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The Yee finite-difference time domain method (FDTD) is commonly used in wake field and particle-in-

cell simulations. However, in accelerator modeling the high energy particles can travel in vacuum faster

than their own radiation. This effect is commonly referred to as numerical Cherenkov radiation and is a

consequence of numerical grid dispersion. Several numerical approaches are proposed to reduce the

dispersion for all angles and for a given frequency range, that justifies itself for domains big in all three

directions. On the contrary, in accelerator modeling the transverse dimensions and transverse beam

velocity are small, but it is extremely important to eliminate the dispersion error in the well-defined

direction of the beam motion for all frequencies. In this paper we propose a new two-level economical

conservative scheme for electromagnetic field calculations in three dimensions. The scheme does not have

dispersion in the longitudinal direction and is staircase-free (second order convergent). Unlike the FDTD

method, it is based on a ‘‘transversal-electric/transversal-magnetic’’ (TE/TM)-like splitting of the field

components in time. The scheme assures energy and charge conservation. Additionally, the usage of

damping terms allows suppressing high frequency noise generated due to the transverse dispersion and the

current fluctuations. The dispersion relation of the damping scheme is analyzed. As numerical examples

show, the new scheme is much more accurate on the long-time scale than the conventional FDTD

approach.
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I. INTRODUCTION

The particle-in-cell (PIC) method [1] is an effective

approach for simulation of beam dynamics in accelerators.

The electromagnetic fields in many PIC codes are com-

puted using the finite-difference time domain (FDTD)

method [2,3]. As any numerical mesh approach the

FDTD method suffers from an anisotropic numerical dis-

persion. The numerical wave phase speed is slower than

the physical one. Hence, the high energy particles can

travel in vacuum faster than their own radiation. This effect

is commonly referred to as numerical Cherenkov radiation

[4], which (due to its accumulative character) corrupts the

simulation. Hence, the electromagnetic field computation

for short relativistic bunches in long structures remains a

challenging problem even with the fastest computers

available.

Several approaches [4–8] have been proposed to reduce

the accumulated dispersion error of large-scale three-

dimensional simulations for all angles and for a given

frequency range. These methods require the usage of larger

spatial stencils and a special treatment of the material

interfaces. The increased computational burden justifies

itself for computational domains large in all three dimen-

sions. However, in the accelerator applications the domain

of interest is very long in the longitudinal direction and

relatively narrow in the transverse plane. Additionally, the

electromagnetic field changes very fast in the direction of

bunch motion but is relatively smooth in the transverse

plane. Hence, it is extremely important to eliminate the

dispersion error in the longitudinal direction for all

frequencies.

As it is well known, the FDTD method at the Courant

limit is dispersion free along the grid diagonals and this

property can be used effectively in numerical simulations

[9]. However, the only reasonable choice in this case is to

take equal mesh steps in all three directions. Alternatively,

a semi-implicit numerical scheme without dispersion in the

longitudinal direction with a simpler conformal treatment

of material interfaces and the usage of nonequidistant grids

has been developed in [10–13].

The scheme described in [11] allows one to solve the

scalar problem and to calculate the wake potential for fully

axially symmetric problems with staircase approximation

of the boundary. In [12,13], a three-level scheme

R �yn�1 � 2yn � yn�1� �Ayn � fn

for the vectorial problem was suggested. The scheme is

based on a second order hyperbolic wave equation for

vector potential. A modification of the uniformly stable

conformal method [14] is used to avoid the ‘‘staircase’’

problem and to obtain a second order convergent algo-

rithm. However, the operator R in the scheme is not self-

conjugate; and therefore an ‘‘energy’’ conservation cannot

be proven theoretically by the standard techniques [15].
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Additionally, the scheme is not economical for general

three-dimensional geometries. The last drawback can be

overcome by splitting methods [16]. However, the absence

of a theoretical proof for an energy conservation has stimu-

lated us to look for an alternative approach in the three-

dimensional case.

