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TDP-43 is a culprit in human neurodegeneration,
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Abstract In 2006 the protein TDP-43 was identified as

the major ubiquitinated component deposited in the

inclusion bodies found in two human neurodegenerative

diseases, amyotrophic lateral sclerosis and frontotemporal

lobar degeneration. The pathogenesis of both disorders is

unclear, although they are related by having some overlap

of symptoms and now by the shared histopathology of

TDP-43 deposition. Now, in 2008, several papers have

been published in quick succession describing mutations in

the TDP-43 gene, showing they can be a primary cause of

amyotrophic lateral sclerosis. There are many precedents in

neurodegenerative disease in which rare single-gene

mutations have given great insight into understanding

disease processes, which is why the TDP-43 mutations are

potentially very important.

Introduction

Rapidly rising life expectancy is forcing many of the

world’s societies to see neurodegenerative diseases as a

wider social and economic issue. Such diseases have

always been devastating for sufferers and their carers, but

aging societies are facing a broader burden resulting from

the lack of effective treatments. There is hope for disorders

such as Alzheimer disease (AD), where now we have a

good understanding of pathogenesis and novel treatments

are on the horizon. However, two neurodegenerative dis-

orders that remain in urgent need of attention, and that

mainly but not exclusively affect the aging population, are

amyotrophic lateral sclerosis (ALS) and frontotemporal

lobar degeneration (FTLD).

ALS is the third most common neurodegenerative cause

of adult death after AD and Parkinson disease (http://

www.statistics.gov.uk/StatBase) and the lifetime risk of

dying from ALS lies between 1/400 and 1/1000 (Boillee

et al. 2006; Pasinelli and Brown 2006), and in the UK 1 in

400 death certificates is issued for ‘‘motor neuron disease’’

(J. Stevens, personal communication). In ALS the upper

motor neurons that run from the brain into the spinal cord

and the lower motor neurons that extend from the spinal

cord out to the muscles degenerate, leading inexorably to

paralysis and death, typically within 3–5 years of diagnosis

(Boillee et al. 2006; Pasinelli and Brown 2006; Schymick

et al. 2007; Valdmanis and Rouleau 2008). Intellect usu-

ally remains intact and no effective treatments are

available. Up to approximately 10% of ALS is familial

(FALS), usually autosomal dominant, and mutations in the

ubiquitously expressed enzyme superoxide dismutase 1

(SOD1) are causative in less than 20% of FALS (Deng

et al. 1993; Rosen et al. 1993) and in approximately 1% of

sporadic ALS (SALS) (Pasinelli and Brown 2006). Other

rare ALS mutant genes are known, usually associated with

variants of ALS rather than the classic typical midlife onset

disease (Boillee et al. 2006; Pasinelli and Brown 2006;

Schymick et al. 2007; Valdmanis and Rouleau 2008).

FTLD is the most common cause of presenile (below 65

years of age) dementia after AD (Forman et al. 2007;

Harvey et al. 2003; Ratnavalli et al. 2002). Affected
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individuals have a range of characteristic traits that reflect

degeneration in the frontal and temporal lobes of the

brain—the areas that control behavior, emotions, and lan-

guage. Early symptoms typically manifest as language

difficulties and inappropriate behavior (Neary et al. 1998).

Up to 40% of FTLD is thought to be familial with geneti-

cally heterogeneous causes. Causative mutations have been

identified in several genes, including those encoding tau

(Hutton et al. 1998; Poorkaj et al. 1998; Spillantini et al.

1998), charged multivesicular body protein 2B (CHMP2B)

(Skibinski et al. 2005), and progranulin (GRN) (Baker et al.

2006; Cruts et al. 2006), and others remain to be found.

Mutations have also been identified in the valosin-con-

taining protein (VCP) gene in inclusion body myopathy

associated with Paget disease of bone and frontotemporal

dementia, in which frontotemporal dementia can be, but is

not always, a feature (Watts et al. 2004).

At first glance ALS and FTLD appear to be different

disorders; however, clinicians have noted for some time

that there are overlaps. FTLD symptoms are reported in up

to 20% of ALS cases (Valdmanis and Rouleau 2008; Van

Deerlin et al. 2008) and there are other intriguing con-

nections such as families that segregate both disorders

(Morita et al. 2006; Valdmanis et al. 2007) and imaging

studies which show frontal deficits in ALS patients (Kato

et al. 1993). A recent study has shown that progranulin is a

modifier of ALS disease progression (Sleegers et al. 2008),

although this was not replicated in another study (Picker-

ing-Brown et al. 2008).

