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Abstract 

Phylogentic analysis is becoming an increasingly 
important tool for customized drug treatments, 
epidemiological studies, and evolutionary analysis.  The 
TCS method provides an important tool for dealing with 
genes at a population level.  Existing software for TCS 
analysis takes an unreasonable amount of time for the 
analysis of significant numbers of Taxa.  This paper 
presents the TCS algorithms and describes initial 
attempts at parallelization.  Performance results are 
also presented for the algorithm on several data sets.   

1 Introduction 
Phylogenies are extremely useful tools, not only for 

establishing genealogical relationships among a group of 
organisms or their parts (e.g. genes), but also for a 
variety of research once the phylogenies are estimated. 
In a recent review, Pagel (1999) eloquently outlined a 
number of uses for phylogenetic information.   These 
uses include the analysis of drug resistance and the study 
of evolutionary relationships between species.  
Phylogenies have also been used to predict future trends 
in infectious disease (Bush et al. 1999). Yet phylogenies 
are only as useful as they are accurate. 

Estimating genealogical relationships among genes 
at the population level presents a number of difficulties 
when compared to traditional methods of phylogeny 
reconstruction. These traditional methods such as 
parsimony, neighbor-joining, and maximum likelihood 
make assumptions that are invalid at the population 
level.  

For example, these methods assume ancestral 
haplotypes are no longer in the population, yet 
coalescent theory predicts that ancestral haplotypes will 
be the most frequent sequences sampled in a population 
level study (Watterson & Guess 1977; Donnelly & 
Tavaré 1986; Crandall & Templeton1993). Figure 1 
shows a traditional parsimony or maximum likelihood 
tree.  Note that all of the haplotypes occur at the leaves 
of the tree.  With population studies, many of the 
individuals sampled will be internal nodes or ancestors 
of other individuals sampled as shown in Figure 2.  
Cycles can also occur along with recombination in trees 
derived from population studies.  

Traditional methods assume that recombination will 
not occur.  The failure to incorporate the possibility of 

recombination in phylogeny reconstruction can lead to 
grave errors in the resulting estimated phylogeny.  

The combination of these effects can lead parsimony 
methods to infer a cumbersome amount of most 
parsimonious trees at the population level with no 
resolution among the set (e.g. over one billion trees for a 
set of human mitochondrial DNA (mtDNA), Excoffier & 
Smouse 1994). These effects can also lead neighbor-
joining and traditional maximum-likelihood methods to be 
over confident in the resulting relationships (Bandelt et al. 
1995).  Therefore, an alternative approach is needed to 
provide accurate estimates of gene genealogies at the 
population level that take into account these population 
level phenomena not addressed by traditional methods. 

Multiple groups have looked to network 
representations for population level genealogical 
information (Bandelt & Dress 1992; Templeton et al. 
1992; Excoffier & Smouse 1994; Fitch 1997). Networks 

Figure 1: Traditional Parsimony or Maximum 
Likelihood Tree 
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Figure 2: Taxa can exist as ancestors and cycles 
can occur in a population study  tree. 



allow one to naturally incorporate the often-times non-
bifurcating genealogical information associated with 
population level divergences. The method of Templeton, 
Crandall and Sing.(1992) (TCS) has been used 
extensively with restriction site and nucleotide sequence 
data to infer population level genealogies when 
divergences are low (Georgiadis et al. 1994; Routman et 
al. 1994; Gerber & Templeton 1996; Hedin 1997; 
Schaal et al. 1998; Vilá et al. 1999, Gómez-Zurita et al. 
2000).  

TCS has been used with traditional methods to 
estimate relationships among organisms that span a wide 
range of divergence (Crandall & Fitzpatrick 1996; 
Benabib et al. 1997).  The approach has also been used 
extensively with a nested analysis procedure to partition 
population structure from population history (Templeton 
et al. 1995; Templeton 1998) and explore the 
phylogeographic history of a diversity of organisms (e.g. 
Johnson & Jordon 2000; Turner et al. 2000).   

The TCS software opens nucleotide sequence files 
in either nexus (Maddison et al. 1997) or phylip 
(Felsenstein 1991) sequential format. The program 
collapses identical sequences into haplotypes and 
calculates the frequencies of the haplotypes in the 
sample. These frequencies are used to estimate 
haplotype outgroup probabilities, which correlate with 
haplotype age (Donnelly & Tavaré 1986; Castelloe & 
Templeton 1994).  

An absolute distance matrix is then calculated for 
all pairwise comparisons of haplotypes. The probability 
of parsimony [as defined in Templeton et al. (1992), 
equations 6, 7, and 8] is calculated for pairwise 
differences until the probability exceeds 0.95. The 
number of mutational differences associated with the 
probability just before this 95% cut-off is then the 
maximum number of mutational connections between 
pairs of sequences justified by the ‘parsimony’ criterion.  

