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Abstract – We study the performance of TCP Westwood 
(TCPW), a new TCP protocol with a sender-side modification 
of the window congestion control scheme. TCP Westwood 
controls the window using end-to-end rate estimation in a 
way that is totally transparent to routers and to the 
destination. Thus, it is compatible with any network and TCP 
implementation. The key innovative idea is to continuously 
estimate, at the TCP sender, the packet rate of the connection 
by monitoring the ACK reception rate. The estimated 
connection rate is then used to compute congestion window 
and slow start threshold settings after a congestion episode. 
Resetting the window to match available bandwidth makes 
TCPW more robust to sporadic losses due to wireless channel 
problems. These often cause conventional TCP to overreact, 
leading to unnecessary window reduction. Experimental 
studies of TCPW show significant improvements in 
throughput performance over Reno and SACK, particularly 
in mixed wired/wireless networks over high-speed links. The  
contributions of this paper include a model for fair and 
friendly sharing of the bottleneck link and a Markov Chain 
performance model in presence of link errors/loss. TCPW 
performance is compared to that of TCP Reno, and analytic 
results are validated against simulation results. Internet and 
laboratory measurements using a Linux TCPW 
implementation are also reported, providing further evidence 
of the gains achievable via TCPW. 

I. INTRODUCTION AND RELATED WORK 

The Transmission Control Protocol (TCP) protocol 
provides end-to-end, reliable, congestion controlled 
connections over the Internet [1][2]. The congestion 
control method includes two phases: slow-start and 
congestion avoidance [3]. Enhanced recovery from 
sporadic errors is provided by Fast Retransmission and 
Fast recovery [4]. Nowadays, TCP is called upon to 
provide reliable and efficient data transfer over 
communication paths with ever increasing bandwidth-
delay product, and over a variety of link technologies 
including wired (i.e., cable and fiber optic), ground radio, 
and satellite links. More losses due to link failures, 
independent as well as correlated, are expected over these 
wireless links. The new high speed wired/wireless 
environment is expanding the domain for which TCP was 
initially developed, tested and tuned. As a consequence, 

active research is in progress to extend the domain of 
effective TCP operability [5][6][7][8][9].  

TCP Westwood [10] design adheres to the end-to-end 
transparency guidelines set forth in [11]. Namely, a simple 
modification of the TCP source protocol stack which 
allows the source to estimate the available bandwidth, and 
to use the bandwidth estimation to recover faster, thus 
achieving higher throughput. TCP Westwood exploits two 
basic concepts: the end-to-end estimation of the available 
bandwidth, and the use of such estimate to set the slow 
start threshold and the congestion window. It is worth 
underscoring that TCPW does not require any intervention 
from network layer or proxy agents. 

TCPW source continuously estimates the packet rate of 
the connection by properly averaging the rate of returning 
ACKs. The estimate is used to compute the “permissible” 
congestion window and slow start threshold to be used 
after a congestion episode is detected, that is, after three 
duplicate acknowledgments or after a timeout. The 
rationale of this strategy is simple: in contrast with TCP 
Reno, which simply halves the congestion window after 
three duplicate ACKs, TCP Westwood (TCPW) attempts 
to make a more “informed” decision. It selects a slow start 
threshold and a congestion window that are consistent with 
the effective connection rate at the time congestion is 
experienced. We call such mechanism faster recovery.  

The use of bottleneck bandwidth and connection rate 
estimation has been proposed before in the TCP literature. 
The best-known examples are Packet Pair [12] and TCP 
Vegas [13]. Both of these schemes use the bandwidth 
computation to estimate the bottleneck backlog. The larger 
the backlog, the larger the congestion. The backlog 
feedback is used in both cases to control the send window. 
The PP scheme achieves perfect bottleneck fair sharing. 
Unfortunately, it requires per flow queuing and Round 
Robin scheduling – a feature not available in commercial 
routers. 

