis-
sions are high; both decrease after t = 30s, causing the undesirable
negative correlation. The overall false positive rate is 16/301.

Category 5. Unknown cases. It includes other cases that do not
fall into the above four categories. We are unable to infer the cause
of irregular retransmission, especially for unidirectional datasets.
An example is shown in Figure 10(h).

6.3 Flow Clocks
We make four key observations from our analysis regarding flow

clocks. In our datasets, (i) more than half of our flows do not have
distinguishable flow clocks; (ii) a significant number of flows have
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non-RTT based flow clock around 100ms; (iii) flows with large
non-RTT based flow clock tend to have more consistent flight size;
(iv) flows with non-RTT based clocks are more likely to transfer
data with an inappropriately large congestion window (violating
RFC 2581 [6] and RFC 2988 [30]) after a relatively long period of
idle time.

RTT is a key parameter for understanding the origin of flow
clocks. We tried three ways to estimate RTT: (1) measure the delay
between SYN-ACK and first data packet; (2) measure the delay be-
tween SYN and first ACK packet; (3) measure the delay between
first two flights in slow start. However, none of them yields satisfac-
tory results, since (1) overestimates RTT for most flows due to the
reason explained in §4.1; (2) may overestimate RTT for some flows
due to delayed first ACK [19]; and (3) also overestimates RTT in
many cases, compared with (2). Finally we picked the minimum
value of (2) and (3) as an approximation of RTT. Such compromise
requires bidirectional data, so we did not report RTTs for BU and
BS1 to BS4. We clearly cannot use previous methods [33, 36] that
implicitly assume RTT as flow clocks to calculate RTT.

Table 7 shows the existence of flow clocks in our datasets. For
unidirectional traces BU and BS1 to BS4, more than half of the
flows do not have distinguishable flow clocks; nearly 69% of flows
fall into this category for VPN and DSL. For these latter two bidi-
rectional datasets, we further classify flow clocks into RTT based
and non-RTT based, using the empirically selected criteria that
|clock − RTT |/RTT < 20%. The ratio of RTT based and non-
RTT based clocks are 1:0.73 and 1:1.44 for VPN and DSL, respec-
tively.

Figure 12(a) plots the distribution of flow clocks. For each dataset,
among flows with a measurable flow clock, about half of flows
have clocks less than 150ms, while considerable number of flows
have larger clocks up to 2000ms. We found a significant number of
flows (15% for BU and BS1 to BS4, 10% for DSL) with flow clock
around 100ms (10Hz). Based on Figure 12(b), which plots RTT
and non-RTT based clocks for DSL10, these clocks are mostly non-
RTT based. By examining their IP and port numbers, we found
that many of them are flows from video/audio streaming servers
such as imeem, Pandora and streamtheworld11 . Furthermore, in
Figure 12(b), 30% of flows in DSL dataset have non-RTT based
clock around 18ms. They are from a wide range of Web servers
and CDN servers. However, we suspect that such non-RTT based
flow clock is caused by the link layer, as it is known that if a flow’s
rate is limited by its bottleneck link, then the packets will be nearly
equally-spaced [35]. In our controlled experiment, we created a
bottleneck link of 1Mbps using a Linksys WRT54GL broadband

10Samples in VPN are too few to draw confident conclusion.
11Many IPs are from CDN servers, so we cannot infer their sources.

Table 7: Existence of flow clocks.
Has Clock BU BS1 BS2 BS3 BS4

Yes 42.5% 43.3% 44.7% 46.3% 45.9%
No 57.5% 56.6% 55.3% 53.6% 54.1%

VPN: No flow clk 68.5% DSL: No flow clk 69.0%
VPN: RTT based clk 2.6% DSL: RTT based clk 8.8%

VPN: non-RTT based clk 1.9% DSL: non-RTT based clk 12.7%
VPN: Unknown RTT 27.0% DSL: Unknown RTT 9.5%

Figure 12: (a) Distribution of flow clocks (b) Distribution of

RTT based clocks vs. non-RTT based clocks for DSL

router. As shown in Figure 11, HTTP downloading flows going
through the 1Mbps bottleneck link exhibit flow clock around 12ms,
which equals to the inter-packet time regardless of RTT. Finally, in
Figure 12(b), 7% of flows with clocks larger than 1 second appear
to be video streaming applications sending at constant bit rate.

Our next observation relates to the consistency of flight size. Re-
call that in §4.3, given that a flow has its clock, we separate the
flow into flights, each of which consists of a train of packets sent
within one clock. We find that, flows with large non-RTT based
flow clock tend to have more consistent flight size. To quantify
the consistency of flight sizes, we define a flow’s flight entropy

as: EF = −
P

k

Nk

N
log

“

Nk

N

”

(N : total number of flights, Nk:

the number of flights containing k packets). Intuitively, a smaller
EF indicates that the flight sizes are more consistent (in all seven
datasets, packet count and flow size are highly correlated with cor-
relation coefficient higher than 0.99). The scatter plot in Figure 13
illustrates a trend that the flight entropy tends to decrease as flow
clock increases, given that the flow clock is greater than 100ms. In
each dataset, for flows with clock greater than 100ms, the correla-
tion coefficients between flow clock and flight entropy lie between
-0.5 and -0.3, since as flow clock increases, the proportion non-RTT
based clock increases correspondingly, causing the decrease in the
average flight entropy.