In this paper, a new two-level economical conservative

scheme for electromagnetic field calculations in three di-

mensions is presented. The scheme does not have disper-

sion in the longitudinal direction and is staircase-free

(second order convergent). Unlike the FDTD method [2]

and the scheme developed in [12,13], the new method is

based on a ‘‘transversal-electric/transversal-magnetic’’

(TE/TM)-like splitting of the field components in time.

Additionally, it uses an enhanced alternating direction

splitting of the transverse space operator that renders the

scheme computationally as effective as the conventional

FDTD method. Unlike the FDTD alternative direction

implicit (ADI) [17] and low-order Strang [18] methods,

the splitting error in our scheme is only of fourth order.

The new scheme assures energy and charge conserva-

tion. Additionally, the usage of damping terms allows one

to suppress a high frequency noise generated due to the

transverse dispersion and current fluctuations. The disper-

sion relation of the damping scheme is derived and

analyzed.

Numerical examples show that the new scheme is much

more accurate in long-time simulations than the conven-

tional FDTD approach. For axially symmetric geometries,

the new scheme performs at least 2 times faster than the

scheme suggested in [12,13] while achieving the same

level of accuracy.

II. FORMULATION OF THE PROBLEM

At high energies the particle beam is rigid. To obtain the

electromagnetic wake field, the Maxwell equations can be

solved with a rigid particle distribution. The influence of

the wake field on the particle distribution is neglected here;

thus, the beam-surroundings system is not solved self-

consistently and a mixed Cauchy problem for the situation

shown in Fig. 1 should be considered.

The problem reads: for a bunch moving with the velocity

of light c and characterized by a charge distribution �, find

the electromagnetic field ~E; ~H in a domain � which is

bounded transversally by a perfect conductor @�. The

bunch introduces an electric current ~j � ~c� and thus we

have to solve for

r� ~H � @

@t
~D� ~j; r� ~E � � @

@t
~B;

r � ~D � �; r � ~B � 0;

~H � ��1 ~B; ~D � " ~E; x 2 �;

~E�t � 0� � ~E0; ~H�t � 0� � ~H0; x 2 ��;

~n� ~E � 0; x 2 @�;

(1)

where ~E0; ~H0 is an initial electromagnetic field in domain
�� and ~n means the normal to the surface @�.

In accelerator applications, the studied structure is usu-

ally supplied by an ingoing pipe, and the analytical solu-

tion in a perfectly conducting cylindrical pipe [19] can be

used as initial condition. If the ingoing pipe is not cylin-

drical the initial field can be found numerically.

III. IMPLICIT TE/TM NUMERICAL SCHEME

A. Finite integration technique

Following the matrix notation of the finite integration

technique [20], the Cauchy problem (1) can be approxi-

mated by the time-continuous matrix equations on a grid

doublet (G; ~G)

C ê�� d

dt
^̂
b; CTĥ� d

dt
^̂
d� ^̂

j; S
^̂
b� 0; S
 ^̂d� �q

(2)

completed by the discrete form of the material relations

(constitutive equations)

ê � M"�1
^̂
d; ĥ � M��1

^̂
b; (3)

with the discrete inverse permittivity matrix M"�1 and the

inverse permeability matrix M��1 . In the following the

material matrices are assumed to be real and symmetric.

On Cartesian fx; y; zg coordinate grids (like the Cartesian

grid shown in Fig. 2) with an appropriate indexing scheme

the curl and divergence matrices have the block structures:

C �
0 �Pz Py
Pz 0 �Px
�Py Px 0

0

B
@

1

C
A; S � �Px Py Pz �;

S
 � ��PTx �PTy �PTz �:

The two-banded topological Pfu;v;wg matrices play the role

of discrete partial differential operators [21].

