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ABSTRACT

The volume of biological, chemical and functional
data deposited in the public domain is growing
rapidly, thanks to next generation sequencing and
highly-automated screening technologies. These
datasets represent invaluable resources for drug dis-
covery, particularly for less studied neglected dis-
ease pathogens. To leverage these datasets, smart
and intensive data integration is required to guide
computational inferences across diverse organisms.
The TDR Targets chemogenomics resource inte-
grates genomic data from human pathogens and
model organisms along with information on bioac-
tive compounds and their annotated activities. This
report highlights the latest updates on the available
data and functionality in TDR Targets 6. Based on
chemogenomic network models providing links be-
tween inhibitors and targets, the database now in-
corporates network-driven target prioritizations, and
novel visualizations of network subgraphs display-
ing chemical- and target-similarity neighborhoods
along with associated target-compound bioactivity
links. Available data can be browsed and queried
through a new user interface, that allow users to per-
form prioritizations of protein targets and chemical
inhibitors. As such, TDR Targets now facilitates the
investigation of drug repurposing against pathogen

targets, which can potentially help in identifying can-
didate targets for bioactive compounds with previ-
ously unknown targets. TDR Targets is available at
https://tdrtargets.org.

INTRODUCTION

Neglected tropical diseases (NTDs) disproportionately af-
fect∼1.5 billion people in low income and developing coun-
tries, where they are a leading cause for life-years lost to
disability and premature death (1). Historically, the lack of
involvement from the pharmaceutical industry, in combina-
tion with limited investment in public health research pro-
grams in affected countries, resulted in a deficiency of avail-
able drugs to effectively control a majority of these diseases
(2). Moreover, drugs currently in use to treat these diseases
are often compromised in terms of cost, difficulties in ad-
ministration, efficacy, drug resistance, or safety profiles.
Drug discovery is a time-consuming and expensive pro-

cess (3,4). For NTDs in particular, drug discovery programs
need to survive long enough through pervasive funding
shortages to make it into subsequent clinical trials (5). In
this context, a strategic approach for NTD drug discov-
ery is drug repositioning (6), which may help lower costs
by facilitating regulatory approvals in early trials for drugs
that have already undergone clinical research for other dis-
eases and/or indications and failed for reasons other than
safety (6). In addition, if the scope of drug repurposing is
broadened to include drugs and bioactive compounds from
research on non-human organisms, it can also lead to the
identification of at least new chemical tools for probing
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the function of targets and pathways in human pathogens.
Thus, by leveraging the vast amounts of data available
fromwell-funded research programs on human diseases and
model organisms, the drug discovery landscape on NTDs
gets a positive boost (7).
Computational strategies are becoming ever more essen-

tial in translational drug discovery, both in academia and in
the pharmaceutical industry. Smart, intensive integration of
the increasing volumes of data generated during all phases
of drug discovery is already enabling key challenges of the
process to be addressed (8). Since its introduction, the TDR
Targets database has been a reliable resource for neglected
diseases researchers to access chemogenomics data for drug
target prioritization and drug repurposing on neglected dis-
eases. Introduced in 2008 (9), this open access resource al-
lowed researchers to find novel protein targets and chemical
inhibitors, and prioritize them for aiding drug development
for NTD pathogens. TDR Targets makes use of publicly
available genome-wide functional datasets to allow users to
find and prioritize targets based on their knowledge of the
biology of their pathogen of interest, and nature of the dis-
ease (10,11). This is implemented by a flexible, user-based
target selection (using filtering criteria) and ranking (using
criteria-specific weighting) (12,13).
Here, we describe the upgrades to the underlying datasets

and functionality in the TDR Targets resource, accumu-
lated since its previous publication in 2012 (13). The new
TDR Targets release (v6.1, abbreviated TDR6 in this pa-
per) integrates pathogen specific genomic information with
functional data (e.g. expression, orthology-based relation-
ships, essentiality) from a selection of organisms, along
with bioactive compounds data (chemical structure, prop-
erty and bioactivity/target information); all of which can
be queried and browsed through the web application. All
queries can be saved to a personal stash by registered users
and published through theweb application tomaximize col-
laboration opportunities. Prioritized lists of targets can be
exported for further off-line analysis. Full details of all novel
features can be found in the release notes (https://tdrtargets.
org/releases). This report presents a full walkthrough of the
web application, its novel features, and examples to illus-
trate use cases.

OVERVIEW AND ORGANIZATION OF TDR TARGETS

As in previous releases of TDR Targets, TDR6 is also orga-
nized into two main sections: Targets and Compounds. The
Targets section of the database contains genome-wide data
for 20 human pathogens, and allows users to run queries
and prioritizations of protein targets based on a number of
features and data relevant to drug discovery (see Table 1).
The compounds section of the database contains informa-
tion on>2million bioactive compounds, and allows queries
based on the chemical properties of the compounds and
their annotated bioactivities (see Table 2).

