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Abstract

The aim of this study was to determine whether the TAR DNA-binding protein of 43kDa 

(TDP-43) independently has any effect on the clinical and neuroimaging features typically 

ascribed to Alzheimer’s disease (AD) pathology, and whether TDP-43 pathology could help shed 

light on the phenomenon of resilient cognition in AD. Three-hundred forty-two subjects 

pathologically diagnosed with AD were screened for the presence, burden and distribution of 

TDP-43. All had been classified as cognitively impaired or normal, prior to death. Atlas-based 

parcellation and voxel-based morphometry were used to assess regional atrophy on MRI. 

Regression models controlling for age at death, apolipoprotein ε4 and other AD-related 

pathologies were utilized to explore associations between TDP-43 and cognition or brain atrophy, 

stratified by Braak stage. Additionally, we determined whether the effects of TDP-43 were 

mediated by hippocampal sclerosis. One-hundred ninety-five (57%) cases were TDP-positive. 

After accounting for age, apolipoprotein ε4, and other pathologies, TDP-43 had a strong effect on 

cognition, memory loss, and medial temporal atrophy in AD. These effects were not mediated by 

hippocampal sclerosis. TDP-positive subjects were 10× more likely to be cognitively impaired at 
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death compared to TDP-negative subjects. Greater cognitive impairment and medial temporal 

atrophy were associated with greater TDP-43 burden and more extensive TDP-43 distribution. 

TDP-43 is an important factor in the manifestation of the clinico-imaging features of AD. TDP-43 

also appears to be able to overpower what has been termed resilient brain aging. TDP-43 therefore 

should be considered a potential therapeutic target for the treatment of AD.
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INTRODUCTION

Since the time of Alzheimer himself [2], two proteins, beta-amyloid (Aβ) deposited in senile 

plaques, and tau deposited in neurofibrillary tangles, have become tantamount to 

Alzheimer’s disease (AD) [9]. Neurofibrillary tangles progress throughout the brain in a 

stereotypic pattern defined by the Braak staging scheme [9]. This staging scheme correlates 

with cognitive impairment and brain atrophy in AD [18,20,44]. However, a significant 

proportion of patients with AD pathology remain clinically normal up to the time of death 

despite the presence of both neurofibrillary tangles and senile plaques [15]. Little is known 

about this phenomenon and whether other proteins may also be playing a role.

A third protein, the TAR DNA binding protein of 43kDa (TDP-43), has however recently 

been found to be present in the brains of subjects with pathologically diagnosed AD 

[3,4,8,14,24,26,43]. TDP-43 is an RNA-binding protein that functions in exon skipping and 

is identified in an abnormal phosphorylated state in cellular inclusions [11]. TDP-43 is 

associated with neurodegeneration and cognitive impairment [34] yet it is unknown whether 

TDP-43 plays any role in what has been considered “the AD neurodegenerative process” or 

whether TDP-43 could help explain why some patients remain clinically normal, while 

others do not, despite both having similar degrees of AD pathology.

The primary aim of this study was to determine whether TDP-43 is independently associated 

with cognitive impairment and brain atrophy in AD, and hence an important contributor to 

the AD phenotype. A secondary aim was to determine whether cognitive impairment and 

atrophy would correlate with TDP-43 burden or the distribution of TDP-43 (number of brain 

regions showing TDP-43 immunoreactivity).

MATERIALS AND METHODS

Study design and participants

All cases were identified from the Mayo Clinic neuropathological database, Rochester, MN 

and fulfilled the following inclusion criteria: (1) intermediate-high probability AD diagnosis 

according to the National Institute on Aging and the Reagan Institute criteria (NIA-Reagan) 

[47], (2) Braak neurofibrillary tangle stage IV–VI [9], and (3) available formalin fixed 

paraffin blocks of brain tissue regions. Three-hundred and forty-six cases were identified; 

four were excluded for not having available paraffin blocks, resulting in 342 cases being 
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included in this study. All subjects were prospectively recruited and followed in the 

Alzheimer’s Disease Research Center or Patient Registry between 1992 and 2010.