 
Also related to this work is the probing of  “available 
bandwidth” on a path. Allman and Paxson in [14] report 
and compare techniques for probing the available 



bandwidth in order to properly initialize the ssthresh 
before a TCP connection is started. An excessively large 
ssthresh can lead to premature timeout, slow start and 
efficiency loss.  Lai and Baker in [15] describe an 
improved measurement technique (packet tailgating) to 
probe available bandwidth that is less intrusive (i.e., 
consumes less bandwidth) than previous techniques.  The 
above techniques share with our scheme the notion of 
measuring the inter–packet delay gaps and deriving 
bandwidth information from it. They do, however, probe 
the available bandwidth before the connection is started. 
This is a very different (and potentially much more 
difficult) problem than measuring the actual rate that a 
connection is achieving during the date transfer.  

 
The “key innovation” of TCPW is to use the bandwidth 

estimate “directly” to drive the window, instead of using it 
to compute the backlog. The rationale is that if a 
connection is currently achieving a given rate, then it can 
safely use the window corresponding to that rate without 
causing congestion in the network. The careful reader will 
notice that this “aggressive” behavior may still lead to 
unfairness. In a later section we show that fairness is in 
fact guaranteed. 

TCPW offers a number of features that are not available 
in TCP Reno and SACK. For example, the knowledge of 
the available bandwidth can be used to adjust the rate of a 
variable rate source (assuming such source is controlled by 
TCP). In this paper we focus on the behavior of TCPW in 
random packet loss, caused by link error or wireless 
interference instead of by buffer overflow. Like Reno, 
TCPW cannot distinguish between buffer overflow loss 
and random loss. However, in presence of random loss, 
TCP Reno overreacts and reduces the window by half. 
TCPW, on the other hand, after packet loss and 
retransmission timeout, resumes with the previous window 
as long as the bottleneck is not yet saturated (i.e., no buffer 
overflow). 

To prevent the unnecessary window reduction of TCP 
Reno in case of random packet loss, and more precisely the 
loss caused by wireless links, several schemes have been 
proposed [16]. Probably, the most popular is the Snoop 
protocol [17]. Snoop carries out locally the retransmissions 
of packets lost on wireless links. In order to do so, it 
monitors TCP segments, stores copies, and retransmits 
them when it detects that they were lost. In the reverse 
direction, it suppresses TCP duplicate ACKs on their way 
to TCP senders in order to avoid retransmission from the 
TCP source. Other approaches to the wireless/wired 
problem include Split Connections, and “end-to-end” TCP 
modifications such as Explicit Loss Notification (ELN) 
[18][19]. All the above schemes have their pros and cons. 
They all share, however, a common feature. They require 
the cooperation of intermediate routers/proxies. TCPW 
does not require any specific intervention/support from 

intermediate route, thus preserving the original “end to end 
design” principle. 

In order to study the behavior of TCPW in presence of 
random errors, an analytic model was developed using 
Markov chain techniques. This model is an important 
contribution in that it provides further insight in TCPW 
operation. Moreover, it allows us to cross validate 
simulation and measurements.   

The paper is organized as follows. In Section II, we 
provide an overview of the TCPW algorithm. In Section 
III, an informal proof of TCPW convergence to fair share 
is presented. In Section IV, we report analytic and 
experimental performance results. Section presents the 
analytic model and results comparing TCPW and Reno, 
while Section VI includes a discussion of the Internet 
measurements results. Section VII concludes the paper.  

II. AN OVERVIEW OF TCP WESTWOOD 

In TCP Westwood the sender continuously computes the 
connection BandWidth Estimate (BWE) that is defined as 
the share of bottleneck bandwidth used by the connection. 
Thus, BWE is equal to the rate at which data is delivered 
to the TCP receiver. The estimate is based on the rate at 
which ACKs are received and on their payload. After a 
packet loss indication, (i.e., reception of 3 duplicate ACKs, 
or timeout expiration), the sender resets the congestion 
window and the slow start threshold based on BWE. More 
precisely, cwin=BWE x RTT. 

To understand the rationale of TCPW, note that BWE 
varies from flow to flow sharing the same bottleneck; it 
corresponds to the rate actually achieved by each 
INDIVIDUAL flow. Thus, it is a FEASIBLE (i.e., 
achievable) rate by definition. Consequently, the collection 
of all the BWE rates, as estimated by the connections 
sharing the same bottleneck, is a FEASIBLE set. When the 
bottleneck becomes saturated and packets are dropped, 
TCPW selects a set of congestion windows that correspond 
exactly to the measured BWE rates and thus reproduce the 
current individual throughputs. The solution is feasible, but 
it is not guaranteed per se to be “fair share.” An additional 
property of this scheme, described in Section III, drives the 
rates to the same equilibrium point and makes it “fair 
share” under uniform propagation delays and single 
bottleneck assumptions.  