NEW FEATURES IN TDR TARGETS 6

We have recently reported an integrative network model
(14) where all genome-scale datasets available in TDR Tar-
gets (protein targets), chemical information (bioactive com-
pounds) and their relations (bioactivity of compounds in

target-based assays) were linked into a multilayered graph.
In TDR6, this network model has been updated by inte-
grating new datasets (described below). This model incor-
porates links between targets and bioactive compounds de-
rived from manual curation of published bioactivity assays
(i.e. direct links between targets and chemical compounds),
as well as from computed relations (target-target links, and
compound-compound links) based on protein annotations
(Pfam domains, ortholog groups) and chemical similarity.
A key aspect of these links in the multilayer-network model
is that they enable the fast exploration and visualization
of the neighborhood around selected targets and/or bioac-
tive compounds. This allows users to explore compounds
linked to targets, inspect the chemical similarity neighbor-
hood around bioactive compounds, and visualize these data
in a user friendly and comprehensive manner (see Figure 1).
With these updates, TDR6 now gives users the follow-

ing functionalities: (i) network-driven whole-genome tar-
get prioritizations, (ii) exploration of drug repurposing; and
iii) the exploration of candidate targets for orphan com-
pounds. These use cases are possible by a number of pre-
computed network-based features such as a novel Network-
Druggability Score (NDS). By associating a quantitative
metric to targets based on the enrichment of bioactive com-
pounds on closely connected network nodes, this score fa-
cilitate classification of targets into Druggability Groups
(DGs), which are available to users in database queries.
The network model is also the basis for precomputed

Network-Driven Prioritizations (NDPs) which can be
queried by users and are also used internally by TDR6 to
select connected targets and compounds for display in the
newly developed network visualizations (see below). When
starting from a compound of interest TDR6 uses the pre-
computed prioritizations of candidate targets to aid users
in the navigation of the target space around the compound
(and vice versa when starting from a target of interest). By
providing these precomputed enrichment metrics and rank-
ings the database now facilitates the discovery of new drug–
target associations. Besides these new precomputed NDPs,
users can prioritize targets using the same functionality as
in previous TDR Targets releases.
This release also includes several data upgrades, namely

the inclusion of 22 new genomes (20 new pathogens and 2
new model organisms), and extensive updates to chemical
and bioactivity data among others. The improved and ver-
satile user interface, together with data updates renew TDR
Targets’ commitment to provide an integrated and powerful
tool for exploring genomic and chemical data in the context
of neglected tropical diseases.

USING TDR TARGETS 6

Whole-genome target prioritizations

The network model (14) is the base for the new druggabil-
ity score, which is a network-derived metric that is related
to the enrichment in bioactive compounds for a given tar-
get (NDS, ‘network druggability score’). NDSs are available
for all Tier 1 organisms, which can be queried, and used to
weight queries to filter (in or out) targets in user defined cus-
tomized prioritization pipelines. As further explained in the
network integration details, for each organism, targets were
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Table 1. Available target queries in TDR targets

Query group Pathogens for which data is available Data types available for querying

Names & Annotations All Gene identifiers and functional annotations
(EC numbers, GO terms, Pfam domains,
metabolic pathway mappings)

Protein Features All MW, isoelectric point, presence of predicted
signal peptide, trans-membrane segments and
glycosylphosphatidylinositol (GPI) anchors.

Structural Information All Availability of 3D structures in PDB;
availability of structural models in Modbase

Gene expression Plasmodium spp.; Leishmania spp.;
Trypanosoma spp.;Mycobacterium
tuberculosis; Echinococcus multilocularis;
Entamoeba histolytica; Toxoplasma gondii

Gene expression data from pathogen life cycle
stages and/or experimental conditions that are
relevant to drug discovery.

Phylogenetic information All Filter targets using simplified ‘present/absent’
in other species criteria, based on ortholog
group information. Includes model organisms
(human) and other related pathogens.

Essentiality C. elegans (model for helminths); E. coli
(model for bacteria); S. cerevisiae (model for
eukaryotic pathogens); Trypanosoma brucei;
Mycobacterium tuberculosis; Toxoplasma
gondii; Plasmodium berghei

Ortholog-based inference of essentiality of
genes in life cycle stages and/or experimental
conditions relevant to drug discovery.
Integrated from selected genome-wide gene
disruption (e.g. transposon, CRISPR/Cas) and
knockdown (e.g. RNAi) datasets in pathogens
and model organisms.