All subjects had undergone a clinical evaluation by a dementia specialist, completed 

neuropsychological testing and were determined to be cognitively normal or cognitively 

impaired before death. The determination of cognitive status was based on consensus of a 

team of scientists utilizing data generated from detailed clinical and neuropsychological 

evaluations. For this study, we analyzed the Mini-Mental State Examination (MMSE) [17] 

as a measure of general cognitive impairment, Clinical Dementia Rating Scale Sum-of-

Boxes (CDR-SB) [31] as a measure of functional impairment, Boston Naming Test (BNT) 

[27] as a measure of confrontational naming, memory subscale of the Dementia Rating 

Scale (mDRS) [29] as a measure of loss of episodic memory, brief questionnaire version of 

the Neuropsychiatric Inventory (NPI-Q) [28] as a measure of behavioral impairment, and 

cognitive status, at the final evaluation before death. Apolipoprotein E (APOE) genotyping 

was performed, as previously described[13,23].

Neuropathological examinations were performed according to recommendations of the 

Consortium to Establish a Registry for AD (CERAD)[30]. Every specimen was assigned a 

Braak stage[9] using modified Bielschowsky silver stain, on the basis of the earliest 

appearance of neurofibrillary tangles. Lewy bodies and infarcts were documented, and Aβ 

burden measured using CERAD recommendations [30]. Hippocampal sclerosis (HpScl) was 

diagnosed if neuronal loss in the subiculum and CA1 regions of the hippocampus was out of 

proportion to the burden of neurofibrillary tangles [16].

This study was approved by the Mayo Clinic IRB. All patients or their proxies provided 

written informed consent before participating in any research activity.

Pathological analysis

Amygdala blocks were sectioned and immunostained for TDP-43 (polyclonal antibody 

MC2085 that recognizes a peptide sequence in the 25-kDa C-terminal fragment[48]) with a 

DAKO-Autostainer (DAKO-Cytomaton, Carpinteria, California) and 3, 3’-

diaminobenzidine as the chromogen. Sections were lightly counterstained with 

Hematoxylin. Amygdala sections were screened (by DWD), to assess for the presence of 

TDP-43 immunoreactive neuronal cytoplasmic inclusions, dystrophic neurites, or neuronal 

intranuclear inclusions (Figure 1). We screened the amygdala as the amygdala has been 

shown to be the first region affected in AD by TDP-43 pathology[19]. Any AD case not 

showing TDP-43 immunoreactivity in the amygdala was considered TDP-negative (Figure 

2a), while any AD case showing any amount of TDP-43 immunoreactivity in the amygdala 

was considered TDP-positive (Figure 2b–d). Hence, amygdaloid positivity was all that was 

necessary to call an individual AD case TDP-43 positive. For TDP-positive cases, we 

sectioned additional paraffin blocks of the middle frontal, superior temporal, and inferior 

parietal cortices, nucleus basalis, hippocampus, midbrain and medulla using the same 

protocol as described above for the amygdala. The following 14 distinct brain regions per 

case were reviewed simultaneously with a multi-headed microscope (by DWD and KAJ) for 

TDP-43 immunoreactivity: amygdala, entorhinal cortex, subiculum, hippocampal dentate 

fascia, occipitotemporal cortex, inferior temporal cortex, basal forebrain, insula, ventral 
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striatum, frontal lobe, basal ganglia, substantia nigra, midbrain tegmentum, and inferior 

olive. A region was considered positive if TDP-43 immunoreactive lesions were observed at 

20× magnification screening the entire region, with subsequent confirmation at 40× 

magnification. The number of cases with TDP-43 immunoreactivity for each of the 14 

regions is shown in Figure 3.

To ensure antibody sensitivity, we additionally screened amygdala sections from 10% of the 

TDP-negative cases using a different antibody against phosphorylated TDP-43 peptide 

(1:5,000 rabbit polyclonal anti-human phosphoserine 409/410). None of the cases that had 

initially screened negative with the polyclonal antibody MC2085 showed TDP-43 

immunoreactivity with the phosphorylated antibody, ensuring excellent sensitivity of 

MC2085.

