
Proceedings of IEEE Globecom 2001, S. Antonio, Texas, Dec. 2001
© IEEE

TCP Westwood: Congestion Window Control Using Bandwidth Estimation

Mario Gerla, M. Y. Sanadidi, Ren Wang, and Andrea Zanella
UCLA Computer Science Department

Claudio Casetti

Politecnico Di Torino

Saverio Mascolo
Politecnico Di Bari

Abstract – We study the performance of TCP Westwood
(TCPW), a new TCP protocol with a sender-side modification
of the window congestion control scheme. TCP Westwood
controls the window using end-to-end rate estimation in a
way that is totally transparent to routers and to the
destination. Thus, it is compatible with any network and TCP
implementation. The key innovative idea is to continuously
estimate, at the TCP sender, the packet rate of the connection
by monitoring the ACK reception rate. The estimated
connection rate is then used to compute congestion window
and slow start threshold settings after a congestion episode.
Resetting the window to match available bandwidth makes
TCPW more robust to sporadic losses due to wireless channel
problems. These often cause conventional TCP to overreact,
leading to unnecessary window reduction. Experimental
studies of TCPW show significant improvements in
throughput performance over Reno and SACK, particularly
in mixed wired/wireless networks over high-speed links. The
contributions of this paper include a model for fair and
friendly sharing of the bottleneck link and a Markov Chain
performance model in presence of link errors/loss. TCPW
performance is compared to that of TCP Reno, and analytic
results are validated against simulation results. Internet and
laboratory measurements using a Linux TCPW
implementation are also reported, providing further evidence
of the gains achievable via TCPW.

I. INTRODUCTION AND RELATED WORK

The Transmission Control Protocol (TCP) protocol
provides end-to-end, reliable, congestion controlled
connections over the Internet [1][2]. The congestion
control method includes two phases: slow-start and
congestion avoidance [3]. Enhanced recovery from
sporadic errors is provided by Fast Retransmission and
Fast recovery [4]. Nowadays, TCP is called upon to
provide reliable and efficient data transfer over
communication paths with ever increasing bandwidth-
delay product, and over a variety of link technologies
including wired (i.e., cable and fiber optic), ground radio,
and satellite links. More losses due to link failures,
independent as well as correlated, are expected over these
wireless links. The new high speed wired/wireless
environment is expanding the domain for which TCP was
initially developed, tested and tuned. As a consequence,

active research is in progress to extend the domain of
effective TCP operability [5][6][7][8][9].

TCP Westwood [10] design adheres to the end-to-end
transparency guidelines set forth in [11]. Namely, a simple
modification of the TCP source protocol stack which
allows the source to estimate the available bandwidth, and
to use the bandwidth estimation to recover faster, thus
achieving higher throughput. TCP Westwood exploits two
basic concepts: the end-to-end estimation of the available
bandwidth, and the use of such estimate to set the slow
start threshold and the congestion window. It is worth
underscoring that TCPW does not require any intervention
from network layer or proxy agents.

TCPW source continuously estimates the packet rate of
the connection by properly averaging the rate of returning
ACKs. The estimate is used to compute the “permissible”
congestion window and slow start threshold to be used
after a congestion episode is detected, that is, after three
duplicate acknowledgments or after a timeout. The
rationale of this strategy is simple: in contrast with TCP
Reno, which simply halves the congestion window after
three duplicate ACKs, TCP Westwood (TCPW) attempts
to make a more “informed” decision. It selects a slow start
threshold and a congestion window that are consistent with
the effective connection rate at the time congestion is
experienced. We call such mechanism faster recovery.

The use of bottleneck bandwidth and connection rate
estimation has been proposed before in the TCP literature.
The best-known examples are Packet Pair [12] and TCP
Vegas [13]. Both of these schemes use the bandwidth
computation to estimate the bottleneck backlog. The larger
the backlog, the larger the congestion. The backlog
feedback is used in both cases to control the send window.
The PP scheme achieves perfect bottleneck fair sharing.
Unfortunately, it requires per flow queuing and Round
Robin scheduling – a feature not available in commercial
routers.