Target Validation Data Schistosoma mansoni; Leishmania major;
Trypanosoma cruzi; Trypanosoma brucei;
Mycobacterium leprae; Mycobacterium
tuberculosis; Plasmodium falciparum

Manually curated data on target validation
credentials (genetic, chemical and/or
pharmacological, observed phenotypes)

Druggability All Precedent for successful chemical modulation
of target activity or function. Summarized into
a druggability score calculated from the
network model (see main text)

Assayability All Available biochemical assays for protein targets
(mapping based on EC numbers)

Bibliographic references All Filter targets based on available publications

Table 2. Available compound queries in TDR targets

Query group Data types available for querying

Text-based searches
Names & Annotations Compound names or synonyms; Database identifiers (e.g. ChEMBL, PubChem); InCHI and

InCHI key identifiers
Chemical Properties Molecular weight; LogP octanol/water partition coefficient; number of H donors and acceptors,

number of flexible bonds and number of matching Ro5 (Lipinski)
Compound formula Search by compounds containing a specific number (e.g. 3) of defined atoms (e.g. Cl, F, Br, N)
Bioactivity Text search on assay descriptions; numerical search for values in assays (e.g. IC50 < 5 �M)
Orphan compounds Search for compounds that have bioactivity reports in whole-organism or whole-cell assays but lack

target and mechanism information (orphans inhibitor/drugs)
Compounds with targets Find compounds that have target information and mechanism based assays
Structure-based searches
Compound similarity Draw/paste compound or fragment 2D structure and search for similar compounds. Search is

based on matching of chemical fingerprints
Compound substructure Draw/paste compound or fragment 2D structure and search for compounds in the database that

contain the query fragment.

classified into five Druggability Groups (DG), from lowest
(DG1) to highest scoring (DG5), according to their perfor-
mance in the network prioritizations.
As in previous versions of TDR Targets, users can com-

bine different datasets simply by running individual queries
on different data types and combining them at the history
page (9,10,12,13). This is useful when, for example, users
would like to include additional data types to druggability-
based prioritizations, such as those relying on gene expres-
sion in relevant life cycle stages, or those providing informa-
tion on fitness/lethality of targets (essentiality).

As an example, we present here a prioritization exam-
ple using Toxoplasma gondii as the pathogen of interest. T.
gondii is an apicomplexan parasite often used as a model to
investigate the biology underlying several human and ani-
mal diseases (15). The search strategy is summarized in Fig-
ure 2. The query was started by searching for all T. gondii
targets, and filtering out those targets with homologs in
humans (to select only parasite-specific targets). Next, we
selected candidate essential genes based on fitness profiles
during infection of human fibroblasts (16); and also selected
genes highly expressed in tachyzoites (replicative stage of T.
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Figure 1. Schematic network model in TDR6 and sub-graph visualizations: Compound or target pages now display a subgraph visualization containing
objects in the network vicinity of the selected entity. These graphs are built from a three-layer complex network graph. A schematic of this graph is presented
at the top. Both target and compound subgraphs are always arranged as follows: Compound nodes (green) are connected to targets (orange = pathogens;
gray = non-pathogens) through bioactivity edges. These links depict positive (green), neutral (gray) or negative (red) assay outcomes. Finally, targets map
to a set of functional affiliations (annotations, blue nodes). In the example, the graph shows a set of known inhibitors for a human acyltransferase (15).
These bioactivities (all positive) are drawn as green links between the compounds (green nodes) and the target (grey nodes for non pathogens, orange nodes
for pathogens). The graph highlights the repurposing opportunities for helminth acyltransferases (dashed lines, added manually for this figure), based on
shared annotations with the known druggable human target. The red node in the drug layer indicates the selected compound. Node sizes are determined by
the number of connections in the network (degree), whereas bioactivity link widths (edges) are related to the cumulative number of experimental evidence
for a given drug-target pair (number of assays).

gondii) by querying for genes in the top 80–100 percentile of
RNAseq transcript abundance (17). These selections were
combined with the network druggability rankings. For this
we considered genes in druggability groups 3, 4 or 5 (DG
≥ 3) (see Figure 2). The figure shows all queries and their
results as seen in the History page, and the operations per-
formed when combining queries (union, intersection). The
final list of ranked targets based on these criteria has been
made public and is available in the TDR Targets section of
posted lists.

Drug repurposing strategies using query transformations

The druggability query in TDR6 allows users to select tar-
gets with known or predicted inhibitors/drugs. Informa-
tion on targets with known drugs come from literature cu-
ration, whereas predicted (indirect) associations of targets
with inhibitors/drugs are obtained through calculations of
sequence similarity or orthology (to known druggable tar-
gets), or through network-supported inferences (14). All
these methods are implemented in TDR6. Hence, when
users filter a gene set based on druggability, they limit the

selection to highly ranked targets, which should provide a
rich source of drug repurposing opportunities.
To showcase the utility of TDR6 in this area we show