TDP-43 burden was assessed in the hippocampal dentate fascia using the Aperio slide 

scanner and a customized color deconvolution algorithm enabling the detection of any 

abnormal TDP-43 (Figure 4). The dentate fascia was selected for the burden analysis since 

the dentate fascia has been demonstrated to be most strongly associated with memory loss 

[36]. TDP-43 immunostained sections of the posterior hippocampus at the level of the lateral 

geniculate were scanned at ultra-resolution on the ScanScope XT (Aperio Technologies, 

Vista, CA). This instrument permits scanning of the entire slide from which large areas of 

interest can be annotated using ImageScope version 11.2 (Aperio Technologies, Vista, CA). 

The method greatly increases the sampling frame compared to some other image analysis 

systems that are limited to the field of view of the microscope or require image tiling [38]. 

The entirety of the dentate fascia was assessed to quantitatively determine TDP-43 

immunohistochemical burden. To operationalize annotation of the dentate fascia, the ruler 

tool was used to measure 125µm across the granule cell layer to molecular layer to avoid 

quantification variability resulting from tissue sectioning differences. Any dust or dirt 

particles or tissue folds were excluded using the negative trace tool. Annotated layers were 

analyzed in Spectrum version 11.2 (Aperio Technologies, Vista, CA) using a custom-

designed color deconvolution algorithm, as previously described [22]. After applying the 

color deconvolution algorithm, each high resolution image was reviewed independently by 

two investigators (MM & AL) in order to ensure that only abnormal TDP-43 was being 

measured. Cases where the algorithm was unable to separate abnormal TDP-43 from normal 

nuclear TDP-43, were removed from further analysis of TDP-43 burden (n=20). TDP-43 

burden was then expressed as the area of immunoreactive pixels to the total area of the 

annotated region.

MRI analysis

Two-hundred and forty-eight subjects had an antemortem volumetric MRI performed with a 

standardized protocol [21]. The MRI closest to death was selected for each subject to 

correspond to the clinical data. Two-hundred and twenty subjects were scanned at 1.5T. A 

reference group for volumetric analysis included 46 healthy controls that had antemortem 

MRI and normal pathological diagnosis (Braak 0-III, NIA-Reagan no/low) and were TDP-

negative (mean age=82±6, 46% female). Gradient non-linearity and intensity non-

uniformity corrections were applied.
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Grey matter volumes of specific regions-of-interest were calculated using atlas-based 

parcellation in SPM5 and the automated anatomic labeling atlas[42], as previously described 

[45]. Volumes were calculated for medial temporal regions (hippocampus, amygdala, and 

entorhinal cortex) and association cortices (fusiform gyrus, medial and lateral frontal and 

parietal lobes, and lateral temporal lobe). Left and right volumes were averaged. Regional 

volumes were scaled by total intracranial volume [46] to correct for head size. Grey matter 

atrophy was also assessed at the voxel-level using voxel-based morphometry (VBM)[6]. 

Standard preprocessing steps were employed, including normalization to a customized 

template, unified segmentation [7], modulation and smoothing at 8mm full-width at half-

maximum. A VBM “full-factorial” (i.e. ANCOVA) model was used to compare TDP-

negative and TDP-positive subjects to controls (p<0.05 using family wise error correction), 

and to each other (uncorrected p<0.001). Comparisons were performed separately at Braak 

IV, V and VI. Age, gender and total intracranial volume were included as covariates in all 

analyses.

Statistical analysis

We used linear, binary logistic, and ordinal logistic regression models to estimate 

associations between outcome variables and TDP-43. In our first modeling analysis we 

treated TDP-43 status as a binary predictor.

In order to better understand the relationship between TDP-43 and cognition and brain 

atrophy while taking into account the Braak neurofibrillary tangle stage, we stratified by 

Braak stage and tested for additive associations and interactions between TDP-43 and Braak 

using linear or logistic regression adjusted for age at death. This analysis allowed us to 

investigate whether the association between TDP-43 and cognition/brain atrophy differed 

across Braak stage IV, V and VI. We extended this analysis in two ways to account for any 

potential genetic or other pathological confounders: (1) to account for confounding effects 

due to APOE, infarctions, Lewy bodies, neuritic plaques (CERAD) we included these 

variables as covariates in our models. (2) In order to address the issue of whether the 

TDP-43 effects were wholly or partly mediated by HpScl we added this factor to the models 

and evaluated the resulting HpScl-adjusted TDP associations. We encountered the problem 

of logistic regression separation in models involving the cognitive impairment outcome. 

