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T cell receptor-engineered T cell (TCR-T) therapy is free from the limit of surface antigen
expression of the target cells, which is a potential cellular immunotherapy for cancer
treatment. Significant advances in the treatment of hematologic malignancies with cellular
immunotherapy have aroused the interest of researchers in the treatment of solid tumors.
Nevertheless, the overall efficacy of TCR-T cell immunotherapy in solid tumors was not
significantly high when compared with hematological malignancies. In this article, we pay
attention to the barriers of TCR-T cell immunotherapy for solid tumors, as well as the
strategies affecting the efficacy of TCR-T cell immunotherapy. To provide some reference
for researchers to better overcome the impact of TCR-T cell efficiency in solid tumors.
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INTRODUCTION

Immunotherapy, which is currently changing the concept of cancer treatment, is based on the
theory that immune cells can recognize and eliminate cancer cells. Clinical experience has shown
that ex vivo expanded tumor-infiltrating cells/lymphocytes (TILs) infused into the same patient can
produce repeated, even persistent, tumor responses (1). The development of T cell receptor (TCR)
isolation technology and genetic engineering programs have enabled patients’ T cells to express
TCRs recognizing multiple combinations of specific peptides and human leukocyte antigens (HLA).
The resulting TCR-T cells can specifically recognize tumor-associated antigens and effectively
eliminate tumor cells.
Abbreviations: ASCT, autologous stem cell transplantation; APCs, antigen-preventing cells; CAR-T, chimeric antigen
receptor-T; CR, complete response; CRS, cytokine release syndrome; CT antigen, cancer/testis antigen; CTL, cytotoxic T
lymphocytes; DAG, diacylglycerol; ECM, extracellular matrix; ERK, extracellular regulated kinase; GM-CSF, granulocyte
macrophage colony stimulating factor; GVHD, graft-versus-host disease; HLA, human leukocyte antigens; HLH,
hemophagocytic lymphohistiocytosis; HTS-IR, High-throughput sequencing of the immune repertoire; ICIs, immune
checkpoint inhibitors; IL, interleukin; IP3, inositol triphosphate; ITAM, immune tyrosine-based activation motif; MART,
melanoma associated antigen recognized by T-cells; NK, natural killer; NY-ESO-1, New York esophageal squamous cell
carcinoma-1; PBMCs, peripheral blood mononuclear cells; PD-1, programmed cell death protein 1; P-gp100, P-glycoprotein
100; pHLA, peptide-HLA; PIP2, phosphatidylinositol diphosphate; PLC-g1, phospholipase C through p38- g1; PR, partial
response; SaCas9, Staphylococcus aureus; SpCas9, Streptococcus pyogenes; TA-GVHD, transfusion related graft-versus-host
disease; TCR, T cell receptor; TCR-T, T cell receptor-engineered T cell; TGF-b, transforming growth factor-b; TI-GVHD, TI-
associated graft-versus-host disease; TILs, tumor-infiltrating cells/lymphocytes; T-IPSCs, induced pluripotent stem cells
originally derived from T cells; TME, tumor microenvironment; TNF, tumor necrosis factor; TRAC, TCR a chain; TRBC, TCR
b chain; Treg, Regulatory T cells; VDR, vitamin D receptor.
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T lymphocytes with heterogeneous TCRs can recognize HLA-
peptide complexes on tumor cells and transmit antigen-
stimulating signals through phosphorylation of the immune
tyrosine-based activation motif (ITAM), activating the immune
effects of T cells to eliminate tumor cells (2). TCR-T technology
has undergone four iterations during its development. Initially,
isolated tumor antigen-specific T cell subgroups from patients
were amplified in vitro and re-infused into the same patient.
Because these T cell clones are rare with significantly inter-
individual variations, their production on an industrial level is
difficult. In the second generation of development, tumor
antigen-specific T cells were cloned, and their TCR gene
sequences were determined. These TCR gene sequences were
subsequently transduced into peripheral T cells from patients.
This method made it possible to industrialize TCR-T cell
production and treatment. In the third generation of
development, the therapeutic effects of TCR-T cells were
improved by optimizing the affinity of their TCRs to tumor
cells. The fourth generation of TCR-T cell treatment is a highly
specific cell therapy targeting neoantigens, markedly improving
tumor response and patient safety (3). Due to inter-individual
variations, however, further studies are required to determine the
accessibility of treatment.

T cell receptor-engineered T cell (TCR-T) therapy is free from
the limit of surface antigen expression of the target cells, which is a
potential cellular immunotherapy for cancer treatment. Strategic
selection of substrate cells can enhance transportation,
amplification, durability, and memory function of TCR-T cells,
and form a TCR-T cell systemwith synthetic costimulatory circuit.
Further understandings of the barriers to TCR-T therapy treating
solid cancer and the solutions will bring benefits to future clinical
application of this immunotherapy (Figure 1).
Frontiers in Oncology | www.frontiersin.org 2
THE CHALLENGES IN TCR-T THERAPY

Insufficient activation of T cells can cause immune escape which can
reduce the efficacy of immunotherapy in specific patients (4). TCR-
T cells are independent of the patients’ endogenous T cell bank and
are not limited by the availability of tumor specific surface proteins.
However, constructing a TCR-T cell group that can recognize
reliable targets with sufficient affinity and function to eliminate
existing tumors and prevent recurrence remains a challenge (5).