how to look for candidate drugs for repurposing for
Echinococcus multilocularis (the causative agent of Alveo-
lar Echinococcosis). This is shown in Figure 3. The pro-
cess is similar to the one described previously for T. gondii,
but in this query strategy we did not rule out human ho-
mologs, and have used C. elegans RNAi lethality datasets
as a proxy for nematode essentiality. As a result, we ob-
tained a whole-genome prioritization for E. multilocularis.
Next, applying a druggability-based filter to this query, we
have narrowed the gene selection to a handful of genes. The
user may manually inspect the selected targets to find out
which drugs were listed through indirect associations. Tar-
get pages will display all associated compounds in the drug-
gability section, classified according to the source of the
inference. For network driven inferences, the score for ev-
ery compound proposed will appear both as a list and as
a rank plot, to quickly identify promising candidates. Al-
ternatively, to minimize manual inspection, the list of genes
(i.e. the query itself) can be easily converted to a list of asso-
ciated drugs by clicking on the ‘Convert this query’ buttons
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Figure 2. Target prioritization example strategy for T. gondii. The composite image shows (A) the query terms used to find T. gondii targets that have no
homologs in humans, that are highly expressed in the virulent tachyzoite stage of the parasite during human cell infection, that are probably essential and
are likely druggable according to Network Druggability Score. (B) Summary of queries performed at the ‘Targets’ page, showing how these queries appear
in the ‘History’ page, where they can be reviewed and transformed. In-line query management buttons allow selected actions (remove, rename, export) on
result-sets. (C) Query combinations allow users to execute union, intersect or subtract actions on queries with and from each other. Examples of union and
intersection actions are shown. (D) Queries can be saved to a private stash (My query sets) from where they can be sent back to the workspace (to perform
additional query operations) or shared publicly with other TDR Targets users (My published target query sets).
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Figure 3. Drug repurposing opportunities for E. multilocularis using query transformations.A target prioritization scheme for Echinococcus multilocularis
relying on orthology-based inference and predicted druggability (DG ≥ 3). (A) combined queries; (B) initial list of prioritized targets. (C) Any target list
can be ‘transformed’ into a list of their associated drugs, using any of the available compound linking methods (see main text). (D) resulting list of bioactive
compounds. (E) Example network sub-graph visualization from one selected compound, showing active and inactive bioactivity links. Compounds (green
nodes) are connected to pathogen targets (orange) according to bioactivity records (green = active; red = inactive, see main text for activity thresholds).
Targets, in turn, are connected (gray links) to functional affiliations (blue nodes). The sub-graph rendering provides visual hints on how the initial E.
multilocularis target is connected with the selected compound in the network.
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at the top of query results pages. This functionality provides
a rapid way to get started on creating a screening library for
a set of targets. Query transformations can be based on cu-
rated (known drugs for a set a targets), predicted (computed
associations to drugs) or both. In all three approaches, the
inhibitors/drugs associated with known druggable targets
are transitively associated with the genes in the list. Figure
3 summarizes the prioritization strategy, the query conver-
sion of gene list to compounds, and an example of the sub-
graph visualization available from the compound page of a
repurposing hit. Currently these conversions are run in the
background and results appear in the History section of the
website when done (users are also alerted by email).

Exploration of orphan compounds

The activities of compounds extracted from the literature
by curation appear in the form of target-based assays (di-
rect link to target) or in the form of cell-based or whole-
organism assays. In the absence of other information these
latter classes of assays do not provide clues to the target or
mechanism of action of compounds. During the process of
chemical data updates in TDR6, we identified compounds
with reported phenotypic effects on whole-organism or cell-
based assays, based on their ChEMBL classifications. This
informationwas used to identify ‘orphan’ compounds which
are active against a particular pathogen in cell-based pri-
mary or secondary screenings, but for which there is no
target-based assay.
Orphan compounds in TDR6 can be searched for any

species with available phenotypic screening data, within the
compounds search page. This enables a fast way of lever-
aging data from high-throughput assays, allowing users to
start their prioritizations from compounds with known ac-
tivity against a pathogen of interest.
The integrated network model in TDR6 is also useful to

identify candidate targets for orphan compounds. As de-
scribed in the original publication (14), the computed chem-
ical similarity neighborhood around a selected orphan com-
pound can provide indirect links to one or more targets. Us-
ing this strategy we have performed target prioritizations
for all orphan compounds in TDR6. These precomputed
network-driven compound prioritizations are available for
all organisms for which phenotypic screening data is avail-
able. Global summaries showing all orphan compounds for
these organisms are linked from the ‘Data summary’ page
(see https://tdrtargets.org/datasummary, and click on the
species of interest). An example of orphan compound based
prioritization for T. cruzi is shown in Figure 4. Whereas pri-
oritizations starting from a single compound are available
in each compound page.

FUNCTIONALITY AND DATA UPDATES

New Genomic Data in TDR Targets v6.1

Since the previous publication of the TDRTargets database
(13), several pathogen genomes have been added. A detailed
list is provided in Table 3 as well as online at the TDR6Data
Summary Page (https://tdrtargets.org/datasummary).