This was because all 104 TDP-positive subjects at Braak stage VI were cognitively impaired 

and thus in this subgroup there were no “non-events”. To address this problem we used 

weakly informative variance stabilizing data augmentation priors for the coefficient 

corresponding to the Braak VI by TDP-43 interaction [40]. This method is very closely 

related to the popular approach of adding one success and one failure when estimating a 

proportion [1]. Our priors specified that on the odds ratio scale 95% of the prior probability 

was in the range 1/16 to 16 which serves to conservatively shrink estimates towards the null.

For our secondary analyses we modeled the outcome variables as a function of TDP-43 

burden and as a function of the number of brain regions positive for TDP-43 (i.e. 

distribution). These analyses were limited only to subjects who were TDP-positive. 

Quantitative TDP-43 burden was expressed as a percentage of pixels showing 

immunoreactivity. We rank transformed the numeric value because of extreme right 
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skewness (Figure 3). So that a 1-unit increase was more interpretable, we divided the rank-

transformed value by 40 to obtain a uniformly distributed predictor with a max (and range) 

of ~4. In these analyses we assessed three models that included: age at death alone; age at 

death and Braak stage given our interest in Braak stage; and age at death, APOE, Braak 

stage, CERAD, Lewy bodies, infarcts and HpScl as adjustment covariates to remove the 

potential confounding effect of all these variables.

RESULTS

One hundred-ninety five cases (57%) were TDP-positive. After accounting for age at death, 

the TDP-positive subjects had a higher proportion of APOE ε4 carriers, and worse 

performance on MMSE, CDR-SB, BNT and mDRS than the TDP-negative subjects (Table 

1). The TDP-positive group had a lower proportion of subjects who were cognitively normal 

at death (2% vs 19%). The TDP-positive group had higher Braak stage, and higher 

proportions of Lewy bodies and HpScl. Volumes of all medial temporal structures and 

fusiform gyrus were smaller in the TDP-positive group compared to the TDP-negative 

group, with no differences observed in other association cortices.

Group differences adjusting for potential confounders

After accounting for age at death, CERAD, APOE ε4, infarcts, Braak stage, and Lewy 

bodies, TDP-43 had an additive effect on cognitive impairment, MMSE, mDRS, CDR-SB 

and BNT (Figure 5). When we further account for HpScl in our mediation analysis, the 

additive effect of TDP-43 on cognitive impairment and BNT remained significant with 

similar trends persisting for MMSE, mDRS and CDR-SB. (Figure 5). An interaction, in 

addition to an additive effect beyond Braak, was observed for MMSE and CDR-SB. 

Specifically, a greater difference was observed between TDP-positive and TDP-negative 

groups at Braak IV and V. For example, a greater than 4-point difference on MMSE was 

observed at Braak stages IV and V between TDP-positive and TDP-negative subjects, while 

less than a 2-point difference was observed for MMSE at Braak stage VI.

Similar to the clinical outcomes, after accounting for age at death, CERAD, APOE ε4, 

infarcts, Braak stage, and Lewy bodies, TDP-43 had an additive effect on hippocampal, 

amygdala and entorhinal cortex volumes (Figure 6). When we further account for HpScl in 

our mediation analysis, the additive effect of TDP-43 on hippocampal volume remained 

significant with similar trends persisting for the amygdala and entorhinal cortex volumes 

(Figure 6). No added interactions were observed for these medial temporal volumes. 

Conversely, interactions, but no additive effects of TDP-43 were observed on the association 

cortex volumes.

On VBM, the TDP-positive AD subjects showed progressive worsening of volume loss with 

increasing Braak, when compared to the 46 healthy control subjects (Figure 7). The TDP-

negative AD subjects showed no volume loss at Braak IV and only a tiny area of focal loss 

at Braak V, when compared to the healthy controls. When the TDP-positive and TDP-

negative subjects were directly compared, the TDP-positive subjects showed greater medial 

temporal loss than the TDP-negative subjects at all Braak stages. Conversely, the TDP-
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negative subjects showed no regions of greater loss than the TDP-positive subjects, except at 

Braak VI, where more parieto-occipital loss was observed.