Selection of Target Antigen
Human tumor antigens can be primarily divided into two
categories—tumor specific antigens (e.g., neoantigen, and viral
antigen) and tumor associated antigens (e.g., cancer/testis (CT)
antigen, overexpressed antigen, and differentiation antigen).
Although TCR-T cells can target all tumor antigens, the number
of targets identified to date with sufficient safety and effectiveness
remains limited. The primary consideration in selecting a suitable
target antigen for TCR-T cell therapy should be the high specificity
of the antigen. Target antigens highly expressed in tumors but at
low levels in normal tissue are often selected to limit any potential
off-target effects and dose-limiting toxicity resulting from the
destruction of normal tissue expressing the target antigen (3).
To date, most clinical trials of TCR-T cell therapy have targeted
CT antigen and viral antigens, with New York esophageal
squamous cell carcinoma-1 (NY-ESO-1) being the most
frequently targeted, accounting for 37% of trials to date (6).

At present, overexpressed testicular antigens and differentiation
antigens are the most common targets of TCR-based adoptive cell
immunotherapy. NY-ESO-1 is a CT antigen with objective
response rates of 40-60% in patients with melanoma and
synovial sarcoma. Other tumor-specific antigens considered in
FIGURE 1 | Schematic diagram of the TCR-T cell structure. The TCR complex is a heterodimer consisting of two different peptide chains. The MHC class 1 present
intracellular antigenic peptides of cancer cells for recognition by the T cell receptor, and surround by CD28 and B7.
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TCR gene therapy include mutated antigens and neoantigens, most
of which are safe targets as they are specifically expressed in tumor
cells. Mutated antigens are widely expressed in many tumor types,
and neoantigens can be obtained by sequencing due to their
individualized characteristics (7). Immune selection pressure may
result in the downregulation of expression of target antigens,
reducing the efficacy of TCR-T cell therapy (8, 9), especially for
specific T lymphocytes. The loss of targeted tumor antigens was
shown to result in tumor recurrence even after the infusion of
adoptive functional cells (10). The downregulation of target
antigens may be overcome by targeting proteins with core
functions in tumor survival; infusing multiple T cell clones with
different tumor specific TCRs; or infusing T cells targeting two or
more tumor antigens (10).

TCRs can only recognize peptide-HLA and kill cancer cells with
matching HLA alleles. Because screening of an appropriate HLA
match is also necessary. TCR-T cells from non-Chinese individuals
cannot be directly applied to Chinese patients. Screening TCRs with
the optimal affinity threshold remains difficult. TCRs with high
affinity for antigen should be identified to enhance immune
responses. However, the affinity should be controlled within limits
since T cells will be injured by TCR affinity beyond physiological
function. The mechanism of antigen recognition by T cells
expressing antigen receptor (TCR) is important for T cell
immunity (11), and the ability of T cells to quantitatively respond
to antigens expressed by pathogens is an important indicator of T
cell response (12). These T cells, however, must remain
unresponsive to similar antigens on host tissues (12). The anti-
tumor activity of genetically engineered T cells should be enhanced
by the transformation process, will alters their affinity. Affinity,
however, should be controlled within a certain range, because too
low affinity can be toxic to targeted non-tumor tissue, with T cells
attacking host nonmalignant tissues expressing tumor related
antigens or similar ligands (13). Conversely, affinity should not be
too high, as it may lead to abnormal immune activation, increasing
the risk of triggering cytokine storms. Moreover, modification of
peptide-HLA binding can lead to unpredictable cross reactions
against autoantigens, which may cause serious adverse events (14).

The latest generation of TCR-T technology is facing the
challenge of effectively identifying antigens. High-throughput
sequencing of the immune repertoire (HTS-IR) and
computational biology methods including TraCeR and single-
cell TCRseq at the population and single-cell levels have been
utilized by the company Kite Pharma to reconstruct TCR and
identify immunogenic neoantigens. Flow cytometry has been
used to select tumor antigen-specific T cells from patients, with
TCR genes that recognize these antigens obtained by single-cell
technology and introduced into patients’ peripheral T cells for
treatment. Such explorations provide new tools for analyzing the
diversity and dynamics of T cells. Further bioinformatic progress
is required to develop more novel tools.

Tumor Antigen Heterogeneity and Tumor
Immune Escape
In a phase I/II clinical trial (15), a TCR gene targeting MAGE-A3
was transduced into T cells to treat metastatic melanoma,
Frontiers in Oncology | www.frontiersin.org 3
resulting in a response rate of 57% (4/7), with one patient
achieving a complete response (CR) for 15 months, and three
achieving a partial response (PR). Three other patients, however,
developed mental disorders due to brain damage, with two
developing severe central nervous system damage and dying of
multifocal necrotizing leukoencephalopathy. These adverse
effects may have been due to neurotoxicity induced by T cells
recognizing antigens cross-reacting with MAGE-A12 in normal
brain tissue.