Also related to this work is the probing of “available
bandwidth” on a path. Allman and Paxson in [14] report
and compare techniques for probing the available

bandwidth in order to properly initialize the ssthresh
before a TCP connection is started. An excessively large
ssthresh can lead to premature timeout, slow start and
efficiency loss. Lai and Baker in [15] describe an
improved measurement technique (packet tailgating) to
probe available bandwidth that is less intrusive (i.e.,
consumes less bandwidth) than previous techniques. The
above techniques share with our scheme the notion of
measuring the inter–packet delay gaps and deriving
bandwidth information from it. They do, however, probe
the available bandwidth before the connection is started.
This is a very different (and potentially much more
difficult) problem than measuring the actual rate that a
connection is achieving during the date transfer.

The “key innovation” of TCPW is to use the bandwidth

estimate “directly” to drive the window, instead of using it
to compute the backlog. The rationale is that if a
connection is currently achieving a given rate, then it can
safely use the window corresponding to that rate without
causing congestion in the network. The careful reader will
notice that this “aggressive” behavior may still lead to
unfairness. In a later section we show that fairness is in
fact guaranteed.

TCPW offers a number of features that are not available
in TCP Reno and SACK. For example, the knowledge of
the available bandwidth can be used to adjust the rate of a
variable rate source (assuming such source is controlled by
TCP). In this paper we focus on the behavior of TCPW in
random packet loss, caused by link error or wireless
interference instead of by buffer overflow. Like Reno,
TCPW cannot distinguish between buffer overflow loss
and random loss. However, in presence of random loss,
TCP Reno overreacts and reduces the window by half.
TCPW, on the other hand, after packet loss and
retransmission timeout, resumes with the previous window
as long as the bottleneck is not yet saturated (i.e., no buffer
overflow).

To prevent the unnecessary window reduction of TCP
Reno in case of random packet loss, and more precisely the
loss caused by wireless links, several schemes have been
proposed [16]. Probably, the most popular is the Snoop
protocol [17]. Snoop carries out locally the retransmissions
of packets lost on wireless links. In order to do so, it
monitors TCP segments, stores copies, and retransmits
them when it detects that they were lost. In the reverse
direction, it suppresses TCP duplicate ACKs on their way
to TCP senders in order to avoid retransmission from the
TCP source. Other approaches to the wireless/wired
problem include Split Connections, and “end-to-end” TCP
modifications such as Explicit Loss Notification (ELN)
[18][19]. All the above schemes have their pros and cons.
They all share, however, a common feature. They require
the cooperation of intermediate routers/proxies. TCPW
does not require any specific intervention/support from

intermediate route, thus preserving the original “end to end
design” principle.

In order to study the behavior of TCPW in presence of
random errors, an analytic model was developed using
Markov chain techniques. This model is an important
contribution in that it provides further insight in TCPW
operation. Moreover, it allows us to cross validate
simulation and measurements.

The paper is organized as follows. In Section II, we
provide an overview of the TCPW algorithm. In Section
III, an informal proof of TCPW convergence to fair share
is presented. In Section IV, we report analytic and
experimental performance results. Section presents the
analytic model and results comparing TCPW and Reno,
while Section VI includes a discussion of the Internet
measurements results. Section VII concludes the paper.

II. AN OVERVIEW OF TCP WESTWOOD

In TCP Westwood the sender continuously computes the
connection BandWidth Estimate (BWE) that is defined as
the share of bottleneck bandwidth used by the connection.
Thus, BWE is equal to the rate at which data is delivered
to the TCP receiver. The estimate is based on the rate at
which ACKs are received and on their payload. After a
packet loss indication, (i.e., reception of 3 duplicate ACKs,
or timeout expiration), the sender resets the congestion
window and the slow start threshold based on BWE. More
precisely, cwin=BWE x RTT.

To understand the rationale of TCPW, note that BWE
varies from flow to flow sharing the same bottleneck; it
corresponds to the rate actually achieved by each
INDIVIDUAL flow. Thus, it is a FEASIBLE (i.e.,
achievable) rate by definition. Consequently, the collection
of all the BWE rates, as estimated by the connections
sharing the same bottleneck, is a FEASIBLE set. When the
bottleneck becomes saturated and packets are dropped,
TCPW selects a set of congestion windows that correspond
exactly to the measured BWE rates and thus reproduce the
current individual throughputs. The solution is feasible, but
it is not guaranteed per se to be “fair share.” An additional
property of this scheme, described in Section III, drives the
rates to the same equilibrium point and makes it “fair
share” under uniform propagation delays and single
bottleneck assumptions.