TDP-43 burden and distribution

A strong correlation was observed between TDP-43 burden and distribution (Spearman 

correlation=0.74, p<0.001). After accounting for age at death, CERAD, APOE ε4, infarcts, 

Braak stage, Lewy bodies and HpScl, TDP-43 burden and TDP-43 distribution was 

associated with many clinical and neuroimaging variables (Table 2 and Table 3). Fort all 

these associations, clinical performance worsened and volume loss increased with higher 

TDP-43 burden in the dentate gyrus, and as more regions were affected by TDP-43.

DISCUSSION

In this large clinico-imaging-pathological study, we demonstrate that TDP-43 is associated 

with the major features of AD: memory loss and medial temporal atrophy. In fact, in the 

presence of less severe AD pathology, the absence of TDP-43 was strongly associated with 

normal cognition. Consequently, TDP-43 appears to play an important role in the cognitive 

and neuroimaging characteristics that have been linked to AD.

The findings from this study challenge the perception that Aβ and tau are the only important 

proteins accounting for the clinical features of AD by demonstrating that TDP-43 also has 

an effect on the core clinical and neuroimaging features considered pathognomonic for AD. 

Importantly, the effects of TDP-43 on cognition and atrophy occurred after taking into 

account AD related pathogenetic potential confounders, including Braak stage, and hence 

tau, the presence of Lewy bodies, Aβ, infarctions and APOE ε4. The effects of TDP-43 also 

persisted after taking into account HpScl. Therefore, although HpScl likely influences 

cognition and brain atrophy when present in AD [10,33,35], the effects of TDP-43 on the 

clinical and imaging variables assessed in our cohort were not mediated by HpScl. This 

suggests that TDP-43 itself is an important factor. The fact that TDP-43 had an effect on 

these outcome variables at Braak IV, which represents mild AD, is evidence that TDP-43 is 

not just a feature of severe pathology. In fact, the differences between TDP-positive and 

TDP-negative groups were most striking at Braak IV and V. One explanation for this finding 

is that TDP-43 plays a more important role in the early stages of AD, but once tau 

deposition is widespread, i.e. Braak VI, the importance of TDP-43 becomes somewhat 

overshadowed. Alternatively, it is also possible that the effects of TDP-43 at Braak VI are 

just as strong as they are at Braak IV and V, but are more difficult to detect since the range 

of cognitive values at Braak VI are likely to be truncated given that most subjects are 

severely affected at this stage.

One of the most important findings of this study was that the absence of TDP-43 was 

strongly associated with normal cognition, despite subjects with and without TDP-43 having 

similar degrees of AD pathology. In our sample, approximately one third of the TDP-

negative Braak IV and V subjects were cognitively normal, compared to only 4% of the 

TDP-positive Braak IV and V subjects. Given that the TDP-positive Braak IV and V groups 

showed greater medial temporal atrophy than the TDP-negative Braak IV and V subjects, it 

appears that the presence of TDP-43 creates a synergistic effect with the AD pathology. A 
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similar effect has also been previously reported to occur with vascular pathology [39] and 

with argyrophilic grains disease [25,41]. It therefore appears that the resilience of some 

subjects to AD pathology can be overpowered by the presence of TDP-43. These findings 

help to further shed light on those subjects that remain cognitively unimpaired despite 

having AD pathology [5,15,37]. Previous studies have suggested that cognitively resilient 

subjects may have lower burdens of Aβ fibrillar plaques, oligomeric Aβ deposits or 

hyperphosphorylated tau in synapses [37], or preserved densities of presynaptic terminals 

and dentritic spines [5]; although none of these studies assessed TDP-43. We now know that 

such subjects are also less likely to have TDP-43.