Another important element of this procedure is the RTT 
estimation. RTT is required to compute the window that 
supports the estimated rate BWE. Ideally, the RTT should 
be measured when the bottleneck is empty. In practice, it is 
set equal to the overall minimum round trip delay 
(RTTmin) measured so far on that connection (based on 
continuous monitoring of ACK RTTs). 

A. Setting cwin and ssthresh in TCPW 

Further details regarding bandwidth estimation are 
provided in following sections. For now, let us assume that 



a sender has determined the connection bandwidth 
estimate (BWE), and let us describe in this section how 
BWE is used to properly set cwin and ssthresh after a 
packet loss indication.  

First, we note that in TCPW, congestion window 
increments during slow start and congestion avoidance 
remain the same as in Reno, , that is they are  exponential 
and linear, respectively.  A packet loss is indicated by (a) 
the reception of 3 DUPACKs, or (b) a coarse timeout 
expiration. In case the loss indication is 3 DUPACKs, 
TCPW sets cwin and ssthresh as follows: 

 
if (3 DUPACKs are received) 
    ssthresh =  (BWE * RTTmin) / seg_size; 
    if (cwin > ssthresh) /* congestion avoid. */ 
        cwin = ssthresh; 
    endif 
endif 
 
In the pseudo-code, seg_size identifies the length of a 

TCP segment in bits. Note that the reception of n 
DUPACKs is followed by the retransmission of the 
missing segment, as in the standard Fast Retransmit 
implemented by TCP Reno. Also, the window growth after 
the cwin is reset to ssthresh follows the rules established in 
the Fast Retransmit algorithm (i.e., cwin grows by one for 
each further ACK, and is reset to ssthresh after the first 
ACK acknowledging new data). During the congestion 
avoidance phase we are probing for extra available 
bandwidth. Therefore, when n DUPACKs are received, it 
means that we have hit the network capacity (or that, in the 
case of wireless links, one or more segments were dropped 
due to sporadic losses). Thus, the slow start threshold is set 
equal to the window capable of producing the measured 
rate BWE when the bottleneck buffer is empty (namely, 
BWE*RTTmin). The congestion window is set equal to 
the ssthresh and the congestion avoidance phase is entered 
again to gently probe for new available bandwidth.. Note 
that after ssthresh has been set, the congestion window is 
set equal to the slow start threshold only if cwin > ssthresh. 
It is possible that the current cwin may be below threshold. 
This occurs after time-out for example, when the window 
is dropped to 1 as discussed in the following section. 
During slow start, cwin still features an exponential 
increase as in the current implementation of TCP Reno. 

In case a packet loss is indicated by timeout expiration, 
cwin and ssthresh are set as follows: 

 
if (coarse timeout expires) 
    cwin = 1; 
    ssthresh = (BWE * RTTmin) / seg_size; 
    if (ssthresh < 2) 
        ssthresh = 2; 
    endif; 
endif 
 

The rationale of the algorithm above is that after a 
timeout, cwin and the ssthresh are set equal to 1 and BWE, 
respectively. Thus, the basic Reno behavior is still 
captured, while a speedy recovery is ensured by setting 
ssthresh to the value of BWE. 

B. Bandwidth Estimation 

The TCPW sender uses ACKs to estimate BWE. More 
precisely, the sender uses the following information: (1) 
the ACK arrival times and, (2) the increment of data 
delivered to the destination. Let assume that an ACK is 
received at the source at time tk, notifying that dk bytes 
have been received at the TCP receiver. We can measure 
the sample bandwidth used by that connection as bk=dk/(tk–
tk–1), where tk−1 is the time the previous ACK was 
received. Letting ∆tk=tk–tk–1, then bk=dk/∆tk. 

Since congestion occurs whenever the low-frequency 
input traffic rate exceeds the link capacity [20], we employ 
a low-pass filter to average sampled measurements and to 
obtain the low-frequency components of the available 
bandwidth. More precisely, we use the following discrete 
approximation of the low pass filter due to Tustin [21]. 