Another important element of this procedure is the RTT
estimation. RTT is required to compute the window that
supports the estimated rate BWE. Ideally, the RTT should
be measured when the bottleneck is empty. In practice, it is
set equal to the overall minimum round trip delay
(RTTmin) measured so far on that connection (based on
continuous monitoring of ACK RTTs).

A. Setting cwin and ssthresh in TCPW

Further details regarding bandwidth estimation are
provided in following sections. For now, let us assume that

a sender has determined the connection bandwidth
estimate (BWE), and let us describe in this section how
BWE is used to properly set cwin and ssthresh after a
packet loss indication.

First, we note that in TCPW, congestion window
increments during slow start and congestion avoidance
remain the same as in Reno, , that is they are exponential
and linear, respectively. A packet loss is indicated by (a)
the reception of 3 DUPACKs, or (b) a coarse timeout
expiration. In case the loss indication is 3 DUPACKs,
TCPW sets cwin and ssthresh as follows:

if (3 DUPACKs are received)
 ssthresh = (BWE * RTTmin) / seg_size;
 if (cwin > ssthresh) /* congestion avoid. */
 cwin = ssthresh;
 endif
endif

In the pseudo-code, seg_size identifies the length of a

TCP segment in bits. Note that the reception of n
DUPACKs is followed by the retransmission of the
missing segment, as in the standard Fast Retransmit
implemented by TCP Reno. Also, the window growth after
the cwin is reset to ssthresh follows the rules established in
the Fast Retransmit algorithm (i.e., cwin grows by one for
each further ACK, and is reset to ssthresh after the first
ACK acknowledging new data). During the congestion
avoidance phase we are probing for extra available
bandwidth. Therefore, when n DUPACKs are received, it
means that we have hit the network capacity (or that, in the
case of wireless links, one or more segments were dropped
due to sporadic losses). Thus, the slow start threshold is set
equal to the window capable of producing the measured
rate BWE when the bottleneck buffer is empty (namely,
BWE*RTTmin). The congestion window is set equal to
the ssthresh and the congestion avoidance phase is entered
again to gently probe for new available bandwidth.. Note
that after ssthresh has been set, the congestion window is
set equal to the slow start threshold only if cwin > ssthresh.
It is possible that the current cwin may be below threshold.
This occurs after time-out for example, when the window
is dropped to 1 as discussed in the following section.
During slow start, cwin still features an exponential
increase as in the current implementation of TCP Reno.

In case a packet loss is indicated by timeout expiration,
cwin and ssthresh are set as follows:

if (coarse timeout expires)
 cwin = 1;
 ssthresh = (BWE * RTTmin) / seg_size;
 if (ssthresh < 2)
 ssthresh = 2;
 endif;
endif

The rationale of the algorithm above is that after a
timeout, cwin and the ssthresh are set equal to 1 and BWE,
respectively. Thus, the basic Reno behavior is still
captured, while a speedy recovery is ensured by setting
ssthresh to the value of BWE.

B. Bandwidth Estimation

The TCPW sender uses ACKs to estimate BWE. More
precisely, the sender uses the following information: (1)
the ACK arrival times and, (2) the increment of data
delivered to the destination. Let assume that an ACK is
received at the source at time tk, notifying that dk bytes
have been received at the TCP receiver. We can measure
the sample bandwidth used by that connection as bk=dk/(tk–
tk–1), where tk−1 is the time the previous ACK was
received. Letting ∆tk=tk–tk–1, then bk=dk/∆tk.

Since congestion occurs whenever the low-frequency
input traffic rate exceeds the link capacity [20], we employ
a low-pass filter to average sampled measurements and to
obtain the low-frequency components of the available
bandwidth. More precisely, we use the following discrete
approximation of the low pass filter due to Tustin [21].

Let bk be the bandwidth sample, and kb̂ the filtered
continuous first order low-pass filter using the Tustin
estimate of the bandwidth at time tk. Let αk be the time-
varying exponential filter coefficient at tk. The TCPW filter
is then given by

() 






 +
−+= −

− 2
1ˆˆ 1

1
kk

kkkk
bbbb αα , (1)

where

k

k
k t

t
∆+
∆−

=
τ
τα

2
2

, (2)

and 1/τ is the filter cut-off frequency.
Notice the coefficients αk depend on kt∆ to properly

reflect the variable inter-arrival times.