An association was also identified between APOE ε4, a major risk factor for AD [12], and 

TDP-43. The proportion of subjects with the APOE ε4 allele was higher in the presence of 

TDP-43 across all Braak stages. At Braak VI, for example, approximately three-quarters of 

the TDP-positive subjects had the APOE ε4 allele; a higher proportion than typically 

observed in AD [32]. It is therefore probable that APOE ε4 increases the risk of TDP-43 

pathology; an association not previously recognized. However, APOE ε4, like Lewy body 

disease, Aβ deposition, infarctions and HpScl, was not a confounder of the observed 

associations with TDP-43.

An intriguing observation was the atypical characteristics of the Braak VI TDP-negative 

group. This group showed widespread atrophy, yet the atrophy pattern was unusual when 

compared to the Braak VI TDP-positive group, with more atrophy in cortical association 

regions and less atrophy in medial temporal regions. This group of subjects was 

approximately 10 years younger than all other groups and is reminiscent of the hippocampal 

sparing variant of AD, which typically is associated with younger age, relatively greater 

cortical atrophy, an atypical distribution of neurofibrillary tangles [32,46], and absence of 

TDP-43 [8]. It is unlikely that TDP-43 is protective against involvement of the cortex and 

more likely that the greater cortical atrophy in the TDP-negative subjects is being driven by 

a greater burden of cortical tau in these younger subjects [32,46]. Conversely, the greater 

hippocampal atrophy observed in the older TDP-positive subjects is likely associated with 

the presence of TDP-43. It therefore appears that tau and TDP-43 may have distinct effects 

in AD as shown in these models from our cohort that presumably generalizes to the general 

population (Figure 8).

The co-existence of the hallmark AD pathologies of Aβ and tau, along with TDP-43, could 

be interpreted in two ways. First, TDP-43 is simply a pathological feature of AD. Arguments 

supporting this hypothesis are (1) the fact that the TDP-negative subjects were more likely 

to be cognitively normal and show atypical patterns of atrophy, and (2) that important 

factors that are associated with Braak stage, and hence tau pathology, were also associated 

with TDP-43, including APOE ε4, memory loss and medial temporal atrophy. One strong 

argument against this interpretation however is the fact that there were many AD subjects 

without TDP-43 that were cognitively impaired. The second more likely possibility is that 

the presence of TDP-43 represents a secondary or independent pathology that shares 

overlapping features with AD by targeting the medial temporal lobe. If this latter 

interpretation is correct then TDP-43 may have obscured our view of the true AD clinico-

imaging phenotype, given that such a high proportion of AD cases have TDP-43.
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We acknowledge that our outcome measures were not all independent. However, since our 

aim was not to determine which outcome variable is most affected by TDP-43, and the fact 

that all the variables we assessed for the study are strongly associated with AD, our 

approach was very reasonable. We also note that our data for TDP-43 deposition in the 

dentate gyrus was highly right skewed. However, we addressed this potential problem by 

rank transforming the burden data prior to our modelling analyses. We did not address the 

issue of the spatial distribution of TDP-43 in AD given that we have previously done so and 

describe five stages for TDP-43 deposition in AD for this exact cohort [26]. In fact, all five 

stages were roughly equally represented. Hence our data was not biased by the 

overrepresentation of early or late stages.

In this study we demonstrate that TDP-43 is an important player in the AD field, particularly 

during the early phases of neurodegeneration. Our findings suggest that in order to be 

cognitively resilient TDP-43 must be absent. That is, the synergistic effect of having 

TDP-43 results in cognitive impairment. TDP-43 therefore should be considered a potential 

therapeutic target for the future treatment of AD.
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Fig. 1. 
Pathological assessment of TDP-43 immunoreactive inclusions. TDP-43 immunoreactive 

inclusions identified in the subjects with Alzheimer disease include neuronal cytoplasmic 

inclusions in the dentate fascia of the hippocampus that were variable in size with some 

being asterisks-like and small (a), while others were larger, round, and more Pick-body like 

(b). Dystrophic neurites in the neocortices were predominantly thin and thread-like (c) 

although in some instances there were large think dystrophic neurites (d). In the CA1 region 

of the hippocampus, particularly in the cases with widespread TDP-43 immunoreactivity, 
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there were fine neurites (e). Many of these cases with widespread TDP-43 immunoreactivity 

also had neuronal intranuclear inclusions that were either cat-eye like in appearance (f) or 

were more rounded (g). TDP-43 immunoreactivity, high power mag × 40. Dentate fascia of 

the hippocampus (a–b), frontotemporal neocortices (c–d), CA1 region of the hippocampus 