Given the diversity of organisms integrated into TDR
Targets and, consequently, the variety of data sources

needed to cover all the genomes; substantial effort has been
put into standardizing data retrieval and parsing of genome
information from these organisms. Most of the complete
genomes were obtained from EupathDB (18), GenBank
(19), GeneDB (20), Wormbase Parasite (21), GenoList (22)
orMycobrowser (23). A full description on genome sources
is given in Supplementary Table S1. To update the data
for organisms present in previous version of TDR Tar-
gets protein coding genes from current release of genomes
were either mapped to existing genes in TDR Targets, or
otherwise entered as new records. The mapping algorithm
uses a combination of conditions to track gene identifiers
across releases and maintain the identity of genes: match-
ing sequence checksums (using 128-bit hash values gener-
ated by the MD5 algorithm), gene names or identifiers and
BLAST (24) if no perfect matches are found. After updat-
ing records, the pipeline calculates physicochemical proper-
ties using Pepstats (25), scans for transmembrane domains
with TMHMM (26), signal peptides with SignalP (27), and
glycosylphosphatidylinositol anchor points, using PredGPI
(28). The algorithm dismisses all non coding sequences,
as well as any pseudogenes, to avoid misleading annota-
tions and minimizing false assumptions during prioritiza-
tion workflows. As of TDR6, all tasks mentioned above for
genome integration and update have been wrapped into an
automated workflow to facilitate faster updates in future
releases. A schematic of the update pipeline algorithm is
shown in Supplementary Figure S1. The pipeline also au-
tomates the computation of annotations using ad hoc indi-
vidual strategies for different annotations, relying on web
services and APIs (such as the KAAS (29) service for map-
ping proteins toMetabolic Pathways and to the EC number
classification of enzymes, or the OrthoMCL database and
tool (30,31) for mapping proteins to ortholog groups. The
pipeline also relies on computation against locally installed
databases such as InterPro (32), using InterProScan (33)
to identify protein domains (Pfam) and map terms to con-
trolled vocabularies and classifications (GO terms). Addi-
tional resources such as 3D structures and structural mod-
els were retrieved from the Protein Data Bank (34) using
web services and downloaded from the Modbase FTP site
(35), respectively.
Also a number of key functional datasets were integrated

in this release, including (i) transcriptomic datasets which
provide evidence of gene expression in life cycle stages or
experimental conditions which are relevant for drug dis-
covery (36–47) and (ii) essentiality datasets derived from
two Apicomplexan pathogens (P. berghei and T. gondii)
(16,48), which provide vital information to assist prioriti-
zation strategies.

Updates of chemical data

For bioactive compounds also, the data update work-
flows have been automated for this release. The ma-
jority of the bioactive compounds were retrieved from
ChEMBL 24th release (49), which contains some addi-
tional datasets such as those of pathogen specific chemi-
cal boxes – GSKKinetoplastid Boxes (50),MMVPathogen
box (51). The integration process starts from molecule de-
scriptions (2D) in SDF format, fromwhich we calculated all
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Figure 4. Exploration of candidate targets for Trypanosoma cruzi orphan compounds. The plot summarizes the network-driven target prioritization for
orphan compounds active against T. cruzi. All protein-coding sequences in the genome of T. cruzi (candidate targets) are arranged on the x-axis. Data
points in the plot correspond to target-drug associations scored by the algorithm (score plotted on the y-axis). As an example, we highlighted two putative
targets for two different drugs (as displayed in the T. cruzi data summary page). Similar plots are available online for Tier 1 organisms in TDR6 (linked
from the Data Summary page).

Table 3. Data availability summary for top tier pathogens. Summary of target data available for Tier 1 organisms in TDRTargets. CDS: Coding sequences;

PFAM: number of proteins with mapped Pfam domain(s); GO: number of proteins with mapped Gene Ontology terms; EC: number of proteins with

mapped Enzyme Commission (EC) numbers; Pathways: number of proteins mapped to KEGG pathway maps; Orthologs: number of sequences mapped

to OrthoMCL ortholog groups. A more complete data summary table is available online at https://tdrtargets.org/datasummary