Importantly, in common with several other neurodegen-

erative disorders, ALS and FTLD both present with

aggregates of misfolded proteins in the cytoplasm and/or

nucleus of neurons. Ubiquitinated inclusion bodies have

been reported in the cytoplasm of neurons of both SALS and

FALS cases and in mutant SOD1 transgenic mice that model

FALS (for further discussion see Boillee et al. 2006; Pasi-

nelli and Brown 2006). FTLD is subdivided into two classes

based on the content of the inclusion bodies: (1) those with

tau-positive and ubiquitin-negative inclusions (tauopathies)

and (2) more common forms with ubiquitinated but tau-

negative inclusions known as FTLD-U, including PGRN,

VCP, and CHMP2B mutations (reviewed in Mackenzie and

Rademakers 2007). ALS and FTLD-U cases both present

with cytoplasmic ubiquitin-positive, tau-negative inclusions

indicating that there are at least some common pathway(s)

involved in the pathogenesis of these diseases.

TDP-43—the new kid on the block

Research into ALS and FTLD-U was radically redirected by

the appearance of a new player in 2006. In that year,

Neumann, Trojanowski, Lee, and colleagues provided a

molecular connection between these disorders by finding

that a protein called the TAR DNA-binding protein (TDP-

43) is the major protein in the inclusion bodies in both

disorders (Neumann et al. 2006), which was quickly con-

firmed (Arai et al. 2006). Some authors now refer to the

TDP-43 inclusion positive types of ALS and FTLD-U as

different forms of the same neurodegenerative disorder:

TDP-43 proteinopathy (Cairns et al. 2007; Kwong et al.

2008; Winton et al. 2008). TDP-43 positive inclusions have

now also been reported in cases of Alzheimer disease, Pick

disease, dementia with Lewy bodies, and other neurode-

generative disorders, and are seen in glia as well as neurons

(Amador-Ortiz et al. 2007; Freeman et al. 2008; Geser

et al. 2008; Hasegawa et al. 2007; Higashi et al. 2007;

Nakashima-Yasuda et al. 2007; Neumann et al. 2007).

TDP-43 is a 414-residue, 43-kDa protein, first identified

as a binding partner of the TAR DNA element of the human

immunodeficiency virus (Ou et al. 1995). Currently we

know that TDP-43 is a ubiquitously expressed, highly con-

served nuclear protein encoded by a 6-exon gene (TARDBP

on human chromosome 1p36.2). The protein consists of two

RNA recognition motifs and a glycine-rich domain (Fig. 1).

It is found in nuclear bodies, colocalized with SMN and

gemin proteins, and may function as a transcriptional

repressor and as an activator of exon skipping, or in other

roles such as in miRNA biogenesis, apoptosis, and cell

division (Ayala et al. 2005, 2008; Buratti et al. 2001; John-

son et al. 2008; Winton et al. 2008). In the TDP-43

proteinopathies TDP-43 is depleted from the nucleus and is

sequestered as hyperphosphorylated insoluble aggregates in

the nucleus, perikarya, and dystrophic neurites (Neumann

et al. 2006). Perturbation of the trafficking of TDP-43

between the nucleus and cytoplasm is thought to lead to the

formation of these aggregates; brain samples from both ALS

and FTLD-U are enriched for a smaller (*25 kDa) phos-

phorylated C-terminal fragment and high-molecular-weight

ubiquitinated species (Neumann et al. 2006; Winton et al.

2008). Inhibition of autophagy can also lead to the relocal-

ization of TDP-43 from the nucleus to the cytoplasm in vitro

(Filimonenko et al. 2007).

Intriguingly, while TDP-43 is deposited in sporadic and

familial FTLD-U and in sporadic and non-SOD1 familial

ALS (Kwong et al. 2008; Neumann et al. 2006), it is not

found in inclusions in SOD1 FALS (Mackenzie et al. 2007;

Tan et al. 2007) or in the SOD1G93A, SOD1G37R, and

SOD1G85R transgenic mouse models of FALS (Robertson

et al. 2007).

TDP-43 is a criminal, not just a bystander

The identification of TDP-43 in ALS and FTLD-U inclu-

sion bodies immediately led to surveys of patient cohorts to
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find either association with or mutations in the gene. All

returned with negative results (e.g., see Gijselinck et al.