Let bk be the bandwidth sample, and kb̂  the filtered 
continuous first order low-pass filter using the Tustin 
estimate of the bandwidth at time tk. Let αk be the time-
varying exponential filter coefficient at tk. The TCPW filter 
is then given by  
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and 1/τ is the filter cut-off frequency. 
Notice the coefficients αk depend on kt∆  to properly 

reflect the variable inter-arrival times.  
 
A number of considerations must be taken into account 

while interpreting the information that a returning ACK 
carries regarding delivery of segments to the destination. 
Two of these considerations are: 
 
1. An ACK i received by the source implies that a 

transmitted packet was delivered to the destination. A 
DUPACK also implies that a transmitted packet was 
delivered, triggering the transmission by the receiver 
of the DUPACK. Thus, DUPACKs are considered in 
estimating bandwidth.  

2. TCP ACKS can be “delayed,” i.e., receivers wait for a 
second packet before sending an ACK, until 200 ms 
elapse in which case an ACK is sent without waiting. 
Delayed ACKs are also accounted for by our scheme.  

 
These items are included in our implementation of 

TCPW under Linux.  



III. TCPW FAIRNESS AND FRIENDLINESS 

An important goal of any TCP implementation is for 
every connection to get its “fair share” of the bottleneck. 
Another important issue is friendliness to existing TCP 
versions. We will use an informal argument similar to that 
used for Reno in [30] to show that TCPW achieves the fair 
share. We use the same approach to evaluate friendliness 
towards TCP Reno. Consider the case of two connections 
with the same RTTs. Suppose, for the sake of example that 
the RTT is X packet transmission times, and the bottleneck 
has X buffers. One connection, say A, starts first. Its 
window ”cycles” between X and 2X (as per the TCPW 
algorithm just discussed in Section 2), each cycle 
terminating when buffer overflow. Later, connection B 
starts, first in slow start mode, and then in congestion 
avoidance mode. In congestion avoidance, during each 
cycle the A and B windows grow approximately at the 
same rate, i.e. one segment per RTT. Eventually, the 
bottleneck buffer overflows, terminating the cycle. One 
can show [internal report] that the window at overflow is: 

 
Wi  = Ri (b/C +RTT), for i = A,B 
 
Where, R is the achieved rate (i.e. BWE), b is the 

bottleneck buffer size, and C is the bottleneck link 
capacity. This is a general property true for all TCP 
protocols, and in particular TCPW. After overflow, TCPW 
reduces the windows to new values Wi

’ as follows: 
 
Wi

’= Ri  (RTT) for i = A, B 
 
Thus, the ratios of the windows of connections A and B 

are preserved after overflow. Yet, the ratio WB/WA keeps 
increasing during  congestion avoidance. Consequently, 
the B window and throughput ratchet up at each cycle. 
Equilibrium is reached when the two connections have the 
same windows and the same fair share of the bandwidth. 
The Fig. 1 graphically illustrates the convergence to the fix 
point WA=WB.  

This informal proof is validated by actual simulation 
results. It can be generalized to many simultaneous 
connections (all with same RTT). It can also be applied to 
the case when the bottleneck is affected by random errors 
equally hitting all connections.  

The same method can also be used to evaluate reciprocal 
“friendliness” of TCPW and TCP Reno. If two connections 
- TCPW and Reno - are sharing the bottleneck, and the 
buffer size (X in our previous example) is exactly equal to 
the optimal window size to “fill the pipe”, then the two 
connections spilt the bottleneck fairly. In fact, at 
equilibrium, each has window = X when buffer overflows. 
After overflow, the TCPW connection gets window = 
C*RTT/2 = X/2; TCP Reno simply halves the current 
window, to X/2. Thus, friendliness is preserved (our 
simulation results confirm this property). Note that sizing 
the buffer to match the “pipe size” is a common and 
intuitively acceptable design choice. If the buffer is much 

smaller than pipe size, TCPW returns a larger CWIN than 
Reno, and thus tends to capture the channel. If, on the 
other hand, the buffer is several times larger than pipe size, 
Reno tends to prevail over TCPW. 

 

Fig. 1 Convergence toward the fair bandwidth sharing. 
 