A number of considerations must be taken into account

while interpreting the information that a returning ACK
carries regarding delivery of segments to the destination.
Two of these considerations are:

1. An ACK i received by the source implies that a

transmitted packet was delivered to the destination. A
DUPACK also implies that a transmitted packet was
delivered, triggering the transmission by the receiver
of the DUPACK. Thus, DUPACKs are considered in
estimating bandwidth.

2. TCP ACKS can be “delayed,” i.e., receivers wait for a
second packet before sending an ACK, until 200 ms
elapse in which case an ACK is sent without waiting.
Delayed ACKs are also accounted for by our scheme.

These items are included in our implementation of

TCPW under Linux.

III. TCPW FAIRNESS AND FRIENDLINESS

An important goal of any TCP implementation is for
every connection to get its “fair share” of the bottleneck.
Another important issue is friendliness to existing TCP
versions. We will use an informal argument similar to that
used for Reno in [30] to show that TCPW achieves the fair
share. We use the same approach to evaluate friendliness
towards TCP Reno. Consider the case of two connections
with the same RTTs. Suppose, for the sake of example that
the RTT is X packet transmission times, and the bottleneck
has X buffers. One connection, say A, starts first. Its
window ”cycles” between X and 2X (as per the TCPW
algorithm just discussed in Section 2), each cycle
terminating when buffer overflow. Later, connection B
starts, first in slow start mode, and then in congestion
avoidance mode. In congestion avoidance, during each
cycle the A and B windows grow approximately at the
same rate, i.e. one segment per RTT. Eventually, the
bottleneck buffer overflows, terminating the cycle. One
can show [internal report] that the window at overflow is:

Wi = Ri (b/C +RTT), for i = A,B

Where, R is the achieved rate (i.e. BWE), b is the

bottleneck buffer size, and C is the bottleneck link
capacity. This is a general property true for all TCP
protocols, and in particular TCPW. After overflow, TCPW
reduces the windows to new values Wi

’ as follows:

Wi

’= Ri (RTT) for i = A, B

Thus, the ratios of the windows of connections A and B

are preserved after overflow. Yet, the ratio WB/WA keeps
increasing during congestion avoidance. Consequently,
the B window and throughput ratchet up at each cycle.
Equilibrium is reached when the two connections have the
same windows and the same fair share of the bandwidth.
The Fig. 1 graphically illustrates the convergence to the fix
point WA=WB.

This informal proof is validated by actual simulation
results. It can be generalized to many simultaneous
connections (all with same RTT). It can also be applied to
the case when the bottleneck is affected by random errors
equally hitting all connections.

The same method can also be used to evaluate reciprocal
“friendliness” of TCPW and TCP Reno. If two connections
- TCPW and Reno - are sharing the bottleneck, and the
buffer size (X in our previous example) is exactly equal to
the optimal window size to “fill the pipe”, then the two
connections spilt the bottleneck fairly. In fact, at
equilibrium, each has window = X when buffer overflows.
After overflow, the TCPW connection gets window =
C*RTT/2 = X/2; TCP Reno simply halves the current
window, to X/2. Thus, friendliness is preserved (our
simulation results confirm this property). Note that sizing
the buffer to match the “pipe size” is a common and
intuitively acceptable design choice. If the buffer is much

smaller than pipe size, TCPW returns a larger CWIN than
Reno, and thus tends to capture the channel. If, on the
other hand, the buffer is several times larger than pipe size,
Reno tends to prevail over TCPW.

Fig. 1 Convergence toward the fair bandwidth sharing.

IV. PERFORMANCE RESULTS
All simulations presented in this paper were run using

the LBL network simulator, 'ns' ver.2 [18]. Existing
modules for TCP Reno and TCP Sack were used. New
modules for TCP Westwood were written and they are
available at [19]. A TCPW testbed based on Linux was
implemented, see Fig. 2. Testbed measurements are also
reported.