The effect of tumor antigen heterogeneity on the efficacy of
TCR-T treatment remains unclear. The expression of cancer-
related antigens varies in different cells within tumors, allowing
some tumor cells to escape from specific antigen-targeted
therapy and leading to therapeutic resistance in some patients
receiving immune checkpoint inhibitors (ICIs) (16) and adoptive
T cells therapy (17). TCR-T is a T cell product generated by
lentivirus transfection, with the resulting cells expressing
multiple TCRs against multiple tumor antigens in patient.
CRISPR-Cas9 can transfer genes with DNA plasmids or
templates derived from polymerase chain reaction, without the
need for virus vectors (18). Multiple CRISPR-Cas9 T cell genome
engineering has been shown safe and feasible in patients with
advanced refractory cancers (19). To reduce the TCR mismatch
of two genes encoding endogenous T cell receptor (TCR) chains,
TCR a (TRAC) and TCR b (TRBC) were deleted from T cells,
the expression of a synthetic tumor specific TCR transgene NY-
ESO-1 was enhanced, and the gene encoding programmed cell
death protein 1 (PD-1) was removed. Adoptive transfer of
engineered T cells into patients can be edited at all three
genomic sites to achieve lasting implantation. Of the cells
infused into one patient, 30% had undergone editing of two
and three genes, with 20% of TCR transgenic T cells in the
circulation 4 months later showing the editing of two and three
genes. Although chromosome translocation was also detected,
the translocation frequency decreased over time. Overall, this
study showed that CRISPR-Cas9 gene editing provides a
powerful tool for enhancing the natural anticancer activity of
human T cells and the feasibility of cancer immunotherapy.

Such optimization may knock out specific genes, resulting in
the simultaneous expression of TCR and costimulatory proteins
while eliminating inhibitory signals. This can promote the
function of TCR-T products by, for example, preventing T cell
dysfunction, inhibiting tumor escape, overcoming limited T cell
proliferation, and controlling toxicity.

Concerns have arisen about the safety and effectiveness of
CRISPR-Cas9 in gene therapy. Humoral, antibody-mediated,
cellular and T cell-mediated immunity against Staphylococcus
aureus (S.aureus; SaCas9) and Streptococcus pyogenes
(S.pyogenes; SpCas9) have been detected in more than 80% of
healthy people; Theoretical analysis showed that activation of
these immune responses is accompanied by the signal generation
of cytotoxic T lymphocytes (CTL) during pro-inflammatory
“dangerous” bacterial infections. The immune system may
destroy CRISPR-Cas9 modified genetically engineered cells,
making the treatment ineffective, and eliminating infected host
cells (20). Therefore, it is reasonable to determine whether the
January 2022 | Volume 11 | Article 794183
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human immune system can generate an anti-Cas9 response. In
animal models, anti-Cas9 antibodies have not been found to
cause the death of Cas9-expressing cells after gene therapy with
non-inflammatory vectors such as AAV. It is unclear whether
Cas9 expression can stimulate pre-existing anti-Cas9 immunity,
leading to the destruction of transduced cells. If CTLs mediate
killing after gene therapy, various strategies can be used to
minimize the development and impact of anti-Cas9 T cells.

The discovery of CRISPR-Cas9 has greatly enhanced the
effectiveness of gene therapy. The possible clinical application
of CRISPR-CAS based treatment technology makes it
particularly important to minimize the immunogenicity of
gene therapy. Regulatory T cells (Treg) have been reported to
promote immune tolerance to gene therapy, and Cas9 specific
Treg cells can be enriched from human peripheral blood.
Because Cas9 specific Treg cells can promote immune
tolerance, treatment with these cells before and during gene
therapy can potentially enhance tumor growth. Strict immune
monitoring can assess the role of endogenous Cas9 reactive Treg
cells during clinical treatment. Therefore, interactions between
CRISPR-CAS therapy and Treg cells may allow determination
of the relationship between gene therapy and antigen
specificity (21).

Tumor immune escape refers to the ability of tumor cells to
survive and proliferate in vivo by avoiding recognition and attack
by the immune system through various mechanisms. Solid
tumors are characterized by complex immunosuppressive
microenvironment and intrinsic heterogeneity, making a
durable TCR-T induced response difficult. Cells and
components of the tumor microenvironment (TME) include
tumor cells, fibroblasts, immune cells, signaling molecules and
extracellular matrices. TME significantly affects tumor diagnosis,
patient survival and treatment sensitivity. The TME of different
tumor tissues has distinct features. These drawbacks may be
overcome by, for example, modifying T cells to release cytokines
that can counteract immunosuppressive factors in the TME and
combining TME inhibitors (22).

The Off-Target and Safety Problems in
TCR Gene Transfer
Because engineered TCR-T cells cannot distinguish between
tumor cells and normal cells expressing target antigens, TCR-T
cell immunotherapy may severely damage the corresponding
normal tissues. Treatment of metastatic melanoma patients with
TCR-T cells targeting MART-1 and MAGE-A3 resulted in fatal
cardiotoxicity, perhaps because MART-1 and MAGE-A3 are
highly expressed in heart tissue (23, 24). Combinations of
chemotherapy and other targeted therapies have been found to
result in temporary disease remission and prolong median
survival in some patients with disease progression. Inducing
TCR-T cell apoptosis or knocking out endogenous TCR may also
reduce the adverse effects of TCR-T cell immunotherapy (25).