IV. PERFORMANCE RESULTS 
All simulations presented in this paper were run using 

the LBL network simulator, 'ns' ver.2 [18]. Existing 
modules for TCP Reno and TCP Sack were used. New 
modules for TCP Westwood were written and they are 
available at [19]. A TCPW testbed based on  Linux was  
implemented, see Fig. 2. Testbed measurements are also 
reported.  

 

 
Fig. 2. Experimental testbed layout 

 
We begin with simulation results illustrating the 

accuracy of TCPW bandwidth estimation scheme. Fig. 3  
shows a single TCP connection sharing the bottleneck link 
with two background UDP ON/OFF sources of varying 
data rates with NO flow control. TCP packets are 1400 
bytes in length including TCP/IP headers. TCP and UDP 
packets are assigned the same priority. The 5 Mbps 
bottleneck link has a round trip propagation time of 70 ms. 
Each UDP connection transmits at a constant bit rate of 1 
Mbps while ON.  

zero backlog 

bottleneck overflow 

WB equal bandwidth share 

WA 
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Fig. 3 TCPW with concurrent UDP traffic - bandwidth 

estimation  

Both UDP connections start in the OFF state; after 25s, the 
first UDP connection is turned ON, joined by the second 
one at 50s; the second connection follows an OFF-ON-
OFF pattern at times 75s, 125s and 175s; at time 200s the 
first UDP connection is turned off as well. 

The results in Fig. 3 confirm the effectiveness of the 
TCPW feedback control when subjected to “step” and 
“impulse” interfering traffic: the TCPW bandwidth 
estimation perfectly tracks the UDP fluctuations, adjusting 
throughput accordingly.  
Next we address fairness (within TCPW flows) and 
friendliness (towards Reno). To test fairness and 
friendliness we use our Linux testbed. We first measure 
the throughput for a total of 5 connections with a variable 
Reno/TCPW mix in an errorless channel (Fig. 4).  Next, 
we further probe the friendliness of TCPW on the 
bottleneck link with 1 % packet error rate (Fig. 5). Errors 
and delays are introduced by a Linux emulator. Note that 
TCP West shines in presence of line errors (as it will be 
shown in the next section), so, friendliness in the error 
situation is even more difficult to establish. RTT in both 
cases was 100 ms, with bottleneck buffer to match pipe 
size. 
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Fig. 4  Measured throughput (error-free link) 
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Fig. 5 Measured throughputs (lossy link) 

 
In Fig. 4 and Fig. 5, we show the average TCPW and 

Reno throughput per connection as a function of number of 
Reno connections in the mix. For example, at the point 
marked 3 on the horizontal line, the experiment consists of 
3 Reno connections and 2 TCPW connections. The results 
in Fig. 4 confirm the fairness and friendliness of TCPW 
already predicted in Sect 3. First, each TCPW connection 
added to the set in Fig. 4 achieves the same  throughput as 
the previous ones (fairness). Incidentally, Reno is also fair. 
Second,  Reno is minimally affected by TCPW. The 
average Reno throughput is the same with or without 
TCPW (friendliness). Fig. 5 illustrates two important 
points. First, the superior performance of TCPW in a high 
error rate environment is observed. Namely, 5 TCPW 
connections get 10 % more throughput than 5 TCP Reno 
connections. This behavior will be confirmed by theory 
and experiments in Section 5. Secondly, friendliness is 
preserved. Even though TCPW has an advantage over 
Reno in the error-prone environment, Reno connections 
are not starved. In fact, the improvement shown by TCPW 
is due more to its ability to deal with wireless losses 
efficiently than to the “stealing” of bandwidth from Reno. 

 

V. TCPW PERFORMANCE IN PRESENCE OF LINK 
ERRORS 

As mentioned in Section I, we expect TCPW to 
perform better than Reno and SACK in presence of errors, 
since TCPW reinstates the previous congestion window (if 
the system is not congested) rather than reducing it by half. 
We begin with a set of simulation experiments. Fig. 6 
presents simulation results comparing the throughput of 
Reno and TCPW as a function of error rates. The 
bottleneck bandwidth is set to 45Mbps, and the two-way 
propagation time is 70ms. With no errors, the performance 
of TCPW and Reno is virtually identical. As error rate 
increases, TCPW outperforms Reno. At 1 % error rates, 
appropriate for wireless links, the throughput improvement 
is 615 %. As the error rate increases further, say above 
10%, even TCPW collapses, as expected. 
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Fig. 6 Impact of error rates (Simulation results) 

 
We also investigated the impact of channel speed and 

propagation time on throughput in a lossy link situation. 
As expected, TCPW relative performance with respect to 
TCP Reno improves with larger speed and larger delay 
(i.e., larger operational window). The interested reader can 
find detailed results in [22].  