With changing of variables e � M
�1=2
"�1

ê, h � M
�1=2
��1 ĥ,

j � c�1M1=2

"�1
^̂
j, q � �q, � � ct, system (2) and (3) reduces

to the skew-symmetric one
FIG. 1. Charged particle bunch moving through an accelerat-

ing structure supplied with infinite pipes.
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d

d�
e�CT

0h�j;
d

d�
h��C0e; Shh�0; See�q;

(4)

with the new matrices

C 0 � c�1M1=2

��1CM
1=2

"�1


0 �P0z P0y
P1z 0 �P0x
�P1y P1x 0

0

B
@

1

C
A;

S e � ��PTxM
�1=2
"�1x

�PTyM
�1=2
"�1y

�PTzM
�1=2
"�1z

�

� �Pex Pey Pez �;

S h � �PxM�1=2
��1
x

PyM
�1=2
��1
y

PzM
�1=2
��1
z

�

� �Phx Phy Phz �:
System (4) is a time-continuous and space-discrete ap-

proximation of problem (1). For representation (4) a dis-

crete analogue to the analytical equation div curl � 0

holds:

S hC0 � SeC
T
0 � 0: (5)

It allows one to show the charge and energy conservation

in the scheme:

d

d�
q� Sej � 0;

d

d�
Shh � 0;

d

d�
W � �he; ji;

W��� � 0:5�eT���e��� � hT���h����:
Note that this energy has a direct correspondence to the

total physical energy of the continuous electromagnetic

fields given by 0:5
R

V�"jEj2 ���1jBj2�dv [22].

The next step is a discretization of the system in time.

The field components can be split in time and the ‘‘leap-

frog’’ scheme can be applied. Below, two kinds of the

splitting are considered: E=M and TE/TM schemes.

B. Explicit FDTD method based on ‘‘electric-magnetic’’

splitting of the field components in time

Suggested by Yee [2], the ‘‘electric-magnetic’’ (E=M)

splitting of the field components yields the explicit FDTD

scheme (E=M scheme)

en�0:5 � en�0:5 �4�C

0h

n �4�jn;
hn�1 � hn �4�C0en�0:5;

(6)

where 4� is the time step, and the update of the electric

components is shifted by 0:54� relative to the update of

the magnetic components.

Scheme (6) is a two-layer scheme

B
yn�1 � yn

��
�Ayn � fn; (7)

where

B �
�

I 0

4�C0 I

	

; A �
�
0 �CT

0

C0 0

	

;

yn �
�
en�0:5

hn

	

; fn �
��jn

0

	

:

We study the stability of scheme (7) by the energy

inequalities method [15]. Let us take the inner product of

both sides in Eq. (7) with yn�1 � yn:

hB�yn�1 � yn�; yn�1 � yni � ��hAyn; yn�1 � yni
� h��fn; yn�1 � yni: (8)

Using the formula

y n � 0:5��yn�1 � yn� � �yn�1 � yn��

we rewrite relation (8) in the form

h�B� 0:5��A��yn�1� yn�;yn�1� yni
� 0:5��hA�yn�1� yn�;yn�1� yni � h��fn;yn�1� yni:

The second term in the left-hand side is equal to zero since

the operator A is skew symmetric and, therefore,

hQyn�1; yn�1i � hQyn; yni � h��fn; yn�1 � yni; (9)

where the self-adjointness of the operator Q 
B� 0:54�A is used.

The last relation allows one to prove that the condition

Q  B� 0:54�A � 0 (9a)

is necessary and sufficient for the stability of the scheme.

Following [22,23], a discrete energy of electromagnetic

fields can be defined as

Wn
E=M � 0:5h�B� 0:54�A�yn; yni

� 0:5�hen�0:5; en�0:5i � hhn;hn�1i�; (10)

and relation (9) can be interpreted as energy conservation

FIG. 2. Positions of the relativistic charged particle in the finite

integration technique grid in different moments of time. The

scaled time step is chosen equal to the longitudinal mesh step.
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law

Wn�1
E=M �Wn

E=M

4�
� �



en�0:5 � en�0:5

2
; jn

�

:

The charge conservation holds in the form:

qn�0:5 � qn�0:5

4�
� Sej

n � 0; Sh
hn�1 � hn

4� � 0:

The condition (9a) can be rewritten as

4�2
4

C0C
T
0 � I or 4� � 2

��������������
max i

p ;

where f ig are eigenvalues of the matrix C0C
T
0 .