These justified connections are then made resulting 
in a 95% set of plausible solutions. The program outputs 
the sequences, the pairwise absolute distance matrix, 
probabilities of parsimony for mutational steps just 
beyond the 95% cut-off, a test listing of connections 
made and missing intermediates generated, and a graph 
output file containing the resulting network. This graph 
output file can be opened in the freeware VGJ 1.0.3 
(McCreary 1998)(distributed under the terms of the 
GNU General Public License, Version 2), which is 
packaged with the TCS algorithm.  

This paper describes the implementation of the TCS 
algorithm and a parallel version recently completed.  
Performance results are presented for several data sets 
along with algorithm analysis results. 

2 Algorithm Description 
This section describes the overall architecture of the 

TCS program.  It focuses on sections of code that are 

most computationally intensive and attempts to highlight 
opportunities for parallelization.   

After the sequence file is read in, the algorithm 
calculates the distance between each taxa and every other 
taxa.  This calculation is performed by comparing the 
characters for each sequence and recording the raw 
number of changes between the sequences.  Table 1 shows 
sequence data and Table 2 shows the distance matrix for 
the taxa shown in Figure 2. 

 
Taxa Name Sequence Data 

NLSW35 ACGCA 
AETl201 ACGCC 
NR202 ACGAC 
GD12 TTGAA 

Table 1: Sample Sequence data for the tree in Figure 2. 

 
 

Distance NLSW35 AETl201 NR202 GD12 
NLSW35 0 1 2 3 
AETl201 1 0 1 4 
NR202 2 1 0 3 
GD12 3 4 3 0 

Table 2 Distance Matrix for the tree in Figure 2. 

Once the distance matrix has been computed, the TCS 
algorithm proceeds to connect the taxa into a cladogram 
using the following algorithm: 
1) A cluster is created for each of the N taxa in the 

sequence file.   
2) The distance matrix is examined to determine which 

two clusters have the minimum distance M. This 
distance is computed by taking each taxa in one cluster 
and finding the taxa in each of the other clusters that has 
the smallest number of changes.  In the worst case, there 
are N-1 clusters that each have 1 taxa for a complexity  
= O(N2) for this step. 

3) All of the taxa in the two minimum distance clusters 
that have distance M are then joined. For this discussion 
we assume that taxa S in the source cluster and taxa D 
in the destination cluster are two of these taxa that have 
distance M.  Connections that have a distance greater 
than 1, will be made by adding intermediates in the 
following way: (In the worst case N/2*N/2 connections 
will be made) 
a. The minimum number of intermediates should be 

added to make the distance between the two taxa 
correct while preserving other distances in the matrix.  
Intermediates from another connection can be used in 
joining a pair of taxa as long as the connection does 
not form a connection that is shorter than the 
minimum distance between any two taxa in the 
source and destination clusters.   



      This step is implemented using the following 
algorithm 
i. All of the possible connections  between S, an 

intermediate in the source cluster, an intermediate 
in the destination cluster and D are evaluated.  
There are at most (N/2)2 of these connections 
possible (N/2 intermediates in the source cluster 
and N/2 intermediates in the destination cluster). 

ii. These connections are evaluated to determine 
which connection has the maximum metric.  In 
the worst case, N2 distances will be compared for 
each possible connection.  The metric is 
computed in the following way: 

1. The distance between every pair of taxa in the 
source and destination cluster is examined to 
determine the global quality of a possible 
connection.  A distance metric is created by 
comparing each of these possible distances with 
the real distance computed from the sequence 
file. 

2. If a possible connection creates a distance that 
is correct, the metric is incremented by 20 
points.   

3. If the distance is shorter than the correct 
distance, but longer then the minimum distance 
for the taxa, then the metric is decremented by 
10 points. 

4. If the distance is less than the minimum for the 
taxa, then the metric is set to negative infinity 
(to indicate that this connection is undesirable). 

5. If the distance is longer than the correct value, 
then the metric is decremented by 5 points. 

iii. The connection with the best metric is made in 
the tree data structure. 

b. Combine the two clusters into one, reducing the 
number of clusters by one. 

4)  If there is more than one cluster, go to step 2. 

2.1 Example 
Figure 1 provides an example data set for the TCS 

algorithm. Initially, there are N clusters, one for each 
taxa.  The minimum distance is between NLSW35 and 
AET1201 (the distance between NR202 and AET1201 is 
also minimal, and will be dealt with next.  Taxa 
NLSW35 and AET1201 are connected with this minim 
distance (1) and are joined into a cluster.  Figure 4 
shows the first connection made in the algorithm.  