To gain better understanding of the performance with 
errors, we developed an analytic model of TCPW 
congestion control mechanism. The model takes into 
account the filter operation, and includes the following 
system parameters: the bottleneck link transmission speed, 
the round trip time, and the link error rate. Here, due to 
space constraint, we simply outline the method adopted to 
derive the model, referring to [technical report] for detailed 
coverage.  

Following [23] and [24], we consider a single TCP 
source with infinite fixed–size packet backlog. The sender 
releases packets into a limited FIFO buffer that can hold 
up to B packets (packets arriving to a full buffer are 
discarded). The packets are then sent over a single 
bottleneck link with a speed of µ packets per second and a 
two-way delay of d seconds. Here d is deterministic and 
reflects propagation time and any other transmission and 
processing delays along the path excluding the 
transmission and queuing time at the bottleneck. Let 
T=d+1/µ denote the time between the start of a packet 
transmission and the reception of an ACK for the same 
packet, excluding queuing delays in the buffer. Thus, the 
pipe capacity (i.e., packets required to fill the pipe) is 
given by C=µT, while the maximum window size a 
connection can achieve before overflow is Wmax=B+C.  

The throughput achieved by the system can be derived 
by studying the time evolution of the congestion window, 
W(t). The evolution of this parameter has a cyclic 
structure, in which W(t) grows until a packet loss is 
detected. At this point, the missed packet is retransmitted. 
Further packet transmission is halted until the cumulative 
ACK for the last window of packets is received. Then, the 

cycle starts again with the congestion window set to the 
value derived from the bandwidth estimated at that instant.  

During a cycle, packet transmissions are initially bursty. 
A full window is transmitted each round trip time T, and 
acknowledgments arrive in bursts. The congestion window 
is increased by one at the end of each burst. If W0 is the 
initial congestion window, the first burst contains exactly 
W0 packets, the second W0+1 and so on. ACKs in the same 
burst arrive 1/µ seconds apart while consecutive bursts 
arrive T second apart, until the pipe capacity, C, is reached. 
After this point, ACKs arrive continuously at rate µ.  

The bandwidth estimate is adjusted after each ACK, 
following the algorithm described in the previous sections, 
while the congestion window is increased by one at the 
end of each burst. 

The window W(m) at the end of a generic cycle m is 
uniquely identified by the initial congestion window, W0

(m), 
and the sequence number Ndrop

(m) of the missing packet that 
causes the cycle to terminate. The packet loss may arise 
from a link error or a buffer overflow. Assuming that 
packet errors occur independently with probability ν, the 
probability that the cycle ends at packet n is given by 
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where nmax(W0) is the maximum number of packets that 
may be sent and acknowledged in a cycle, given by  
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The average throughput achievable in the cycle is, then, 
given by  
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where t(W0,n) is the cycle duration, and can be expressed 
in terms of W0 and n [technical report].  

At the end of the cycle, the congestion window is set to 
the current bandwidth estimate. The bandwidth estimate at 
the end of a cycle is uniquely determined by the start cycle 
estimate and by the ACK-arrival process during the cycle. 
Thus, he evolution of W0

(m)
 can be described as an 

embedded Markov process . The transition probability Pi,j 
from W0

(m-1)=i to W0
(m)=j can be computed as  

( )
∑
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=
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where pi,n is given by equation (3), while Ij(i) is the set of 
packet sequence numbers n for which, starting  with a 
window = i at the beginning of the cycle, the estimated 
bandwidth  after  n packet transmissions corresponds to a 
window size = j.  

The average throughput achieved by the system can be 
expressed as  
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where πW denotes the asymptotic probability of the 
window size W at the start of a cycle and η(W0) is given by 
(5). 