It was proven in [23] that relation (9a) holds if

4� � c�1min
"

������������������������������������������������
�"""

4x�2" �4y�2" �4z�2"

s

; " � �i; j; k�:

(11)

Scheme (6) is widely used in electromagnetic modeling.

However, the FDTD algorithm causes nonphysical disper-

sion of the simulated waves in a free-space computational

lattice. The phase velocity of discrete wave modes can

differ from the light velocity by an amount varying with

the wavelength, direction of propagation in the grid, and

grid discretization. With an equidistant mesh, a homoge-

nous material and the time step equal to the right-hand side

of inequality (11), the scheme has zero dispersion along the

grid diagonals. Hence, the zero dispersion in a desired

direction can be achieved by rotation of the mesh.

However, this approach awakes limitations on discretiza-

tion: the only reasonable choice in this case is to take equal

mesh steps in the all three directions. The next difficulty

arises with the attempt to use a conformal method.

Why is zero dispersion for a special direction important?

Unlike plasma problems, the charged particles in accelera-

tors are organized and a direction of motion (the longitu-

dinal direction) can be identified. Hence, the computa-

tional domain is very long in the longitudinal direction

and relatively short in the transverse plane. Additionally,

the electromagnetic field changes very fast in the direction

of motion but is relatively smooth in the transverse plane.

Note also that to be able to model smooth transitions in

geometry we should use a conformal approach without

time step reduction [14].

C. Implicit FDTD method based on transversal-elec-

tric/transversal-magnetic splitting of the field compo-

nents in time

The arguments, stated in the preceding section, force us

to look for a numerical scheme, which (i) does not have

dispersion in the longitudinal direction, (ii) allows the use

of nonhomogeneous meshes in the transverse plane,

(iii) allows the use of a moving mesh without interpolation,

(iv) allows accurate geometry modeling without a time step

reduction.

In [12,13], a three-level implicit conformal scheme

R �yn�1 � 2yn � yn�1� �Ayn � fn

was suggested. The scheme is based on a vector potential

formulation and allows an economical realization for ax-

ially symmetric geometries. However, the absence of a

theoretical proof for an energy conservation has stimulated

us to look for an alternative approach in the three-

dimensional case.

To find an alternative scheme, let us consider Fig. 2 and

subdue an update procedure to the motion of the bunch. We

assume that a charged particle is moving in the z direction

with the velocity of light. Additionally, let us assume that

our numerical scheme allows to take a time step 4� equal

to the mesh step 4z in the z direction. If at the time �0 the

particle has the position aligned with the left z facet of the

primary grid (see Fig. 2), then at time �0 � 0:54� it will be

aligned with the left z facet of the dual grid and in the time

�0 �4� it will be again aligned with the next z facet of the

primary grid. This suggests that we should replace the

E=M time splitting of the field components in scheme (6)

by a more adequate TE/TM splitting. Indeed, at time �0 it is

reasonable to update the ‘‘TE’’ components ex; ey;hz and

half a time step later, namely, at time �0 � 0:54�, we have

to update the ‘‘TM’’ components hx;hy; ez.

Following these considerations, let us rewrite scheme (4)

in the equivalent form

d

d�
u � D11u�D12v� ju;

d

d�
v � D22v�D21u� jv;

(12)

where

D11 �
0 0 �P0y

0 0 P0x

�P0y�T ��P0x�T 0

0

B
B
@

1

C
C
A;

D22 �
0 0 ��P1y�T

0 0 �P1x�T
P1y �P1x 0

0

B
B
@

1

C
C
A;

D12 � �D

21 �

0 P0z 0

�P1z 0 0

0 0 0

0

B
B
@

1

C
C
A; u �

hx

hy

ez

0

B
B
@

1

C
C
A;

v �
ex

ey

hz

0

B
B
@

1

C
C
A; ju �

0

0

�jz

0

B
B
@

1

C
C
A; jv �

�jx

�jy

0

0

B
B
@

1

C
C
A:

Applying the suggested TE/TM splitting of the field in

time to system (12), the following numerical scheme is

obtained:
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un�0:5 � un�0:5

4� � D11
un�0:5 � un�0:5

2
�D12v

n � jnu;

(13a)

vn�1 � vn

4� � D22
vn�1 � vn

2
�D21u

n�0:5 � jn�0:5v :

(13b)

Just like scheme (6), scheme (13) is also a two-layer one

B
yn�1 � yn

��
�Ayn � fn; (14)

where

B �
�
I� 0:54�D11 0

4�DT
12 I� 0:54�D22

	

;

A �
��D11 �D12

DT
12 �D22

	

; yn �
�
un�0:5

vn

	

;

fn �
�

jnu

jn�0:5v

	

:

Analyzing relations (14) we conclude that just as for Yee’s

scheme the following relations hold:

A � �A
; Q � Q
; Q � B� 0:54�A:
Likewise we can prove that condition (9a) is necessary

and sufficient for the stability of scheme (14).

As for the E=M scheme the discrete energy in the TE/

TM scheme can be defined by the relation

Wn
TE=TM � 0:5h�B� 0:54�A�yn; yni

� 0:5�hun�0:5;un�0:5i � hvn �4�D21un�0:5; vni�
� Wn

E=M �O�4�2�:

The relation (9) can be interpreted as energy conserva-

tion law

Wn�1
TE=TM �Wn

TE=TM

4�
� �0:5h�en�0:5x � en�0:5x ; en�0:5y

� en�0:5y ; en�1z

� enx�; �jnx ; jny ; jn�0:5z �i:
Note that the energy Wn

TE=TM, just like the energy Wn
E=M

defined by relation (10), is a second order accurate ap-

proximation to the total physical energy of the continuous

electromagnetic field. If the right-hand side in scheme (14)

vanishes, the scheme is energy conserving:

Wn
TE=TM � W0

TE=TM:

The charge conservation holds in the form:

�qn�0:5e � �qn�0:5e

��
� Se

�jn � 0;
�qn�1h � �qnh
��

� 0;

�q n�0:5
e � Pex

en�1x � enx

2
� Pey

en�1y � eny

2
� Peze

n�0:5
z ;

�jn � �0:5�jn�0:5x � jn�0:5x �; 0:5�jn�0:5y � jn�0:5y �; jnz �T ;

�q n
h � Phx

hn�0:5x � hn�0:5x

2
� Phy

hn�0:5y � hn�0:5y

2
� Phzh

n
z :

In order to prove this relation, let us multiply Eq. (14) by

the matrix

S �
�
S11 S12
S21 S22

	


�
Phx Phy 0

0 0 Pez

0 0 Phz
Pex Pey 0

	

:

It results in the equation

SB
yn�1 � yn

��
� Sfn;

where the equality SA � 0 was used.

The product SB can be written in the form

SB �
�

S11 S12�I� 0:5��D22�
S21�I� 0:5��D11� S22

	

:

Substitution of the relation

0:5SB�yn�1 � yn�

�
�

0:5S11�un�0:5 � un�0:5� � S12v
n

0:5S22�vn�1 � vn� � S21�vn � 0:5��jnu�

	

in the equation

���1SB
�
yn�1 � yn

2
� yn � yn�1

2

	

�
�

0

0:5S22�jn�0:5v � jn�0:5v � � 0:5S21�jnu � jn�1u �
	

results in the above stated charge conservation law.