Fig. 2. Experimental testbed layout

We begin with simulation results illustrating the

accuracy of TCPW bandwidth estimation scheme. Fig. 3
shows a single TCP connection sharing the bottleneck link
with two background UDP ON/OFF sources of varying
data rates with NO flow control. TCP packets are 1400
bytes in length including TCP/IP headers. TCP and UDP
packets are assigned the same priority. The 5 Mbps
bottleneck link has a round trip propagation time of 70 ms.
Each UDP connection transmits at a constant bit rate of 1
Mbps while ON.

zero backlog

bottleneck overflow

WB equal bandwidth share

WA

0

1

2

3

4

5

6

0 50 100 150 200 250 300

B
an

dw
id

th
 E

st
im

at
io

n
(M

bp
s)

Time (sec)

Estimated BW
Actual BW

Fig. 3 TCPW with concurrent UDP traffic - bandwidth

estimation

Both UDP connections start in the OFF state; after 25s, the
first UDP connection is turned ON, joined by the second
one at 50s; the second connection follows an OFF-ON-
OFF pattern at times 75s, 125s and 175s; at time 200s the
first UDP connection is turned off as well.

The results in Fig. 3 confirm the effectiveness of the
TCPW feedback control when subjected to “step” and
“impulse” interfering traffic: the TCPW bandwidth
estimation perfectly tracks the UDP fluctuations, adjusting
throughput accordingly.
Next we address fairness (within TCPW flows) and
friendliness (towards Reno). To test fairness and
friendliness we use our Linux testbed. We first measure
the throughput for a total of 5 connections with a variable
Reno/TCPW mix in an errorless channel (Fig. 4). Next,
we further probe the friendliness of TCPW on the
bottleneck link with 1 % packet error rate (Fig. 5). Errors
and delays are introduced by a Linux emulator. Note that
TCP West shines in presence of line errors (as it will be
shown in the next section), so, friendliness in the error
situation is even more difficult to establish. RTT in both
cases was 100 ms, with bottleneck buffer to match pipe
size.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

No. of Reno Connections

Westwood
Reno

Fig. 4 Measured throughput (error-free link)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 1 2 3 4 5

A
ve

ra
ge

 T
hr

ou
gh

pu
t (

M
bp

s)

No. of Reno Connections

Westwood
Reno

Fig. 5 Measured throughputs (lossy link)

In Fig. 4 and Fig. 5, we show the average TCPW and

Reno throughput per connection as a function of number of
Reno connections in the mix. For example, at the point
marked 3 on the horizontal line, the experiment consists of
3 Reno connections and 2 TCPW connections. The results
in Fig. 4 confirm the fairness and friendliness of TCPW
already predicted in Sect 3. First, each TCPW connection
added to the set in Fig. 4 achieves the same throughput as
the previous ones (fairness). Incidentally, Reno is also fair.
Second, Reno is minimally affected by TCPW. The
average Reno throughput is the same with or without
TCPW (friendliness). Fig. 5 illustrates two important
points. First, the superior performance of TCPW in a high
error rate environment is observed. Namely, 5 TCPW
connections get 10 % more throughput than 5 TCP Reno
connections. This behavior will be confirmed by theory
and experiments in Section 5. Secondly, friendliness is
preserved. Even though TCPW has an advantage over
Reno in the error-prone environment, Reno connections
are not starved. In fact, the improvement shown by TCPW
is due more to its ability to deal with wireless losses
efficiently than to the “stealing” of bandwidth from Reno.

V. TCPW PERFORMANCE IN PRESENCE OF LINK
ERRORS

As mentioned in Section I, we expect TCPW to
perform better than Reno and SACK in presence of errors,
since TCPW reinstates the previous congestion window (if
the system is not congested) rather than reducing it by half.
We begin with a set of simulation experiments. Fig. 6
presents simulation results comparing the throughput of
Reno and TCPW as a function of error rates. The
bottleneck bandwidth is set to 45Mbps, and the two-way
propagation time is 70ms. With no errors, the performance
of TCPW and Reno is virtually identical. As error rate
increases, TCPW outperforms Reno. At 1 % error rates,
appropriate for wireless links, the throughput improvement
is 615 %. As the error rate increases further, say above
10%, even TCPW collapses, as expected.

0

5

10

15

20

25

30

35

40

45

0.0001 0.001 0.01 0.1 1

Th
ro

ug
hp

ut
 (M

bp
s)

Error Rate (%)

Westwood
Reno

SACK

Fig. 6 Impact of error rates (Simulation results)

We also investigated the impact of channel speed and

propagation time on throughput in a lossy link situation.
As expected, TCPW relative performance with respect to
TCP Reno improves with larger speed and larger delay
(i.e., larger operational window). The interested reader can
find detailed results in [22].