We ran several ns simulation experiments to validate 
the model. Fig. 7 shows a comparison of analysis and 
simulation results for both TCP Reno and TCPW for 
different packet error probabilities. 
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Fig. 7 Throughput comparison (bottleneck capacity: 

45Mbps) 

 

VI. INTERNET MEASUREMENTS 

Using our Linux testbed, we have tested TCPW also in 
the global Internet environment (Fig. 8). The sources are at 
UCLA, while the destinations are chosen in three different 
continents (Europe, South America, and Asia). The 
destination Hosts are, of course, unaware whether the 
source Host runs TCPW or Reno. 

Tests were scheduled during normal working hours at the 
destination sites. Experiments included either single or 
multiple file transfers. Throughput results were obtained 
by averaging repeated single file transfers.. A rather large 
file size was used (10 Mbytes) to capture only steady state 
behavior. We used a standard FTP client (ncftp-3.0.2) as 
testing software with additional code for obtaining detailed 
logging at 1-second intervals. We measured application 
throughput in terms of user data/second as reported by 
ncftp. The average throughput achieved by Reno and 
TCPW on the three intercontinental connections is shown 
in Tab.1. Tests were repeated about 200 times throughout 
the day. The results show that TCPW performs marginally 
better that Reno on the Italy and Taiwan connections. It 
performs significantly better on the Brazil connection.  

 

Internet Test-Bed

Internet

Westwood
(Intrepid.cs.ucla.edu)

Reno
(hebe.cs.ucla.edu)

R

Bologna’s University Italy
(shannon.csr.unibo.it)

UCLA CS departiment
LAN High Speed Backbone

R

Taiwan University Tw
(speed.cis.nctu.edu.tw)

R

Brazil 
(ceop2.nce.ufrj.br)

 

Fig. 8 Internet measurement scenario 

 
 

TABLE  1 

INTERNET THROUGHPUT MEASUREMENTS 
Destinati

on 
RTT 

Italy 
170 ms 

Taiwan 
250 ms 

Brazil 
450 ms 

Protocol TC
PW 

Ren
o 

TC
PW 

Ren
o 

TC
PW 

Re
no 

Through
put (KB/s) 

78.6
6 

73.9
3 

167.
38 

152 22.1
6 

15.
4 

 
We further investigated this discrepancy using the 
traceroute Linux tool. We found that Italy and Taiwan 
are connected using standard wired technology with 
minimal link errors. As expected, TCPW does not 
introduce much improvement over Reno. On the other 
hand, the Brazil path has a “lossy” satellite link provided 
by Teleglobe. The satellite link is only in the direction to 
destination, while the opposite direction uses terrestrial 
links. The lossy satellite link accounts for the TCPW 
improved performance. 

VII. CONCLUSIONS 

We have introduced a new TCP scheme (TCP 
Westwood) that requires modifications only in the TCP 
source stack and is thus compatible with TCP Reno and 
Tahoe destinations. TCP Westwood (or TCPW for short) 
differs from Reno in that it adjusts the cwin (congestion 
window) after a loss detection by setting it to the measured 
rate currently experienced by the connection, rather than 
using the conventional multiplicative decrease scheme 
(i.e., divide the current window by half). We have shown 
with qualitative arguments and with experimental results 
that the new control scheme converges to “fair share.” at 
steady state under uniform path conditions Moreover, 
TCPW has several pleasing properties with respect to 



Reno. Most important, it can handle losses caused by link 
errors or wireless channel conditions more efficiently than 
TCP Reno. One general concern with new TCP versions is 
friendliness towards current implementations. TCPW 
exhibits some “aggressiveness” due to its unique window 
adjustment. However, if there is adequate buffering at the 
bottleneck, TCPW and Reno share the channel fairly. 
Moreover, if TCPW and Reno coexist on a bottleneck with 
error induced losses (e.g., wireless link), TCPW 
outperforms Reno mainly because it can make better use of 
the channel, while “stealing” only a modest fraction of 
throughput from Reno. TCPW has been implemented in 
LINUX and has been tested extensively in a local testbed 
at UCLA as well as on Internet cross-continental links. 
The performance measured in the testbeds and in the 
Internet confirms the simulation results. In particular, the 
throughput performance over a lossy route to Brazil 
(satellite link) exhibited a 100 % improvement over Reno.  
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