Off-target events during TCR gene therapy may be caused by
self/cross-reactions between heterodimers containing two a
and two b chains, which may result in new autoimmune
Frontiers in Oncology | www.frontiersin.org 4
specificity (18). Four different TCRs can form a complex, with
two chains derived from exogenous a/b TCRs and the other two
from natural/endogenous a/b TCRs. These heterodimeric TCRs
can form a receptor with new specificity or a nonfunctional
complex. The production of self-reactive T cells from
heterodimeric TCRs and the autoimmune manifestations of
these cells have been evaluated in a mouse model of TCR gene
therapy (26). The autoimmune response induced by the treatment
led to the fatal destruction of hematopoietic cell pools, with
evidence indicating that this pathological reaction was caused by
the formation of mixed TCR dimers (27). Although this TI-
associated graft-versus-host disease (GVHD) was similar to
transfusion related graft-versus-host disease (TA-GVHD), the
occurrence of TI-GVHD was significantly reduced when mouse
TCR transduced T cells were cultured in vitro for 10 days. This
observation is in good agreement with the results of early adoptive
cell metastasis, which showed that the function of “older” T cells
was greatly weakened in vivo. Alternatively, the proportion of CD4
+ T cells in most cell grafts injected into patients is relatively low,
with CD4 + T cells playing an important role in the occurrence of
TI-GVHD. TCR dimer dependent mixed toxicity may also
become a safety problem in clinical applications. Transfer of
a TCR gene to human T cells can result in the formation of
mixed TCR dimers, which can induce a specific response in vitro.
These findings emphasize the importance of evaluating and
implementing techniques that can prevent TI-GVHD.

Methods, primarily molecular methods, have been developed
to improve the expression level of introduced TCR. These
methods were designed to provide better match/association
between the a/b chains of exogeneous TCR (28). For example,
introducing partial/whole genes from the mouse constant region
into human TCR can increase TCR transduction levels.

Other matching optimization methods include introducing
an extra disulfide bond into the TCR constant region (29, 30), the
use of single-stranded TCR (31, 32), and the application of TCR/
CD3 fusion products (33). Because the a/b and g/d chains of
TCR cannot match each other (25), the use of a/b TCR-
transduced T cells is an alternative (34). Alternatively,
endogenous TCR can be silenced by cotransferring endogenous
TCR siRNA/shRNA or TCR chain-specific zinc finger nuclease
(35). The CD3 molecules associated with modified and
endogenous TCR compete with each other, significantly
reducing the expression of heterodimer on the surface of
modified TCR cells and impairing T-cell function. Retrovirus
vectors and siRNA have been used to silence endogenous TCR
gene expression and optimize tumor antigen-specific TCR. The
transduction of lymphocytes with a relatively low number of
provirus particles, resulted in the effective expression of the
introduced TCR, reduced the expression of endogenous TCR,
and enhanced the antigen-specific lysis of target cells. Specific
siRNAs acting on the TCR constant region which increased and
optimized cell surface expression of MAGE-A4-specific TCR.
Reducing mismatches between endogenous and exogeneous
TCRs and their competition for CD3 molecules can increase
the surface expression of modified TCR cells (36) (Figure 2).
January 2022 | Volume 11 | Article 794183
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T Cell Unresponsiveness and Exhaustion
The efficacy of treatment with chimeric antigen receptor-T (CAR-
T) cells and T cell receptor-engineered T cells is highly dependent
on the functional activity of these T cells. However, the
mechanisms underlying T cell exhaustion remain unclear. T cell
unresponsiveness represents a low-reactive state of T cells, triggered
by over activation of TCR and strong co-inhibition, either through
CD28 molecular signals or limited co-stimulation. Repeated T cell
activation during chronic infection or tumor progression can lead
to T cell exhaustion. During the clearing of acute infection, a
population of activated T cells differentiates into high-functioning
memory T cells; whereas, during chronic infection or in the TME,
sustaining the activation of T cells can result in a dysfunctional
phenotype, which is characterized by poor effector functions and
expression of inhibitory receptors (37). Dysfunctional T cells
cannot produce interleukin (IL)-2 and gradually lose their
proliferation and in vitro killing abilities, subsequently becoming
unable to secrete tumor necrosis factor (TNF)-a. In the final stage,
interferon-g production is partially or completely impaired,
eventually leading to physical loss. The decline in effector
function is accompanied by a gradual loss of CD4+ T cells and
increased expression of inhibitory receptors, including CD160,
CD244, CTLA4, LAG-3, PD1, TIGIT, and TIM3 (38, 39).

The depletion of early memory T cells and other T cells can
alter the effectiveness of genetically engineered T cell therapy
(40). Dysfunctional T cells are the main proliferating immune
Frontiers in Oncology | www.frontiersin.org 5
cells in tumors, with the intensity of dysfunction being associated
with tumor reactivity (41). Depleted CD8 + T cells can include
progenitor cell depleted T cell subsets, which can remain versatile
and eventually differentiate into depleted T cells after a long
period of time (42, 43). CD8 + T cells before failure can be
evaluated by the expression of the cell surface inhibitory receptor
PD-1, the chemokine receptor CXCR5 and the soluble factor
TCF-1 (44, 45).

T cell dysfunction and exhaustion are important drawbacks to
engineered T cell therapy. The dysfunction and exhaustion
phenotypes of endogenous T cells are derived from the
surrounding TME (46, 47) and are induced towards terminal
differentiation. PD-1 upregulation in the TME significantly
inhibits T cell function, so engineered T cells generated from
impaired T cells may have lower efficacy against hematologic
malignancies and solid tumors (48–50). In addition, endogenous
TCR of the T cell may have a persistent negative impact on
engineered T cells. Finally, signals from transformed T cells may
increase cell differentiation and exhaustion (51, 52).

In summary, the key to enhancing the anti-tumor function of
engineered T cells is adjusting tumor-associated T cell
dysfunction and exhaustion. Currently, there are three main
strategies to restore T cell pool: replacement, reprogramming
and exhausted cell recovery.