We further observe that flows with non-RTT based clocks are
more likely to transfer data with an inappropriately large conges-
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Figure 14: Scatter plot of flow clock and aggressive idle starts

tion window after a long idle period. Based on RFC2581 [6], if a
TCP has no transmission for more than one retransmission timeout
(RTO), it should reduce the congestion window to no more than the
restart window, which equals to initial congestion window, before
next transmissions. The standard way to compute RTO is defined in
RFC 2988 [30] as RTO = RTTmean+4×RTTstd, then rounded
up to 1 second if needed12. To test whether the idle start behavior of
a flow conforms to [6] and [30], we count the number of aggressive
idle starts (i.e., the server does not perform slow start after RTO),
which is then divided by the total number of idle starts observed in
the flow to get an aggressive ratio.

We selected 288 flows from DSL datasets where there exists at
least 10 idle starts and the RTT can be estimated from TCP hand-
shake. We calculate the aggressive ratio for each flow, based on an
overestimation of RTO as max{5∗RTT, 1.1sec}. The scatter plot
of flow clocks and aggressive ratios is shown in Figure 14. On one
hand, flows with non-RTT based clocks are more likely to perform
aggressive idle start. In particular, among flows with aggressive ra-
tio higher than 0.8, 75% have non-RTT based clocks. On the other
hand, non-RTT based clocks with high aggressive ratio are mostly
large, as 87% have clocks greater than 0.95sec, forming a cluster at
upper-right corner of Figure 14. Most flows in the cluster originate
from multimedia streaming servers. For flows with large non-RTT
based clocks, a clear motivation to use a longer RTO is to keep the
constant sending rate by avoiding slow start. However, by doing
so, TCP can potentially send a large burst into the network after an
idle period.

12Based on RFC 2988, exceptional cases include: RTO should be
set to 3 seconds before first RTT is estimated, and RTO must be
doubled when retransmission timer expires due to packet loss.

6.4 Summary of Results
We summarize our findings as follows. (i) The majority of the

flows have ICW of 2*MSS. However, from 2.3% to 15.8% flows
in our data have a large ICW violating RFC 3390. Almost all ag-
gressive flows are from two open source OSes: Linux 2.6.x and
FreeBSD 6/7. (ii) Among flows with high retransmission rate (higher
than 10%), 5% exhibit irregular retransmission behavior, which is
observed to have two main causes: abnormal retransmission not
conforming to RFC-compliant TCP specifications, and under-utilization
of the congestion window. (iii) Less than half of our flows have
distinguishable flow clocks. Among flows with a measurable flow
clock, up to 60% have clocks originated by non-RTT factors. In
particular, we observe several clusters of clocks such as 100ms and
18ms differing significantly from RTT values. We found that be-
sides RTT, many factors such as user interaction, application de-
fined software clocks, periodical OS events (e.g., keyboard scan-
ning), or “retiming” effects of a bottleneck link may shape or blur
the flow clock. (iv) Flows with large non-RTT based flow clock
tend to have more consistent flight size. Also, flows with non-RTT
based clocks are more likely to transfer data with an inappropriately
large congestion window due to a larger RTO. Both observations
are motivated by keeping constant sending rate at the application
layer.

7. CONCLUSION
Given the critical importance of the TCP protocol for shaping

the traffic characteristics on the Internet, our work reexamines key
properties of TCP behavior observed on the Internet today, using
traces collected at multiple vantage points from a tier-1 ISP. We
reveal the evolution of TCP’s characteristics by comparing with
two previous studies conducted 6 to 8 years ago. Furthermore, we
go beyond the basic characterization to study within-flow packet
dynamics. In particular, we studied three problems: how to de-
termine the initial congestion windows of TCP senders; how to
capture sender’s change in sending rate in response to packet re-
transmission; how to accurately obtain TCP flow clocks. To answer
these questions, we have designed several novel methodologies, es-
pecially addressing the challenges of analyzing passively collected
unidirectional TCP flows. By applying our methods on long-lived
flows in our datasets, we characterized the popular TCP behavior,
and identified unexpected flows not conforming to TCP specifica-
tions as well. Our findings also suggest that the popularity of TCP’s
use for streaming and gaming applications would greatly change
the traffic dynamics especially because most flows with non-RTT
based flow clocks are found to belong to this application class. Our
study is an important step towards better understanding Internet
traffic dynamics, ensuring protocol conformance, and understand-
ing the interaction between the transport layer and the application
layer.
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