(e), entorhinal cortex (f) and occipitotemporal cortex (g).
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Fig. 2. 
The range of TDP-43 immunoreactivity observed in the amygdala. Cases without TDP-43 

immunoreactivity in the amygdala (a) were classified as TDP-negative while cases showing 

any amount of TDP-43 immunoreactivity (b–d) were classified as TDP-positive. Amygdala 

TDP-43 immunoreactivity varied and included cases with scant (b), moderate (c) and severe 

(c) immunoreactivity. TDP-43 immunoreactivity at mag × 20.

Josephs et al. Page 14

Acta Neuropathol. Author manuscript; available in PMC 2015 June 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 3. 
Histograms showing the prevalence of TDP-43 by region (top) and quantitative TDP-43 

burden in the dentate gyrus (bottom). Only TDP-positive subjects are shown for both 

histograms. Therefore, as would be expected based on our inclusion criteria, 100% of the 

subjects had amygdala involvement (top). Involvement in other 13 regions was variable with 

the frontal lobe and basal ganglia being involved in the least number of subjects. In the 

bottom histogram, TDP-43 burden was highly skewed to the right. As reported, there was a 
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strong correlation between TDP-43 burden in the dentate gyrus and number of regions 

affected.
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Fig. 4. 
TDP-43 burden assessment. TDP-43 immunoreactive inclusions in the dentate fascia were 

assessed quantitatively in order to determine TDP-43 burden. High resolution images 

created with the Aperio slide scanner were utilized to detect abnormal TDP-43 using a 

custom-designed color deconvolution algorithm. Top panel shows TDP-43 immunoreactive 

inclusions while bottom panel shows the results of the color deconvolution algorithm in 

which abnormal TDP-43 is depicted in red.
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Fig. 5. 
Estimates and 95% CIs for the mean difference for each term in the primary model along 

with the estimates and 95% CIs for the hippocampal sclerosis and TDP terms from the 

mediation model. P values for the primary models summarize a test of an additive effect of 

TDP after accounting for Braak stage, age, CERAD, APOE ε4, infarctions, and Lewy bodies 

(Padd) and a test of an interaction between TDP and Braak stage versus the additive model 

(Pint). The P values for the mediation model additionally account for HpScl. The cognitive 

impairment outcome was modeled with logistic regression and the estimates were 

transformed to the percentage scale with age set to the mean (85). All other outcomes were 

modeled using linear regression.
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Fig. 6. 
Estimates and 95% CIs for the mean volume difference for each term in the primary model 

along with the estimates and 95% CIs for the hippocampal sclerosis and TDP terms from the 

mediation model. The P values for the primary models summarize the test of an additive 

effect of TDP after accounting for Braak stage, age, CERAD, APOE ε4, infarctions, and 

Lewy bodies (Padd) and a test of an interaction between TDP and Braak stage versus the 

additive model (Pint). The P values for the mediation model additionally account for HpScl. 

All outcomes were modeled using linear regression.
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Fig. 7. 
Regional patterns of grey matter volume loss in TDP-negative and TDP-positive AD 

subjects within Braak stages IV, V and VI. The TDP-negative and TDP-positive subjects are 

compared to pathologically normal controls (corrected using family-wise error at p<0.05) 

and compared to each other (uncorrected p<0.001). Results are shown on three dimensional 

renderings of the brain.
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Fig. 8. 
Summaries illustrating the relationship between normal cognition, MMSE and hippocampal 

volume loss, and Braak stage, and TDP-43 status in AD. In the absence of TDP-43, there is 

a progressively higher proportion of subjects with cognitive impairment across Braak stages 

with the steepest changes in proportion occurring between Braak stages V and VI. On the 

contrary TDP-43 is consistently associated with a high proportion of impaired subjects 

regardless of Braak stage. Similar trends are seen with MMSE and hippocampal volume. 