1) Replacement involves the physical removal of
dysfunctional cells from the circulation to ensure the
FIGURE 2 | Reducing mismatches between endogenous and heterogeneous TCR and reducing competition for CD3 molecules can mediate an increase in surface
expression of modified TCR cells.
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homeostatic proliferation of effector and memory T cells. One
possible approach is to target dysfunctional T cells and promote
their selective apoptosis. An engineered peptide was used to
interfere with FOXO4/p53, leading to the apoptosis of senescent
fibroblasts (53). It is not clear whether this approach is also
applicable to dysfunctional T cells. However, homeostatic
proliferation, as in autologous stem cell transplantation
(ASCT), has resulted in the successful reconstruction of
functionally naive, memory, and effector T cell pools in
autoimmune diseases and hematologic malignancies (54–57).
In addition, hematopoietic stem cells isolated from umbilical
cord blood have been utilized to rebuild immune systems and
treat hematological diseases, conditions that may allow for the
homeostatic proliferation of effector T cells (58–60).

2) Reprogramming is a practical approach to rescue T cells
from a state of dysfunction and exhaustion. It involves the
redifferentiation of induced pluripotent stem cells originally
derived from T cells (T-iPSCs) or their dedifferentiation within
their own lineages (61–63). Although the generation of T cells
from human embryonic stem cells and iPSCs is feasible, the TCRs
generated by seemingly random VDJ gene rearrangements
remain unpredictable. Human iPSCs-derived T cells transfected
with tumor antigen-specific engineered TCRs and CARs were
found to infiltrate solid tumor tissue in a xenograft model and
delay tumor progression (64). Moreover, CTL regenerated from
iPSCs, including WT1 antigen specific CTLs, showed therapeutic
effects in xenograft leukemia models (65). These cells also showed
a strong therapeutic effect in an orthotopic xenotransplantation
model using a renal cell carcinoma cell line. This method was
expanded by transducing HLA haplotype homozygous iPSCs
with the WT1 specific TCRa/b gene, a method that has been
tested clinically. Moreover, the feasibility of this anti-solid tumor
strategy was shown in a patient-derived renal cell carcinoma
xenotransplantation model, in which regenerated antigen-specific
CTLs inhibited tumor growth.
Frontiers in Oncology | www.frontiersin.org 6
The DP stage of iPSCs differentiation into T cells is frequently
characterized by additional T cell receptor changes, which may
alter antigen specificity; RAG2 knockout by CRISPR-based
genome editing of T-iPSCs was found to inhibit additional
TCRa rearrangement (66). The combined transduction of
HLA matched allogeneic iPSCs and TCRs is expected to
promote allogeneic adoptive T cell immunotherapy. Moreover,
reprogramming can restore telomere length by increasing
telomerase activity, prolonging cell life span by preventing
telomere-dependent cell exhaustion, which may reverse T cell
exhaustion (67, 68) (Figure 3).

3) The recovery method aims to restore and maintain the
thymus environment by bioengineering thymic organoid
substances, growth-promoting factors, and cytokines (e.g., IL-21),
and to further reverse thymus degeneration. IL-21, a type of
thymus-stimulating cytokine that can trigger new thymus
formation in aged mice, has shown significant immune storage
function and promotes peripheral T cell pool regeneration (69, 70).

Similarly, in a mouse model of severe combined
immunodeficiency, injection of allogeneic hematopoietic cells
into the reconstructed thymus restored functional T cell
development (71). Preclinical studies have shown that the
production of thymic organoids from acellular matrix is an
effective way to restore T cell and adaptive immune system
function. However, donor-specific immune tolerance, complex
thymic extracellular matrix (ECM) regeneration, thymic
epithelial cell support, and T cell maturation remain major
challenges (72, 73).

Toxicity Cause by Cytokine Storms
The toxic reactions related to genetically engineered T cell
immunotherapy can be divided into two types, autoimmune
toxicity and cytokine related toxicity. Autoimmune toxicity, also
called targeted and non-tumor toxicity, results from the antigen-
specific attack on nonmalignant host tissue expressing the
FIGURE 3 | RAG2 knockout by CRISPR-based genome editing in T-iPSCs prevents the additional TCR rearrangement.
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targeted tumor related antigen. Autoimmune toxicity can occur
after the administration of immune checkpoint inhibitors (12–
14) and the infusion of genetically engineered T cells (14, 23, 74).
Cytokine related toxicity, also known as cytokine release
syndrome (CRS), results from high-level immune activation
and is a type of non-antigen-specific toxicity.

The incidence and severity of CRS associated with adoptive T
cell therapy for tumors were shown to increase in patients with a
large tumor load, increases that may be associated with higher
levels of T cell activation. Similar to CRS related to monoclonal
antibody therapy, CRS related to adoptive T cell therapy is
closely associated with increases in IL-6 and TNF-a levels,
accompanied by increases in IL-2, granulocyte macrophage
colony stimulating factor (GM-CSF), IL-5, IL-8 and IL-10 (75–
78). IL-6, the central mediator of CRS toxicity (79), has been
shown to play important roles in the activation, expansion,
survival and polarization of T cells (80), and to promote the
expression of T cell adhesion factor (81). In addition, IL-6 has
also been found to regulate the surface expression of Fas receptor
by upregulating anti-apoptotic factors through STAT3, thus
inhibiting T cell apoptosis (82, 83).