 
At this point the minimum distance between clusters 

must be computed.  The minimum distance between 
GD12 and any of the taxa in Cluster 0 is 3.  Since the 
distance between NR202 and AET1201 is one, this is the 
minimum distance between any two clusters and a 
connection will be made in the next step between Cluster 
0 and Cluster 3.  During the next iteration of step 2 in the 
algorithm Taxa GD12 with be joined to the cluster 
consisting of NLSW35, AET1201 and NR202.  The 
minimum distance is 3 between the two clusters and the 
algorithm makes all of the connections at that minimum 
distance.  The first connection is made between GD12 and 
NLSW35 by adding two intermediates as shown in Figure 
5. 

 
The next minimum distance connection between Taxa 

GD12 and Cluster 0 is to Taxa NR202.  Several possible 
connections exist.  Two new intermediates could be added 
between GD12 and NR202.  The distances for this tree 
would all still be correct.  By reusing intermediates I1 and 
I2, the metric will be higher and this connection will be 
used.  If the minimum distance for Taxa NLSW35 or 
NR202 was greater than 2, then reusing these 
intermediates would have caused the distance between 
NLSW35 and NR202 to be less than the minimum 
distance and this connection would not be used. 

3 Complexity and Performance 
Analysis 

In analyzing the complexity of the TCS algorithm, the 
loop starting with step 2 will occur N times.  There can be 
as many as N2 possible connections to perform metric 
evaluation for at each of these steps for a total of O(N3) 
computations.  For each of these connections, a worst case 
of N2 distance comparisons must be made to calculate the 
metric.  The total complexity of the algorithm is O(N5). 

Figure 4: Configuration after the first two clusters 
have been collapsed. 
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Figure 3: Configuration after the first connection 
has been made between Taxa GD12 and Cluster 0 
(Taxa NLSW35).  Possible connections are shown 
with different line patterns for the next connection to 
Taxa NR202. 



Although the complexity of the TCS algorithm 
grows rapidly as the number of taxa increases, the 
problem is not nearly as difficult as total exploration of 
the tree space.  Table 3 shows the number of 
computations for each problem.  Execution time for TCS 
varies significantly depending on the data set.  If the 
sequence data is organized so that a single additional 
taxa is added to a growing large single cluster, then the 
computation will proceed more quickly.  If there is a 
step where two large clusters are joined, the computation 
will take much longer.  Many data sets exist with more 
than 10,000 taxa and even the most efficient traditional 
algorithms do not examine a significant percentage of 
the total trees.  Table 4 shows run times for several data 
sets with different number of taxa. 

Table 3: Number of trees for the Parsimony 
computation, compared to the number of 
computations for TCS. 

Data Set Number of 
Taxa 

Execution Time 

LTRA Sequences 30 4 seconds 
LTRA Sequences 40 17 seconds 
LTRA Sequences 72 40 seconds 
HIV 100 720 seconds 
Simulated 
Sequences 

200 23 seconds 

HIV 200 27,120 seconds 

Table 4: Execution time for TCS with different 
sequence data. 

3.1 Parallelization 
For thousands of taxa, the run time of TCS is still 

excessive.   A parallel implementation of the algorithm 
has been completed in order to increase the problem 
sizes that can be effectively dealt with.  There are 
several opportunities for parallelization in the TCS 
algorithm.   

One possibility for parallelization would be to have 
each processor independently combine clusters 
(iterations of step 2).  There are data dependencies 
between iterations as each cluster is collapsed that 
makes this level of parallelization impossible.  

Parallelizing the loop that begins at step 3 is also 
difficult since intermediates inserted by one connection 
can be used by other connections between clusters.  If this 
problem could be solved, then there would be 
approximately O(N4) computations possible without 
communications and the algorithm would be much more 
efficient. 

The initial parallel implementation chose to assign the 
evaluation of the metric for each connection (step 3.a.ii) to 
a different processor (O(N2) computations for each 
processor).   This approach results in more inter-processor 
communication and results in load imbalance since the 
evaluation of some metrics will require much more time 
than others.   

3.2 Parallel Implementation 
 The parallelization has been completed and the initial 

results appear promising.  Since TCS is written in Java, 
multiple threads were spawned and these threads were 
mapped to different processors on a shared memory 
machine.   

 Before optimization was done, profiling 
information showed that the most time consuming 
operation was java Vector lookups.  Java Vectors were 
used significantly in nested for loops that recalculated 
distances.  Java Vectors are synchronized, causing an 
object lock to be requested for any method call.  In a 
multithreaded environment, this could mean unacceptably 
long waiting times for object locks to do read-only 
operations.  Further, java Vectors do not allow direct 
access, as do arrays, meaning that each element retrieved 
from a Vector incurs the overhead of a method call.   

Due to these factors, the code was changed so that 
Vectors were copied on demand into Arrays local to each 
thread. The relatively small amount of overhead caused by 
the array copy was more than compensated for by the 
speed gained in using arrays.  While not eliminating the 
possibility of thread blocking, the probability was reduced 
dramatically.  This change doubled the performance of 
both serial and parallel code. 