Species CDS PFAM GO EC Pathways Orthologs

Plasmodium falciparum 5349 3322 3551 750 1083 5166
Plasmodium vivax 5344 3264 2631 641 806 5207
Toxoplasma gondii 7946 4025 3795 772 967 6764
Chlamydia trachomatis 887 704 598 269 357 645
Mycobacterium leprae 1630 1236 929 628 611 1473
Mycobacterium tuberculosis 4004 2934 2001 1174 1145 3287
Mycobacterium ulcerans 4232 3602 2578 873 1002 3459
Treponema pallidum 1036 791 634 221 335 733
Wolbachia endosymbiont of B. malayi 805 628 577 308 382 688
Brugia malayi 11316 7042 6368 1278 1787 8424
Echinococcus granulosus 10249 6481 5432 854 1965 7109
Echinococcus multilocularis 10474 6817 5768 878 2079 7539
Loa Loa (eye worm) 16292 8071 6774 1539 2207 10484
Onchocerca volvulus 12224 3248 2178 246 563 4054
Schistosoma mansoni 12692 7818 7384 1218 1649 10386
Leishmania major 8280 4641 4415 1067 1162 8250
Trypanosoma brucei 10270 5665 5482 1019 1264 9259
Trypanosoma cruzi 18639 9908 8572 1495 1735 18140
Entamoeba histolytica 8211 4920 4087 645 1094 7692
Giardia lamblia 9665 2726 2263 326 514 5977
Trichomonas vaginalis 95600 35474 18435 843 1366 87303
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necessary compound fingerprints (required for compound
similarity/substructure searches) usingCheckMol (52). The
pipeline also calculates additional chemical properties such
as the logP octanol/water partition coefficient and other
structural descriptors using xLogp3 (53), and the Open Ba-
bel tools obprop and obrotamer (54). Other relevant data
were obtained or calculated directly from the compound
structure, such as the InChi and InChIKey (55) identifiers
used for compound tracking; and other standard rules of
thumb used in medicinal chemistry and drug discovery,
such as Lipinski Rule of Five (56) and the related Rule of
Three (57).
After integration into TDR Targets, all compounds were

subject to an all vs all chemical similarity comparison cal-
culation using ChemFP (58) which produces pairwise simi-
larity measurements based on the Tanimoto index/distance
(59). Also, we computed a global (all versus all) map of sub-
structure relationships between compounds in the database
(x is a substructure of y; y is a superstructure of x). Knowing
that the problem of finding maximum common subgraphs
between molecules is computationally hard, we applied a
heuristic approach to find substructures. The algorithm first
obtains a subset of possible candidate molecules by making
use of previously calculated fingerprints. Candidates must
have matching fingerprints with the subject molecule. Once
a list of candidates is obtained, pairwise full atom-by-atom
substructure determination is done using MatchMol (52).
The data available for compounds and the queries that can
be run on each data type are summarized in Table 2. The
molecular weight (MW) and polar surface area (PSA) dis-
tribution for all compounds in the database is shown in Sup-
plementary Figure S2.

Curation and integration of bioactivity data

As with chemical compounds, most bioactivities inte-
grated into TDR Targets come directly from upstream data
sources (e.g. ChEMBL). When integrating bioactivity data,
we preserved both the annotation of the assay (e.g. ‘Motil-
ity reduction assay in vitro against Brugia malayi microfilar-
iae at 10 µM’) and the numerical value and units associ-
ated with compound activities (e.g. ‘80% inhibition’, ‘1.5
�M IC50’, ‘10 nMMIC’), which are all searchable fields. In
addition, and to facilitate user queries, the reported bioac-
tivities were used to group assayed compounds into ‘active’,
or ‘inactive’ classes. However, to minimize the effect of us-
ing hard boundaries around arbitrary thresholds and to in-
crease separation between active/inactive classifications, we
also defined an indeterminate grey area. Hence, compounds
scoring just below an arbitrary threshold are not considered
inactive for query and visualization purposes.
Not all activity types were amenable to classification,

though. Despite efforts in standardization of these activ-
ity data, interpreting the activities of compounds at this
scale is difficult, as they often depend on the particular
assay type, reported units, and the particular conditions
in which each assay was conducted. However, a signifi-
cant set of assay types could be automatically classified
into active/indeterminate/inactive categories based on ac-
tivity thresholds. For this, all assay types with >100 000 re-
ports (see Supplementary Figure S3 for an activity per assay

Table 4. Assay types and activity thresholds used for activity tag deter-

mination: only concentration based assays were used to determine activity

tags. Activities reporting less than the maximum admitted value for posi-

tives were considered active (+) interactions, while those greater than the

‘minimum admitted value for negatives’ were considered inactive (−). Any

activity reported in between these two values was considered as indetermi-

nate (0)

Assay
type

Standard
unit

Maximum admitted
value for actives

Minimum admitted
value for inactives

AC50 nM 20000 100000
EC50 nM 20000 100000
IC50 nM 20000 100000

IC50 ug ml−1 15 50
Kd nM 20000 100000
Ki nM 20000 100000
Potency nM 20000 100000

type/per compound distribution plot) were considered for
activity auditing, though only concentration based assays
(such as IC50, Ki or Potency) were found robust enough for
such determination, because percentage based assays (such
as % Activity, % Residual activity or $ Inhibition) were am-
biguous in bioactivity reports. The thresholds used to clas-
sify activities for each assay type can be found in Table 4,
and the distribution of compounds in these activity classes
is summarized in Figure 5.