IL-6 has also been shown to be involved in the accumulation
of cytokines in bone marrow mesenchymal stem cells present in
tumors (84). In addition, IL-6 plays an important role in acute
immune response. When stimulated by local inflammation, IL-6
can promote the production of acute phase proteins by acting on
the liver (85). IL-6 is an important factor affecting the
homeostasis of hepatocytes, hematopoietic progenitor cells, and
the cardiovascular, endocrine and nervous systems (79).
Moreover, many clinical trials have shown that high expression
of IL-6 is related to CRS, initiating the pro-inflammatory signal
cascade (86).

The release of cytokines by cytotoxic T cells resulting in T cell
receptor activation and abnormal macrophage activation may
eventually lead to hemophagocytic lymphohistiocytosis
(HLH) (87). The main characteristics of HLH are improper
immune activation and cytokine release. Primary HLH is caused
by mutations in genes involved in cytolytic granule exocytosis,
reducing natural killer (NK) function and allowing macrophages
to activate spontaneously in response to minimal triggering (88).
Secondary HLH is caused by infections, malignant tumors and
autoimmune diseases. The symptoms of HLH in some patients
were relieved after treatment with IL-6 receptor blockers. Host
factors may play an important role in immunotherapy for
individuals prone to severe CRS, although additional studies
are needed to determine whether heredity is related to this
syndrome (87).
OTHER IMPROVED METHODS FOR
ENHANCING THE FUNCTION OF
ENGINEERED T CELLS

Although some patients have been found to benefit from TCR-T
therapy, efforts are required to improve the amplification/
durability of T cells in vivo to avoid rapid loss of effector
Frontiers in Oncology | www.frontiersin.org 7
function. This may improve response rates in patients with
high tumor burden and reduce the need for large amounts of
TCR-T cells. Because TCR insertion alone may be insufficient for
potent anti-tumor responses (89), other features of co-
stimulating receptors and TRC “substrate” cells may provide
potential methods to overcome these obstacles and to improve
clinical outcomes.

Increased Structural Affinity Can Enhance
Anti-Tumor Function
Most clinical studies of TCR-T cell immunotherapy to date have
focused on melanoma. Targets have included melanoma
associated antigen recognized by T-cells (MART)-1, P-
glycoprotein 100 (P-gp100), NY-ESO-1, MART-A3, and p53.
To determine whether reconstructed T lymphocytes are effective
in the treatment of melanoma, the genes encoding the a and b
chains of MART-1 specific TCR were transfected into peripheral
blood mononuclear cells (PBMCs) with retroviral vectors, and
the recombinant T cells were used to treat 17 patients with
metastatic melanoma (90). In this phase I clinical trial, two (12%)
patients achieved PR for over 20 months, and the other 15 (88%)
patients showed ≥10% increases in peripheral blood T cell counts
after 2 months of treatment, with no treatment-related
adverse events.

In another trial, patients with metastatic melanoma were
treated with TCR-T cells expressing MART-1 or P-gp100 and
possessing high TCR activity (91). PR was observed in 30% (6/
20) and 13% (2/16) of patients treated with TCR-T cells
expressing MART-1 and P-gp100, respectively, with one
patient in the latter group achieving CR. However, secondary
damage was observed in normal melanocytes of the skin and
eyes, and tertiary damage in ears. These results indicate that
engineered T cells differ in their ability to distinguish between
normal and tumor cells, leading to varying therapeutic effects.
Therefore, in addition to high affinity, thus ability to distinguish
should be considered when designing TCR. This a technical
bottleneck has restricted TCR-T development. Specifically,
improvements in affinity can increase the risk of TCR attack of
off-target sites, resulting in off-target toxicity, and targeting
similar antigenic epitopes in healthy tissue can damage the
latter. To date, however, only 1% to 2% of tumor mutations in
new antigens can be combined with MHC molecules to be
identified by T cells, indicating that new antigen-specific T
cells have a limited ability to recognize tumor tissue with a low
mutation load (92).

Because T-cells administered anywhere in the body have the
potential to be actively transported throughout of the body, it is
important to select the right target. Most potential targets are not
tumor-specific and are expressed in lower concentrations in
healthy tissues, increasing the risk of off-target effects. Even if
highly expressed or specific tumor targets can be identified, they
are not evenly expressed throughout the tumor due to tumor
heterogeneity. T-cell therapy targeting antigens not present in all
tumor cells may lead to the selective growth of target-negative
tumor cells (93). Therefore, the construction of TCR-T cells with
common new antigens, new antigens covering most tumor
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subclones, and driving mutations of new antigens is expected to
improve the therapeutic effect of new antigen TCR-T, benefitting
more patients.

Increasing the structural affinity of TCR may enhance their
anti-tumor activity. 1) The introduction of selective
modifications to the CDR3 region of TCR a and b chains has
proven critical for antigen recognition and binding (94).
2) Pairing and codon optimization, thus increasing protein
expression, may enhance the antigen-specific responses of T
cells. 3) Reducing the glycosylation of TCR improves its
functional affinity and prevents the internalization of
transduced TCR. 4) Modifying three transmembrane residues
of the TCR a chain to hydrophobic amino acids can enhance the
anti-tumor functional affinity of T cells, as well as increasing the
stability and level of expression of TCR in these transduced T
cells (95). 5) The design of gene expression box may also affect
TCR expression, and the application of P2A or IRES elements
linking a and b chains has been shown to increase TCR
expression levels and reduce the risk of inducing autoimmune
pathological changes (96).