The stability condition (9a) can be rewritten in the form

I �4�2
4

D12D


12�0 or I�4�2

4
Piz�Pi
z ��0; i�0;1:

(15)

The last relation resembles the well-known stability

condition of the explicit FDTD scheme for the one-

dimensional problem. In the following an equal mesh

step 4z in the z direction will always be assumed. Then

for a vacuum domain with staircase approximation of the

boundary the stability condition reads

4� � 4z: (16)

With the time step 4� equal to the longitudinal mesh

step 4z, scheme (13) does not have dispersion in the

longitudinal direction (see the dispersion relation in

Sec. III E). Relation (15) does not contain information

about the transverse mesh. Hence, the transverse mesh

can be chosen independently from stability considerations.
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For a relativistic bunch a mesh moving together with the

bunch can be used. The field ahead of the bunch is zero

and, as the scaled time step is equal to the longitudinal

mesh step, the complete information for updating of the

last mesh layer is available, too. This means that interpo-

lation procedures are avoided and the dispersion in the

longitudinal direction is equal to zero. The results with

the moving mesh for staircase approximation of the ge-

ometry are fully equivalent to the stationary global mesh

approach.

So far we have found a scheme which with staircase

geometry approximation fulfills the first three require-

ments formulated above. However, in a general case the

staircase scheme is only first order accurate. In order to

overcome this problem and avoid reduction of the stable

time step, the uniformly stable conformal approach de-

scribed in [13,14] will be used.

With the latter approach the scheme possesses the de-

sired features. However, it is implicit and noneconomical.

An economical scheme modification, based on operator

splitting, will be considered in Sec. IV

D. Noise control in the TE/TM scheme with implicit

enforcement of charge conservation

The derived TE/TM scheme is energy conserving. It

does not have dispersion in the longitudinal direction.

However, the dispersion in other directions and current

fluctuations can result in high frequency noise. To over-

come the problem we use the idea of transverse current

adjustment [24,25]. Our modification of this approach

allows us to suppress the noise without introducing disper-

sion in the direction of bunch motion.

In order to obtain a damping the TE/TM scheme is

changed to the form

un�0:5 � un�0:5

4� � D11

�
un�0:5 � un�0:5

2
���d

un�0:5 � un�0:5

��

�

�D12v
n � jn�du ;

vn�1 � vn

4� � D22

�
vn�1 � vn

2
� ��d

vn�1 � vn

��

�

�D21u
n�0:5 � jn�0:5�dv ; d 2 �0; 0:5�;

(17)

or in matrix form

B
yn�1 � yn

��
�Ayn � fn; A �

��D11 �D12
DT
12 �D22

	

; yn �
�
un�0:5

vn

	

; fn �
�

jn�du

jn�0:5�dv

	

;

with the new matrix

B �
�
I� 0:5%4�D11 0

4�DT
12 I� 0:5%4�D22

	

and % � �1� 2d�:

The above equations are equivalent to changing the time

centering of the transverse part of the curl operator. These

modifications have the additional benefit that they are

trivial to implement in the implicit scheme (only some

coefficients in the scheme are changed).

In scheme (17) the matrix Q � B� 0:54�A is not self-

conjugate and the energy dissipates. However, the charge

conservation holds in the form:

�qn�0:5e � �qn�0:5e

��
� Se

�jn � 0;
�qn�1h � �qnh
��

� 0;

�q n�0:5
e � Pex

%en�1x � �2� %�enx
2

� Pey
%en�1y � �2� %�eny

2
� Peze

n�0:5
z ;

�j n � �0:5�%jn�0:5�dx � �2� %�jn�0:5�dx �; 0:5�%jn�0:5�dy

� �2� %�jn�0:5�dy �; jn�dz �T ;

�q n
h � Phx

%hn�0:5x � �2� %�hn�0:5x

2

� Phy
%hn�0:5y � �2� %�hn�0:5y

2
� Phzh

n
z :

It can be proven from consideration of the equation

SB
%�yn�1 � yn� � �2� %��yn�1 � yn�

2��

� S
%fn � �2� %�fn�1

2
:

The modified TE/TM scheme allows for controllable by

parameter d damping of the high frequency noise.