The ChEMBL 24th release counts with over 15.2 mil-
lion bioactivities reported, of which only about 6 million
corresponded to relationships involving drugs and protein
targets (either single proteins, protein families and protein
complexes, with ∼ 93% being single proteins). Other re-
maining bioactivities in the database were reports for a wide
variety of non-protein targets, such as whole-cells (3.6M),
whole-organisms (2.2M), tissues (83K), and non-peptidic
macromolecules (85K) or small molecules (<100). These
were not used in network construction, because the network
is protein (i.e. target) centric. Figure 5 also shows some ex-
ample network visualizations that depict how TDR6 dis-
plays these bioactivities.

Integration of network-derived features: druggability and pri-
oritizations

As mentioned above, genomic data, gene annotations,
chemical compounds and gene–drug interactions were inte-
grated into a complex network oriented to drug repurpos-
ing, as described in Berenstein et al. (14). The network was
used to calculate a Network Druggability Score (NDS), for
all targets in priority (Tier 1) pathogens. The NDS is related
to the chance of finding bioactive compounds in the close
vicinity of the network graph of a given target (range is 0
to 1). The algorithm has been previously described in de-
tail (14), but briefly, based on an over-representation test
of annotated known druggable proteins, it calculates a rel-
evance score (RS) for every Pfam domain and Orthology
group categories of the network. The NDS score for a given
target results from a weighted cumulative sum over the RS’s
of all affiliation contributions common to the target node,
and neighbor proteins linked to active compounds.
To facilitate interpretation of NDS scores we performed

a statistical assessment to identify distinct Druggability
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Figure 5. Activity tags distribution and evidence mixtures among data: (A) Venn diagram showing the distribution of bioactivity values in the active,
inactive and indeterminate classes in TDR6 (see main text for details). Intersections count cases where the same drug has different activity outcomes
against the same target. Examples of these cases are provided in panels B through F (compound IDs represent TDR6 identifiers). (B) Activity of C329137
(an hydroxy-benzamidine) against P. falciparum bifunctional dihydrofolate reductase-thymidylate synthase. (C) Example of positive records for Human
acyltransferase inhibitors. (D) Example of negative and neutral activities for compounds Triphenylcarbinol and Benzohydrol, respectively. Finally, both
positive (E) and negative (F) evidence may be mixed with indeterminate evidence, as shown for C2164865 tested against Horse cholinesterase and C306882
tested against recombinant P. falciparum deoxyuridine 5′-triphosphate nucleotide hydrolase, respectively.
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Groups (DG) based on two types of thresholds that help
classify druggability predictions into confidence zones.
These are illustrated in Figure 6. On one hand, while all
non-zero scoring targets have some degree of connectiv-
ity to known-druggable targets, a low NDS suggests these
connections are not relevant for druggability assessment.
Hence, a noise-cutoff (a baseline calculated as 5 times the
value of 0.25 percentile from the complete NDS distribu-
tion) is considered to identify low scoring targets. The sec-
ond threshold is derived from the Youden’s J maximum in-
dex (60), which is calculated as the score at which both
the specificity and the sensitivity are optimal (best sensitiv-
ity without compromising specificity, and vice versa). This
value can only be calculated for pathogens with true posi-
tives (known druggable targets). An arbitrary minimum of
10 true positives was considered sufficient for Youden cut-
off determination. For other pathogens lacking such infor-
mation, a global Youden cutoff was used (calculated using
all true positives in the network). The corresponding Drug-
gability Groups are thus: DG1 for targets with NDS val-
ues ranging from 0 to the noise threshold; DG2 for targets
with NDS values ranging from the noise threshold to the
Youden’s cutoff; and DGs 3, 4 and 5 with NDS values that
are 1-, 10- and 100-fold above the Youden’s cut-off. Accord-
ingly, these latter groups make for the most likely druggable
targets. Figure 6 shows a static example of a network-driven
prioritization forMycobacterium ulcerans (which lacks tar-
gets with known compounds in the current release). All
prioritizations for TDR Targets priority organisms can be
seen online at the data summary page for each species (see
https://tdrtargets.org/datasummary, clicking on the species
of interest). In this case, online plots are interactive and can
be zoomed and exported. In cases where there are targets
with known bioactive compounds for the species, these are
shown distinctively in the plot.
These network-driven prioritizations can work both

ways. When starting from a compound of interest, the al-
gorithm can prioritize targets, using the weighted similarity
of chemical neighbors to initial candidate targets. Andwhen
starting from target of interest, it can prioritize compounds,
using connected druggable neighbor targets and then fol-
lowing weighted links to candidate inhibitors/drugs. Pre-
computed scores for compounds and for targets are used
internally by TDR6 and are at the core of network-based
query transformations.