To gain better understanding of the performance with
errors, we developed an analytic model of TCPW
congestion control mechanism. The model takes into
account the filter operation, and includes the following
system parameters: the bottleneck link transmission speed,
the round trip time, and the link error rate. Here, due to
space constraint, we simply outline the method adopted to
derive the model, referring to [technical report] for detailed
coverage.

Following [23] and [24], we consider a single TCP
source with infinite fixed–size packet backlog. The sender
releases packets into a limited FIFO buffer that can hold
up to B packets (packets arriving to a full buffer are
discarded). The packets are then sent over a single
bottleneck link with a speed of µ packets per second and a
two-way delay of d seconds. Here d is deterministic and
reflects propagation time and any other transmission and
processing delays along the path excluding the
transmission and queuing time at the bottleneck. Let
T=d+1/µ denote the time between the start of a packet
transmission and the reception of an ACK for the same
packet, excluding queuing delays in the buffer. Thus, the
pipe capacity (i.e., packets required to fill the pipe) is
given by C=µT, while the maximum window size a
connection can achieve before overflow is Wmax=B+C.

The throughput achieved by the system can be derived
by studying the time evolution of the congestion window,
W(t). The evolution of this parameter has a cyclic
structure, in which W(t) grows until a packet loss is
detected. At this point, the missed packet is retransmitted.
Further packet transmission is halted until the cumulative
ACK for the last window of packets is received. Then, the

cycle starts again with the congestion window set to the
value derived from the bandwidth estimated at that instant.

During a cycle, packet transmissions are initially bursty.
A full window is transmitted each round trip time T, and
acknowledgments arrive in bursts. The congestion window
is increased by one at the end of each burst. If W0 is the
initial congestion window, the first burst contains exactly
W0 packets, the second W0+1 and so on. ACKs in the same
burst arrive 1/µ seconds apart while consecutive bursts
arrive T second apart, until the pipe capacity, C, is reached.
After this point, ACKs arrive continuously at rate µ.

The bandwidth estimate is adjusted after each ACK,
following the algorithm described in the previous sections,
while the congestion window is increased by one at the
end of each burst.

The window W(m) at the end of a generic cycle m is
uniquely identified by the initial congestion window, W0

(m),
and the sequence number Ndrop

(m) of the missing packet that
causes the cycle to terminate. The packet loss may arise
from a link error or a buffer overflow. Assuming that
packet errors occur independently with probability ν, the
probability that the cycle ends at packet n is given by

[]
() ()

() ()







>−

≤−
====

−

−

inn

inn
iWnNp

n

n

dropni

max
1

max
1

0,

 ,1

 ,1
Pr

ν

νν
 (3)

where nmax(W0) is the maximum number of packets that
may be sent and acknowledged in a cycle, given by

() ()() .W+W+W1+W-W21 max0max0max0max =Wn (4)

The average throughput achievable in the cycle is, then,
given by

() ()
()

∑
+

=

−=
1

1
,

0
0

0max

0,
1Wn

n
nWp

nWt
nWη (5)

where t(W0,n) is the cycle duration, and can be expressed
in terms of W0 and n [technical report].

At the end of the cycle, the congestion window is set to
the current bandwidth estimate. The bandwidth estimate at
the end of a cycle is uniquely determined by the start cycle
estimate and by the ACK-arrival process during the cycle.
Thus, he evolution of W0

(m)
 can be described as an

embedded Markov process . The transition probability Pi,j
from W0

(m-1)=i to W0
(m)=j can be computed as

()
∑
∈

=
iIn

niji
j

pP ,, ; i=2,...,C (6)

where pi,n is given by equation (3), while Ij(i) is the set of
packet sequence numbers n for which, starting with a
window = i at the beginning of the cycle, the estimated
bandwidth after n packet transmissions corresponds to a
window size = j.

The average throughput achieved by the system can be
expressed as

()∑
=

=
C

W
W W

2
0

0
0
ηπη , (7)

where πW denotes the asymptotic probability of the
window size W at the start of a cycle and η(W0) is given by
(5).

We ran several ns simulation experiments to validate
the model. Fig. 7 shows a comparison of analysis and
simulation results for both TCP Reno and TCPW for
different packet error probabilities.