2007; Rollinson et al. 2007; Schumacher et al. 2007),

leading to the reasonable conclusion that TDP-43 deposi-

tion may simply be a consequence of disease and therefore

possibly of less interest in providing novel insight into the

cause of these diseases. However, in 2008 all this has

changed with the publication of five articles, all of which

report rare TDP-43 mutations in sporadic and familial ALS

in patients of different ethnicities (mainly but not exclu-

sively Caucasian) (Gitcho et al. 2008; Kabashi et al. 2008;

Sreedharan et al. 2008; Van Deerlin et al. 2008; Yokoseki

et al. 2008). In summary (Fig. 1, Table 1), all the muta-

tions lie in exon 6 except for one in exon 4. The FALS

cases are autosomal dominant with some variability in

presentation, bulbar and limb onset cases, some with more

or less lower motor neuron loss and different ages of onset

and rates of progression, but all fairly classic FALS. No

dementia is found, although Kabashi et al. (2008) report

apathy, major anxiety, and agitation in two individuals. For

cases in which postmortems have been carried out, TDP-43

deposition has been found in the brains of affected indi-

viduals (Van Deerlin et al. 2008; Yokoseki et al. 2008).

The mutations are already starting to give some insight

into pathogenesis (Gitcho et al. 2008; Kabashi et al. 2008;

Sreedharan et al. 2008; Van Deerlin et al. 2008; Yokoseki

et al. 2008). Disruption of protein interactions is one pos-

sible disease mechanism. Most mutations lie in the

C-terminal, a glycine-rich region that may mediate inter-

actions with proteins, including heterogeneous

ribonucleoproteins. Also, some of the mutations found in

this region could increase phosphorylation by substituting

threonine or serine residues or through the creation of a

new protein kinase A site (Sreedharan et al. 2008). This

may result in disruption of protein interactions and/or

disruption of transport through the nuclear pore complex.

In transfected cell lines and patient lymphocytes some

variants also show a clearly increased propensity to

aggregate and to produce a lower-molecular–weight,

detergent-insoluble protein product (Kabashi et al. 2008;

Sreedharan et al. 2008; Yokoseki et al. 2008). One muta-

tion, D169G, lies in the first RNA-binding motif and may

affect RNA binding (Kabashi et al. 2008). When mutant

TDP-43 is electroporated into the neural tube of developing

chick embryos, two different mutations showed a reduction

in rate of maturation of the neural tube with an increase in

apoptotic nuclei, suggesting a toxic gain of function or

dominant negative effect (Sreedharan et al. 2008).

It is noteworthy that just one mutation lies in exon 4,

within the first RNA recognition motif (RRM 1), whereas

the other 13 mutations identified so far occur in exon 6, in

the putative protein interaction domain. This raises the

question of whether the exon 4 mutation (D169G) is a

genuine pathogenic mutation and, if so, if it leads to disease

via a different effect on TDP-43 function than the other

mutations. D169 is a highly conserved amino acid (Kabashi

et al. 2008) and the mutation was absent in 360 ethnically

matched controls from France (Kabashi et al. 2008), as

well as in 872 nonethnically matched controls (700 British,

172 Australian) for which all exons of TDP-43 were

sequenced in the study of Sreedharan et al. (2008). The

absence of the mutation in a large number of controls and

Fig. 1 TDP-43 mutations in ALS. TDP-43 is encoded by a 6-exon

gene, of which exons 2-6 are protein coding (top). The TDP-43

protein contains four known functional domains: a nuclear localiza-

tion sequence, two central RNA Recognition Motifs (RRM1 and

RRM2), and a C-terminal glycine-rich domain, predicted to mediate

protein-protein interactions. All disease mutations so far are found in

the glycine-rich domain (encoded by exon 6), with the exception of

one mutation in RRM1 (encoded by exon 4). A mutation in the

nuclear localization domain has been reported in two unaffected

controls (data compiled from Gitcho et al. 2008; Kabashi et al. 2008;

Sreedharan et al. 2008; Van Deerlin et al. 2008; Yokoseki et al.

2008)
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Table 1 Novel mutations in the gene encoding TDP-43

Numbers of individuals 
screened  Mutation Age of 

onset 
Type of 
onset 

patients controls  
Other mutations Reference 

D169G s 56 Spinal

G287S s 65 Bulbar

A315Tf 74, 47 Spinal

G348C s 30 Spinal

R361S s 55 Spinal

A382Tf 561 Spinal,
bulbar 

N390D s 53 Spinal

N390S s 64 Bulbar

SALS, 120

FALS, 80

1853, 1754 Excluded SOD1,
VAPB, ANG
mutations 

Kabashi 
et al., 2008 

G290Af 47, 51 Spinal,
bulbar 

G298Sf 41,47,
48, 52, 
60

Spinal,
bulbar 

259 patients with 
ALS, FTLD, or 
both (see paper 
for details) 