E. Dispersion in the damping TE/TM scheme

Following the conventional procedure [26], the disper-

sion relation for the damping scheme can be obtained in the

form
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sin2�

��2
� �cos2�� 4d sin��i cos�� d sin���

�
�
sin2Kx

�x2
� sin2Ky

�y2

	

� sin2Kz

�z2
;

where � � 0:5!��, Kx � 0:5kx�x, Ky � 0:5ky�y ,

Kz � 0:5kz�z.
With the magic time step�� � �z, the scheme does not

have dispersion in the longitudinal direction. Indeed, the

scheme is able to propagate the full field pattern of the

relativistic bunch very accurately in the vacuum perfectly

conducting pipe. It was tested for the shortest rectangular

bunch with the length equal to the mesh step �z. Yee’s

E=M scheme shows in this test the high frequency noise

and fast degradation of the pattern due to the longitudinal

dispersion.

In order to estimate the dispersion in the transversal

plane we consider a plane wave with the wave vector

�kx; ky; kz� � �1; 0; 0�. For the mesh size �x � �� � �

the dispersion relation reads

!� � 2 arccos

�
cosec�0:5kx�� � 2id

��������������������������������������������������������������������������������������������������

1� 4d2 � 4id cosec�0:5kx�� � cosec2�0:5kx��
p

	

:

Figure 3 shows the dispersion for different values of the

damping parameter d. As can be seen from the figure, the

case d � 0:125 allows an effective damping of high fre-

quency waves without deterioration of the dispersion

curve.

The transversal velocity components of the charges in

accelerators are nonrelativistic and the transverse disper-

sion does not cause numerical Cherenkov radiation.

IV. AN ECONOMICAL TE/TM SCHEME BASED ON

TRANSVERSE OPERATOR SPLITTING

In order to find an economical scheme, three different

schemes based on an operator splitting were considered in

[27] and it was shown that the ADI2 approach results in an

accurate numerical method with moderate restriction on

the time step.

The numerical scheme using the ADI2 splitting in three

dimensions has the form

B
yn�1 � yn

��
�Ayn � fn; (18)

where

B�
�
I�0:54�D11��1ADI2 0

4�D

12 I�0:54�D22��2ADI2

	

;

A�
��D11 �D12

D

12 �D22

	

; yn�
�
un�0:5

vn

	

; fn�
�

jnu

jn�0:5v

	

:

As for the TE/TM scheme (13) the relations

A � �A
; Q � Q
; Q � B� 0:54�A
hold. However, the stable time step does now not only

depend on the longitudinal mesh step 4z but also on the

minimal mesh step in the transverse plane and the stability

condition reads [27]

4� � min�24xi; 24yj;4z�: (19)

0 1 2 3
0

0.5

1

1.5

2

2.5

3

xk ∆

Reω ∆

0 1 2 3
-0.1

0

0.1

0.2

0.3

0.4

xk ∆

Imω∆

0d =

1/8d =

1/ 4d =

FIG. 3. Dispersion and damping in the transverse �kx; ky; kz� � �1; 0; 0� direction. The left-hand figure shows the dispersion curve for

d � 0 (dashed curve), d � 0:125 (solid curve), and d � 0:25 (dot-dashed curve). The right-hand figure presents the damping for

different values of the parameter d.
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The last condition does not reduce the applicability of the scheme, since the field is relatively smooth in the transverse

plane and a much coarser grid can be used here. Constraint (19) can be relaxed and replaced by (16) if theATI�p� method is

used [27].

So far we have not defined the ADI2 terms in relation (18). Instead of doing this, let us rewrite scheme (18) explicitly

ĥn�0:5x � ĥn�0:5x

4� � M��1
x

�

Pzê
n
y � Py

ên�0:5z � ên�0:5z

2

�

; (20a)

ĥn�0:5y � ĥn�0:5y

4� � �M��1
y

�

Pzê
n
x � Px

ên�0:5z � ên�0:5z

2

�

; (20b)

We
ADI2

ên�0:5z � ên�0:5z

4� � M"�1z P

y

�

ĥn�0:5x � ��

2
M��1

x
�Pzêny � Pyê

n�0:5
z �

	

�M"�1z P

x

�

�ĥn�0:5y � ��

2
M��1

y
��Pzê

n
x � Pxê

n�0:5
z �

	