0

5

10

15

20

25

30

35

40

45

1e-06 1e-05 0.0001 0.001 0.01 0.1

A
ve

ra
ge

 T
hr

ou
gh

pu
t(M

bp
s)

Packet error probability

TCPW(analysis)
TCPW(simulation)

TCP Reno(analysis)
TCP Reno(simulation)

Fig. 7 Throughput comparison (bottleneck capacity:

45Mbps)

VI. INTERNET MEASUREMENTS

Using our Linux testbed, we have tested TCPW also in
the global Internet environment (Fig. 8). The sources are at
UCLA, while the destinations are chosen in three different
continents (Europe, South America, and Asia). The
destination Hosts are, of course, unaware whether the
source Host runs TCPW or Reno.

Tests were scheduled during normal working hours at the
destination sites. Experiments included either single or
multiple file transfers. Throughput results were obtained
by averaging repeated single file transfers.. A rather large
file size was used (10 Mbytes) to capture only steady state
behavior. We used a standard FTP client (ncftp-3.0.2) as
testing software with additional code for obtaining detailed
logging at 1-second intervals. We measured application
throughput in terms of user data/second as reported by
ncftp. The average throughput achieved by Reno and
TCPW on the three intercontinental connections is shown
in Tab.1. Tests were repeated about 200 times throughout
the day. The results show that TCPW performs marginally
better that Reno on the Italy and Taiwan connections. It
performs significantly better on the Brazil connection.

Internet Test-Bed

Internet

Westwood
(Intrepid.cs.ucla.edu)

Reno
(hebe.cs.ucla.edu)

R

Bologna’s University Italy
(shannon.csr.unibo.it)

UCLA CS departiment
LAN High Speed Backbone

R

Taiwan University Tw
(speed.cis.nctu.edu.tw)

R

Brazil
(ceop2.nce.ufrj.br)

Fig. 8 Internet measurement scenario

TABLE 1

INTERNET THROUGHPUT MEASUREMENTS
Destinati

on
RTT

Italy
170 ms

Taiwan
250 ms

Brazil
450 ms

Protocol TC
PW

Ren
o

TC
PW

Ren
o

TC
PW

Re
no

Through
put (KB/s)

78.6
6

73.9
3

167.
38

152 22.1
6

15.
4

We further investigated this discrepancy using the
traceroute Linux tool. We found that Italy and Taiwan
are connected using standard wired technology with
minimal link errors. As expected, TCPW does not
introduce much improvement over Reno. On the other
hand, the Brazil path has a “lossy” satellite link provided
by Teleglobe. The satellite link is only in the direction to
destination, while the opposite direction uses terrestrial
links. The lossy satellite link accounts for the TCPW
improved performance.

VII. CONCLUSIONS

We have introduced a new TCP scheme (TCP
Westwood) that requires modifications only in the TCP
source stack and is thus compatible with TCP Reno and
Tahoe destinations. TCP Westwood (or TCPW for short)
differs from Reno in that it adjusts the cwin (congestion
window) after a loss detection by setting it to the measured
rate currently experienced by the connection, rather than
using the conventional multiplicative decrease scheme
(i.e., divide the current window by half). We have shown
with qualitative arguments and with experimental results
that the new control scheme converges to “fair share.” at
steady state under uniform path conditions Moreover,
TCPW has several pleasing properties with respect to

Reno. Most important, it can handle losses caused by link
errors or wireless channel conditions more efficiently than
TCP Reno. One general concern with new TCP versions is
friendliness towards current implementations. TCPW
exhibits some “aggressiveness” due to its unique window
adjustment. However, if there is adequate buffering at the
bottleneck, TCPW and Reno share the channel fairly.
Moreover, if TCPW and Reno coexist on a bottleneck with
error induced losses (e.g., wireless link), TCPW
outperforms Reno mainly because it can make better use of
the channel, while “stealing” only a modest fraction of
throughput from Reno. TCPW has been implemented in
LINUX and has been tested extensively in a local testbed
at UCLA as well as on Internet cross-continental links.
The performance measured in the testbeds and in the
Internet confirms the simulation results. In particular, the
throughput performance over a lossy route to Brazil
(satellite link) exhibited a 100 % improvement over Reno.

REFERENCES
[1] V. C. Cerf and R. E. Kahn, “A Protocol for packet

Network Interconnections,” IEEE Transactions on
Communications, vol. COM-22, no. 5, pp. 637-648,
May 1974.

[2] V. Jacobson, “Congestion Avoidance and Control,”
ACM Computer Communications Review, 18(4) :
314 - 329, August 1988.