In addition to the T cell-specific engineering of TCR
transgenes, several genetic approaches have been utilized to
further induce or amplify important T-cell functions (e.g., co-
stimulation, cytokine secretion, and expression of chemokine
receptors and homing factors) (97). For example, IL-12
administration into tumor mouse models can promote tumor
regression and improve host survival (97), although it also
enhanced toxicity. Inducing engineered T cells to produce IL-12
in vivo through retroviral vectors has been shown to enhance anti-
tumor activity against melanoma in B16 mice (98). Combining T
cells with cytokine adjuvant nanoparticles can result in the local
production or delivery of cytokines with reduced toxicity (66).
Subtypes of the transduced T cells are also important, with recent
studies showing the favorable performance of various lymphocyte
subsets, including memory T cells, primary T cells, memory stem
cells and central memory T cells (97–99).

The Necessity of Stromal Cell Selection
In preclinical models, the naïve, central memory and stem cell
memory subsets of CD8+ T lymphocytes mediated the durability
and anti-tumor effects of adoptive T cell therapy (100). These
findings were further confirmed by a clinical trial in patients with
acute myeloid leukemia using WT-1 specific TCRs to transduce
donor EBV-specific CD8+ T cells (101). The transduced TCR-T
cells maintained the expression of costimulatory receptors, with
lower levels of expression of inhibitory receptors, which may
mediate the stability of TCR-T frequency and durability observed
in patients. However, not all patients benefited from EBV-
specific substrate cells, especially those with high tumor burden
and activation-induced T cell death. This suggests that
alternative approaches are necessary.

In addition to TCR signaling, T cell function is regulated both
positively and negatively ways. For example, the TME can induce
immunosuppression, and transforming growth factor-b (TGF-b)
can inhibit T cell proliferation and function (102). Tumor cells
expressing TGF-bmay escape from apoptosis (103, 104). TGF-b-
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induced inhibition may be reduced by introducing a truncated,
dominant negative TGF-b receptor into genetically engineered T
cells (105).

The Combination of CD4+ T Cells Can
Enhance the Efficacy of TCR-T Therapy
Current TCR-based immunotherapy mainly utilizes CD8+ T
cells that recognize tumor antigen presented by class I HLA
(106). Cotransfected CD4+T cells can enhance antitumor effects
by promoting the proliferation and survival of tumor-killing
CD8+T cells, as shown in murine leukemia models (107) and in
CD19-directed CAR therapy (108). Tumor-specific class II-
restricted CD4+T cells promote class I-restricted CD8+T cell
proliferation, survival, and effector function, partially by
producing IL-2 and promoting dendritic cell-mediated
activation to expand the range of immune responses (epitope
diffusion) (109). CD4+T cells expressing class II HLA-restricted
TCR show direct cytolytic activity against metastatic melanoma
and antitumor effect against human cholangiocarcinoma (110,
111). However, class II expression is rare in solid tumors (112)
and it is difficult distinguish class I and II restricted TCRs of the
same tumor antigen.

Viral and neoantigen-specific class I TCRs have sufficient
affinity to bind to CD4+ and CD8+T cells, but thymus selection
results in TCRs that rarely recognize overexpressed autoantigens.
Identification of CD8-independent class I HLA-restricted TCRs
requires extensive screening but is not always successful for each
target. Co-expression of the a and b chains of CD8 with TCR, an
alternative for binding CD4+ and CD8+T cells, may be applied
to any class of restricted TCR (113). In some preclinical models,
tumor specific CD4+ T cells support CD8+ T cell proliferation
and function (114). However, participation of CD4+ T cells alone
may be insufficient in the complex TME.

Obtaining HLA class I restricted gene modified CD4+ T cells
was shown to be feasible after cloning or spontaneous transfer of
the CTR gene from targeted specific CD8+ T cells (115). WT1
siTCR/CD4+ T cells can produce Th1 cytokines and enhance
WT1 reactive CTL function mediated by WT1 siTCR/CD8+ T
cells. Moreover, administration of WT1 siTCR/CD4+ T cells not
only enhances the killing effect of anti-leukemia cells, but
enhances the proliferation and differentiation of WT1 siTCR/
CD8+ T cells during the process of recognizing leukemia cells in
vivo. In addition, WT1 siTCR/CD4+ T cells express the
chemokine CXCL12 and its receptor CXCR4. CD4+ T cells
expressing CXCR4 can enter the bone marrow through the
CXCR4-CXCL12 axis. Therefore, intravenously administered
WT1 siTCR/CD4+ T cells can not only be transported to
peripheral blood, but also enter the patient’s bone marrow.
Administration of WT1 siTCR/CD4+ T cells was also found to
increase the accumulation of WT1 siTCR/CD8+ T cells around
leukemia cells, thus enhancing their inhibitory effect. In addition,
the presence of WT1 siTCR/CD4+ T cells can prolong the
survival of functional WT1 siTCR/CD8+ T cells in vivo. These
findings indicate that leukemia can be most effectively inhibited
by simultaneous administration of WT1 siTCR/CD4+ T cells
and WT1 siTCR/CD8 + T cells, and that this enhanced anti-
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leukemia effect is significant. That is, target specific CD4+ T cells,
can enhance the duration of the anti-leukemia effect of adoptive
gene modified CD8 + T cells.