11274
Excluded SOD1,
GRN mutations. 

 

Van Deerlin 
et al., 2008 

G294A s 65
Spinal

SALS, 172 

Q331K s 72 Spinal SALS, 200

M337V f 473 Spinal,
bulbar FALS, 154 

8723

3905

Excluded SOD1,
VAPB, ANG,
DCTN1, 
CHMP2B
mutations 

Sreedharan 
et al., 2008 

A315Tf

48, 64, 
72, 83 

Spinal FALS, 8 families 
FTLD-MND, 5 
families
FTLD-U, 25 
families

15054

Excluded SOD1
mutations 

Gitcho  
et al., 2008 

Q343R f

52, 62, 
75

Bulbar FALS, 16 
families
SALS, 112 
FTLD2 , 4 

2676

Excluded SOD1
mutations

Yokoseki  
et al., 2008 

SALS = sporadic amyotrophic lateral sclerosis; FALS = familial amyotrophic lateral sclerosis; MND = motor neuron disease; GRN = pro-

granulin; SOD1 = Cu/Zn superoxide dismutase 1; MAPT = microtubule-associated protein tau; CHMP2B = chromatin modifying protein 2B;

VAPB = synaptobrevin-associated membrane protein B; ANG = angiogenin; DCTN1 = dynactin.

Each mutation is absent in the control group. Fourteen missense mutations lie in the glycine-rich domain of the protein encoded by exon 6 of

TARDBP and one mutation lies in the first RNA binding domain (D169G)
1 mean age of onset, 2FTLD and related disorders, see text for details, 3all exons sequenced, 4only the specific variants were analyzed, full

sequencing was not performed, 5only exon 6 sequenced, 6method of detection not described, fmutation found in familial ALS, or sindividuals

with no known family history of ALS
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the evolutionary conservation of the amino acid argue for a

pathogenic role; however, absence in a larger number of

ethnically matched controls and functional data or the

identification of further mutations in RRM 1 will be

required to fully resolve this issue. If D169G is pathogenic,

then it suggests that mutations in the C-terminal domain,

and the RRM1 domain, which has been shown to be

essential for the RNA-binding ability of TDP-43 (Buratti

and Baralle. 2001), affect the function of TDP-43 in a

similar way, such as a general loss of function, or that there

are different ways to disrupt TDP-43 function and still lead

to disease.

Rare single-gene defects, protein aggregates, and

neurodegeneration—sounds familiar

The identification of the major protein in neurodegenera-

tive disease inclusion bodies, followed by finding rare

mutations in the gene encoding this protein, is a powerful

route to understanding pathogenesis and is turning into a

surprisingly common approach in neurodegenerative dis-

eases. It is exemplified by the classic example of finding

mutations in the amyloid precursor protein (APP) gene that

encodes the Abeta peptide deposited in the plaques of

Alzheimer disease; it revolutionized our understanding of

AD (Hardy and Selkoe 2002). Similar rare dominant sin-

gle-gene mutations have also been found in the proteins

that aggregate in Parkinson disease, prion diseases, and

tauopathies, for example, also giving us great insight into

the pathogenesis of these disorders. The articles that

reported on TDP-43 mutations in ALS have shifted the

focus of attention on this protein from being deposited as a

by-product of disease processes to actually being a causa-

tive agent that triggers the processes resulting in neuronal

death. From this point investigations will proceed using

transgenic and knockout mice and a variety of different

cellular systems to understand the link between mutation

and disease.

Many questions need to be addressed, such as does

TDP-43 take on a toxic gain of function when mutated in

ALS, as happens with SOD1 mutations in ALS? Will TDP-

43 mutations be found in cases of FTLD-U, and if not, why

not? How important is timing? Does having a germline

TDP-43 mutation give rise to ALS which might develop

into FTLD-U if individuals lived long enough? Another

question is: What separates TDP-43 ALS from SOD1

ALS? These two diseases are very similar at a clinical

level, but clearly different pathways are affected for at least

some of the pathogenesis. We assume that there are many

parallel cellular pathways, which, if disrupted can lead to

the same outcome. TDP-43 ALS and SOD1 ALS may

allow the investigation of this phenomenon.

The new mutations found in TDP-43 are a breakthrough

for ALS and FTLD-U research and we are looking forward

to seeing what new discoveries they herald to help us treat

and ultimately cure these terrible neurodegenerative

diseases.
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