While we illustrate this phenomenon using cognition, MMSE and hippocampus, similar 

trends were observed for other clinical and imaging outcome variables.
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TABLE 1

Characteristics of TDP-negative and TDP-positive subjects

Characteristic TDP Negative
(N=147)

TDP Positive
(N=195)

Age-
adjusted
P Value†

Demographics

Female sex — no. (%) 87 (59%) 125 (64%) 0.66

Age at disease onset — yr‡ 71 ± 12 77 ± 9 0.06

Age clinical evaluation — yr 80 ± 11 85 ± 8 0.45

Age death — yr 83 ± 12 87 ± 8 0.47

Duration (onset to MRI) — yr‡ 5.6 ± 3.2 6.0 ± 3.5 0.09

Education — yr 14 ± 3 14 ± 3 0.48

APOE ε4 carrier — no. (%) 67 (46%) 117 (62%) <0.001

Clinical features

Cognitively impaired — no. (%) 119 (81%) 189 (98%) <0.001

Mini Mental State Exam 17 ± 8 15 ± 7 <0.001

Clinical Dementia Rating Scale 9 ± 7 12 ± 6 <0.001

Boston Naming Test 40 ± 13 32 ± 14 <0.001

Dementia Rating Scale – Memory 13 ± 6 11 ± 5 <0.001

Neuropsychiatric Inventory – Q§ 6 ± 5 5 ± 4 0.64

Braak stage‖

Proportion (%) IV / V / VI 26 / 34 / 40% 17 / 29 / 54% <0.001

Female sex (%) IV / V / VI 71 / 56 / 54% 56 / 66 / 66% 0.09

Age disease onset — yr

  IV 80 ± 7 81 ± 9 0.28

  V 77 ± 9 80 ± 10 0.54

  VI 64 ± 10 74 ± 8 0.63

Duration (onset to MRI) — yr

  IV 3 ± 3 5 ± 3 0.15

  V 5 ± 3 6 ± 4 0.37

  VI 6 ± 3 6 ± 3 0.79

APOE ε4 carrier (%) IV / V / VI 26 / 44 / 61% 38 / 55 / 74% <0.001

Hippocampal sclerosis (%) IV / V / VI 3 / 10 / 3% 29 / 43 / 42% <0.001

Other pathological features

Frequent neuritic plaques by CERAD criteria — no. (%) 83 (56%) 123 (63%) 0.53

Lewy bodies — no. (%) 35 (24%) 66 (34%) 0.01

Hippocampal sclerosis — no. (%) 8 (5%) 78 (40%) <0.001

Infarctions — no. (%) 31 (21%) 54 (28%) 0.53

Brain volume as a percentage of total intracranial volume

  Hippocampus 0.43 ± 0.06 0.38 ± 0.07 <0.001
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Characteristic TDP Negative
(N=147)

TDP Positive
(N=195)

Age-
adjusted
P Value†

  Entorhinal cortex 0.18 ± 0.03 0.16 ± 0.03 <0.001

  Amygdala 0.124 ± 0.014 0.116 ± 0.016 <0.001

  Fusiform 1.10 ± 0.14 1.06 ± 0.13 0.02

  Lateral temporal 4.08 ± 0.61 4.03 ± 0.54 0.71

  Medial frontal 1.81 ± 0.24 1.82 ± 0.25 0.85

  Lateral frontal 3.57 ± 0.57 3.64 ± 0.56 0.63

  Medial parietal 1.22 ± 0.18 1.24 ± 0.16 0.70

  Lateral parietal 2.09 ± 0.39 2.15 ± 0.36 0.71

†
Based on Wald test from age-adjusted models with TDP group as the predictor. Linear regression models were used for numeric responses, binary 

logistic regression was used for binary responses, and ordinal logistic regression was used for Braak.

‡
Age at onset pertains only to subjects who were cognitively impaired.

§
P value is based on modeling the response on the square root scale.

‖
Ordinal regression was used to model Braak stage by TDP status. For estimates within Braak stage, we used binary logistic (sex, APOE ε4, and 

hippocampal sclerosis) or linear regression (age of disease onset or disease duration).

Abbreviations: APOE, apolipoprotein; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease
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