Network sub-graph visualizations and User Interface up-
grade

The network sub-graphs for both compounds and targets
(and their respective NDS scores) can be browsed from the
web application using a drug or a target as a starting point
to obtain hints for untested drugs or novel druggable tar-
gets, respectively. Through newly developed visualizations
users can check out the network neighborhoods around
drugs and targets in the corresponding pages. Lists of net-
work derived putative interactions can also be explored in
tabular format under the ‘Druggability’ (for targets) and
‘Known and predicted targets’ (for drugs) sections.
These visualizations are driven by D3.js (61) implement-

ing forced layouts for sub-graph visualizations. Within the

D3 subgraph panel, users can perform node searches within
the graph (target identifiers), as well as toggle the visibility
of targets on a species by species manner, and customize the
opacity of nodes. Taken together these new features provide
a clear and comprehensive visualization of the sub-network
vicinity of targets and compounds, allowing users tomanip-
ulate the graphs while exploring the data.
The user interface (UI) and the available tools for drug

repurposing and target prioritization have gone through
a major upgrade. In the first place, the UI has been re-
designed under W3C standards to achieve a healthier and
more scalable application. We integrated the Bootstrap
(https://getbootstrap.com/) and jQuery (https://jquery.com)
frameworks in the development and design of the TDR6
web application and in the front-end functionality. For
compound structure queries we have licensed and im-
plemented the Marvin JS chemical drawing application
from Chemaxon (https://chemaxon.com/products/marvin-
js). Tabulated records within target and drug pages now use
the DataTable javascript jquery plugin (https://datatables.
net) to easily create paginations, filtering and sorting func-
tionalities. Finally, compound 2D representations are now
automatically generated using an implementation of the
SmilesDrawer javascript module (62).

Commercial availability of compounds

One important aspect when prioritizing compounds for
testing in the lab, is their availability. In TDR6 we are now
displaying information on commercial availability of com-
pounds. Currently we have started this feature by linking
with Molport (a chemical online marketplace that sources
compounds from major suppliers) and show users a vi-
sual clue on compound pages that give a fast indication of
whether the compound is either in stock or can be made
to order. Because commercial availability of compounds
is currently implemented in TDR6 in the form of asyn-
chronous queries againstMolport, at this time this feature is
only available in browsing mode (not in queries). However,
users can prioritize compounds using any of the available
query strategies in TDR6 and then finalize their compound
selections by inspecting compounds manually for commer-
cial availability.

DISCUSSION AND FUTURE DIRECTIONS

The newdata, interface and functionality of TDR6provides
users with improved navigation and visualization of targets
and compounds.
The current network model connects targets through af-

filiation of entities (proteins) to annotation concepts (Pfam
domains, Ortholog groups). These have been selected based
on their wide coverage and relative ease of calculation.
Complementing these concepts with other important crite-
ria for drug target validation (essentiality, expression in rele-
vant life cycle stages) can be done by users with the tools and
functionality provided by TDR6 but in the future they can
be built into the underlying network model itself, at least
for some organisms amenable to genome-wide experimen-
tal assessment.
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Figure 6. Network-driven whole-genome target prioritization for Mycobacterium ulcerans: Candidate targets in the M. ulcerans genome were ranked by
their NDS (network druggability score, see main text). The plot depicts all genome targets (in the x axis) along with their corresponding NDS score (in
the y axis). Red points correspond to the top-10 ranked targets, with labels indicating the gene name and product. Browsing whole-genome prioritization
from the data summary, the user may access a gene page by clicking on it in the prioritization plot. A subgraph example from EmbA/EmbB/EmbC gene
family is shown (as seen in their corresponding gene pages). The figure also displays confidence zones, DG1 (red): delimited by zero and noise cutoff; DG2
(yellow): between the noise and the Youden cutoff; and DG3–5: with scores higher than the Youden cutoff.

Several key improvements are necessary to keep TDR
Targets relevant for the community of scientists work-
ing on tropical diseases. Integration of natural metabo-
lites, and connecting these small molecules to other bioac-
tive compounds through shared substructures or by chem-
ical similarity will be a major focus in the future. This
will allow navigating the drug-targets graph using the
concepts of biochemical reactions also, which naturally
connect non-orthologous enzymes through their shared
substrates/products and cofactors.

Finally, as already mentioned before (13), there is still
a large curation gap that needs to be filled. Many bioac-
tive compounds have been tested by the community of re-
searchers working inNeglected Tropical Diseases. Yetmany
of these assays and outcomes are reported in journals out-
side themainstreamMedicinal Chemistry journals and thus
are missed by large curation efforts such as the one led by
ChEMBL (49). Curation and integration of these missing
data (including negative data!) should be a priority for the
community, as it would save valuable time and resources.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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