After finishing the optimization of the code, attention 
was turned to improving the load balancing of the parallel 
code.  Initially, load balancing was static.  Domain 
partitioning gave each thread an exact number of taxa in 
the source cluster.  A thread would then iterate through 
these taxa for each taxa in the destination cluster.   

Timing of the initial parallel code showed that some 
threads ran as much as ten times longer than other threads 
under this partitioning method.  This caused an enormous 
bottleneck and limited parallel performance, since the 
longest running thread determined the actual run-time.  
The exact cause of such wide variances in run-times is 
unknown, however, thread synchronization seems to be a 
likely cause 

 To empirically argue that this was the case, a 
simple experiment was performed.  The program was run 

Number of 
Taxa (N) 

Number of 
Trees 

Worst Case TCS 
Computations 

10 2 x 106 105 

22 3 x 1023 5x106 

50 3 x 1074 3x108 

100 2 x 10182 1010 

1,000 2 x 102,860 1015 

10,000 8 x 1038,658 1020 

100,000 1 x 10486,663 1025 



on the same set of data several times, noting each time 
which thread was slowest.  Results showed that the 
longest running thread always took from eight to ten 
times the amount of time for the fastest thread.  
However, the slowest thread changed each time the 
program was run.  This eliminated the possibility that 
the data caused the discrepancy in run-times (since data 
partitioning was static), and argued for the cause being a 
synchronization issue (such as waiting for object locks). 

Due to the dynamic impact of the above issues, the 
second attempt at parallelization used finer grained, 
dynamic partitioning, assigning each thread a pair of 
source and destination taxa, whenever the thread was 
available.  This finer grained approach resulted in near 
identical run-times in each thread.  Moreover, it 
decreased the impact of a thread getting “stuck” while 
waiting for an object lock. 

3.3  Results and Analysis 
 
Performance of the final version of the parallel code 

was evaluated on a quad-processor Windows 2000 
machine.  Four data sets, one small, two medium, and 
one large, were run using one to four threads.  The small 
data set, called Snails.nex, had  thirty taxa with 359 
characters each.  The medium data set LTRA.nex had 72 
taxa, each with 725 characters.  The other medium data 
set LTRB00.nex had 143 taxa with 518 characters each.  
The big file, LTRB01-4.nex, had 217 taxa with 521 
characters each.  The characters provide a way to 
calculate distances between taxa, but have no direct 
impact on the run-time of the parallel code.  The number 
of Taxa and the distance between taxa are the 
determining factors in run time.  

Although the parallelized version of the code 
offered performance improvements with larger data sets, 
the results from smaller data sets also proved interesting. 
Figure 6 shows that the application runs slower with 
four processors than two or three threads.  Because this 
is a small data set, there is a high probability that several 
processors will request locks on the data structure.  
When this occurs, performance is diminished in several 
ways.  First, an expensive context switch must occur 
since one of threads will not obtain the object lock and 
must go into a sleep state until the lock is available.  
There is also more barrier overhead when there are more 
threads.  Finally, more threads create contention for 
memory, bus, and other computer resources. 

Figure 7 shows that four threads run twice as fast as 
one thread.  Though far from a linear speedup, the 
results show promise for larger data sets.  Current 
research is being performed to allow threads on other 
shared memory nodes to communicate through network 
connections.  This will allow several shared memory 
machines to participate in the computation.  Increased 
problem sizes will be used on these larger systems.  

The experimental results show that four threads are 
only 5% - 15% faster than three threads.  Part of the 
problem lies in the sequential component of the 
computation.  Although metric evaluation can be 
performed in parallel, cluster joining is a sequential 
computation.  The next step in parallelization will be to 
eliminate sequential components when possible. 
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5 Conclusions 
Prior to this research, TCS calculations were all 

performed by hand and the corresponding tree was also 
drawn by hand.  The TCS software has allowed systematic 
researchers to deal with much larger problems in 
population genetics.  The run times for TCS analysis are 
much smaller than exhaustive search of the tree space and 
several options are possible for parallelization.  The TCS 
software package has proved to be a valuable tool in DNA 
analysis. 

 
Future work will include several projects to increase 

the utility and performance of TCS.  The first project will 
include a benchmarking experiment with sequences from 
known trees to compare the trees generated with TCS to 
the original tree.  The parallel code will be profiled and 
tested on larger data sets.  The next step in population 
analysis is to determine the nesting values that help to 
separate the ingroup and the outgroup.  Most of this code 
has been written and should be tested and benchmarked.  
Efforts are also underway to assign sequence data to the 
intermediate taxa that are inserted in the process. 

The TCS software has been included in several NSF 
grant proposals and will continue to be enhanced to 
provide better solutions for systematic problems. 



Figure 6: Small data set run times 

 

Figure 7: Medium data set run times.
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