Independent Activation of Costimulatory
Receptors Is Essential for Improvement of
TCR-T Therapy
The incorporation of costimulatory domains (most notably
CD28 and 41BB, and also ICOS and OX40) into intracellular
CAR-T signal transduction domains has been shown essential
for CAR-T cell function. CD19 CAR-T cells have shown
antitumor effects against hematological malignancies (116).
The combination of TCR and MHC initiates TCR signaling,
leading to the formation of immune synapses between T cells and
antigen-preventing cells (APCs) (117). These interactions
between T cells and APCs can simultaneously trigger the
binding of costimulatory signal receptors (such as CD28) and
lead to the recruitment of CD8 or CD4 co-receptors, which bind
to conserved regions in MHC class I or MHC class II complexes,
respectively (118). The intracellular domains of CD4 and CD8
can recruit the tyrosine kinase LCK, a member of the SRC family,
to bound TCR:pMHC. TCR:pMHC interaction with TCR
promotes the LCK mediated phosphorylation of the ITAM in
the cytoplasmic domain of the CD3 subunit (118). This
phosphorylation can lead to the recruitment of the protein
tyrosine kinase ZAP70 to TCR and promote the activation of
ZAP70 by LCK. The early T cell activation model hypothesized
that the initiation of TCR signaling involved and required the full
Frontiers in Oncology | www.frontiersin.org 9
activation of LCK (119). Subsequent research, however, showed
that a large percentage (up to 40%) of LCK had catalytic activity
in resting T cells, with recent studies indicating that the active
pool of LCK in resting T cells may be smaller than originally
estimated (120). In addition, full activation of T cells was found
to require the matching of tumor ligands to independently
triggered costimulatory receptors, while overcoming inhibitory
receptor signals through highly expressed ligands in the
TME (121).

The interaction of T cells with the MHC through TCR results
in the recruitment of several proteins to the plasma membrane,
where they participate in signal transduction (Figure 4). The
initial TCR signal continuously induces phospholipase C
through p38- g1(PLC-g1) and vitamin D receptor (VDR), both
of which are classical TCR signaling pathways necessary for T
cell activation (122). PLC-g1 membrane phosphatidylinositol
diphosphate (PIP2) was found to composed into inositol
triphosphate (IP3) and diacylglycerol (DAG). IP3, in turn,
interacts with the endoplasmic reticulum receptor to
upregulate the level of intracellular Ca2 +, activating the
binding protein calmodulin and nuclear factor (NFAT) protein
2 of T cells. In addition, DAG activates the Ras extracellular
regulated kinase (ERK) pathway, ultimately activating nuclear
factor (FOS) protein (123). These interacting signaling pathways
induce the activation of T cells and the release of large numbers
of cytokines and chemokines (124).

A recent preclinical study showed that enhanced costimulatory
signals can promote TCR-T cell proliferation, cytotoxicity,
FIGURE 4 | After T cells interact with MHC through TCR, several proteins will be recruited to the plasma membrane to participate in signal transduction.
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and cytokine production (125). Specific structures tailored for
optimal TCR-T cell activation have not been utilized to date in
clinical studies, as several factors require consideration. First, the
selection of costimulatory domains will affect mitochondrial
biogenesis and overall cell metabolism, leading to the
differentiation of effector molecules and central memory T cells
and changes in T cell dynamics (126, 127). Second, the location
of the costimulatory domain in the immune synapse will affect
the design. The so-called switch receptors (e.g., CD20R/CD28
and PD1/CD28) have shown great efficacy, both in vitro and in
mouse models, by inhibitory to stimulatory signals (128, 129).
However, this approach relies on additional ligand interactions
in the TME rather than TCR:pHLA interaction. Insertion of
these structures alongside the TCR requires two separate carriers
or a large carrier, limiting the efficiency of the transduction.
Third, target cell abundance and TCR affinity are also key
factors. An increase in the number of target cells, will result in
the amplification of TCR signals by TCR:pHLA interactions.
This, in turn, may lead to a harmful cytokine storm or T cell
tolerance affecting safety and antitumor efficacy (130). In addition,
the efficacy of CAR-T cells (which have intrinsic costimulatory
properties) is limited in solid tumors (116). These findings suggest
that TCR-T therapy requires engineering based on increased
costimulatory signaling.

Promising approaches include removing signals that suppress
TCR activation, increasing tumor localization and penetrance,
and altering T cell metabolism.

The number of preclinical constructs designed to enhance
downstream T cell function triggered by TCR highlights the need
for unbiased systematic library screening to reveal the potential
synergistic effects among antigen targets, transgenic TCR, and
increased engineered-T cell adaptation.
PROSPECT AND SUMMARY OF TCR-T
CELL IMMUNOTHERAPY

TCR-T cell therapy is a powerful immunotherapy to treat tumor.
Its complexity makes it challenging in preclinical optimization
and in clinical trials. This review indicates that TCR-T therapy
can be further improved to reach its full potential (131).
Optimizations include systemic selection of TCR-T target
Frontiers in Oncology | www.frontiersin.org 10
antigen, the influence of tumor antigen heterogeneity, and
safety problems in TCR gene transfer. Meanwhile, with the
development in concepts and technology have resulted in new
gene engineering approaches to enhance TCR-T cell function
and optimize anti-tumor immune responses (132). This
optimization is a complex interdisciplinary issue that integrates
immune-oncology, tumor biology and genetic engineering.

Clinical application of TCR-T cell therapy remains
challenging. Complicated genetic engineering involving the
knockout of multiple genes and individualized treatment can
enhance both the safety and efficacy of these treatments. We
believe that addressing these issues and applying them to the
development of TCR-T cell products will promote TCR-T cell to
become an important component of anticancer therapy.
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