[3] V. Jacobson, “Berkeley TCP evolution from 4.3-
Tahoe to 4.3 Reno,” Proceedings of the 18th Internet
Engineering Task Force, University of British
Colombia, Vancouver, BC, Sept. 1990.

[4] T. Bonald, “Comparison of TCP Reno and TCP
Vegas: Efficiency and Fairness,” In Proceedings of
PERFORMANCE'99, Istanbul, Turkey, October
1999.

[5] U. Hengartner, J. Bolliger, and T. Gross, “TCP Vegas
Revisited,” In Proceedings of IEEE INFOCOM'2000,
Tel Aviv, Israel, March 2000.

[6] M. Gerla, R. Lo Cigno, S. Mascolo, and W. Weng,
“Generalized Window Advertising for TCP
Congestion Control,” CSD-TR 990012, UCLA, CA,
USA, February 1999.

[7] L. Kalampoukas, A. Varma, and K. K.
Ramakrishnan, “Explicit Window Adaptation: A
Method to Enhance TCP Performance,” In
Proceedings of IEEE INFOCOM'98, San Francisco,
Ca, USA, March/April 1998.

[8] T. Goff, J. Moronski, D. S. Phatak, and V. Gupta,
“Freeze-TCP: a True End-to-end TCP Enhancement
Mechanism for Mobile Environments,” In
Proceedings of IEEE INFOCOM'2000, Tel Aviv,
Israel, March 2000.

[9] D. Clark, “The design philosophy of the DARPA
Internet protocols,” In Proceedings of Sigcomm’88 in
ACM Computer Communication Review, vol. 18, no.
4, pp. 106 - 114, 1988.

[10] C. Casetti, M. Gerla, S. Lee, S. Mascolo, and M.
Sanadidi, “TCP with Faster Recovery,” MILCOM
2000, Los Angeles, CA, October 2000.

[11] J. C. Hoe, “ Improving the Start-up of A Congestion
Control Scheme for TCP”, Proc. ACM SIGCOMM
’96, pp. 270-280.

[12] M. Allman and Vern Paxson, “On Estimating End-to-
End Network Path Properties”, Sigcomm 1999.

[13] Kevin Lai and Mary Baker, “Measuring Link
Bandiwdths Using a Deterministic Model of Packet
Delay”, Sigcomm 2000

[14] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and
R. H. Katz, “A Comparison of Mechanisms for
Improving TCP Performance over Wireless Links,”
IEEE/ACM Transactions on Networking, December
1997.

[15] H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz,
“Improving TCP/IP Performance Over Wireless
Networks,” MOBICOM’95, Berkeley, CA, USA,
November 1995

[16] Hari Balakrishnan and Randy H. Katz, “Explicit Loss
Notification and Wireless Web Performance,” In
Proceedings of IEEE GLOBECOM’98 Internet Mini-
Conference, Sydney, Australia, November 1998.

[17] S. Q. Li and C. Hwang, “Link Capacity Allocation
and Network Control by Filtered Input Rate in High
speed Networks,” IEEE/ACM Transactions on
Networking, vol. 3, no. 1, pp. 10 - 25, Feb. 1995.

[18] K. J., B. Wittenmark, “Computer controlled
systems,” Prentice Hall, Englewood Cliffs, N. J.,
1997.19 ns-2 network simulator (ver 2). LBL, URL:
http://www-mash.cs.berkeley.edu/ns.

[19] J. Kurose and K. Ross, “Computer Networking: A
Top-Down Approach Featuring the Internet”,
Addison Wesley, 2000.

[20] ns-2 network simulator (ver.2). LBL, URL:
http://www.mash.cs.berkley.edu/ns.

[21] TCP Westwood modules for ns-2. URL:
http://www1.tlc.polito.it/casetti/tcp-westwood.

[22] A. Zanella, G. Procissi, M. Gerla, M.Y.Sanadidi,
“TCP Westwood: analytic model and performance
evaluation”, Technical
Report,URL:http://www.cs.ucla.edu/csd/pubs/pubs.ht
ml

[23] L. Zhang, S. shenker, and D. D. Clark, “Observations
on the Dynamics of A Congestion Control
Algorithm: the Effects of Two-way traffic”, Proc.
ACM SIGCOMM ’91, pp.133-147.

[24] A. A. Abouzeid, S. Roy, and M. Azizoglu,
“Stochastic Modeling of TCP over Lossy link,”
INFOCOM 2000, Tel Aviv, Israel, March 2000.