�M"�1z
^̂
jz; (20c)

ên�1x � ênx

4� � M"�1x

�

P

zĥ

n�0:5
y � P


y

ĥn�1z � ĥnz

2

�

; (21a)

ên�1y � êny

4� � �M"�1y

�

P

zĥ

n�0:5
x � P


x

ĥn�1z � ĥnz

2

�

; (21b)

Wh
ADI2

hn�1z � hnz

4� � M��1
z
Py

�

ênx �
��

2
M"�1x �P


zĥ
n�0:5
y � P


yĥ
n
z �
	

�M��1
z
Px

�

�êny �
��

2
M"�1y ��P


zĥ
n�0:5
x � P


xĥ
n
z �
	

; (21c)

where

W h
ADI2 �

�

I� ��2

8
M��1

z
PyM"�1x P


y

	�

I� ��2

4
M��1

z
PxM"�1y P


x

	�

I� ��2

8
M��1

z
PyM"�1x P


y

	

;

W e
ADI2 �

�

I� ��2

8
M"�1z P


yM��1
x
Py

	�

I� ��2

4
M"�1z P


xM��1
y
Px

	�

I� ��2

8
M"�1z P


yM��1
x
Py

	

:

If the material matrices M��1 ;M"�1 are diagonal, then

systems(20c) and (21c) only have products of tridiagonal

matrices on the left-hand side and can be solved easily. For

example, Eq. (20c) leads to the set of equations

�I� 0:5A�u1 � Fn; �I� B�u2 � u1;

�I� 0:5A�ên�0:5z � �I� 0:5A�ên�0:5z � u2;
(22)

where the vector Fn denotes the right-hand side of

Eq. (20c) and

A � ��2

4
M"�1z P


yM��1
x
Py;

B � ��2

4
M"�1z P


xM��1
y
Px:

(23)

However, the conformal scheme with the diagonal material

matrices reduces the stable time step. To restore stability

condition (19) and the possibility to use the time step

4� � 4z, we will use a modification of the uniformly

stable conformal method [14] as described in detail in

[13]. The last approach results in modified nondiagonal

but symmetric matrices M��1
x
;M��1

y
. Other material ma-

trices in scheme (20) and (21) remain diagonal. This means

that we do not encounter difficulties in the solution of

Eq. (21c). However, solving Eq. (20c) requires additional

efforts since the matrices (23)are not tridiagonal.

To overcome the problem we modify system (22) as

follows:

�I� 0:5A0�u1 � Fn � �A1 � B1��ên�0:5z � ên�0:5z �;
�I� B0�u2 � u1;

�I� 0:5A0�ên�0:5z � �I� 0:5A0�ên�0:5z � u2; (24)

where

A0�
��2

4
M"�1z P


yM
0

��1
x
Py; B0�

��2

4
M"�1z P


xM
0

��1
y
Px;

A1�A�A0; B1�B�B0;

and M0

��1
x
;M0

��1
y

are diagonal parts of the material matri-

ces. System (24) can be resolved iteratively
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Gi �
�
0 i � 0

��A1 �B1��ên�0:5;i�1z � ên�0:5z � i > 0;
�I� 0:5A0�ui1 � Fn �Gi; �I� B0�ui2 � ui1;

�I� 0:5A0�ên�0:5;iz � �I� 0:5A0�ên�0:5z � ui2; i � 0; 1; 2; . . . ; p:

(25)

Note that the equation for zero iteration [which we refer to as the TE/TM-ADI2(0)], just as schemes (22) and (24), results

in an approximation of the continuous problem (1) with the error O�j4~rj2 �4�2�. However, the TE/TM-ADI2(0) scheme

may be unstable for general geometries and the required time step 4� � 4z. The first iteration [which we refer to as the

TE/TM-ADI2(1) scheme] solves the stability problem for all considered cases.

In the next section we will study properties of the scheme (18)–(25) for the case of rotationally symmetric geometries. In

the last section results for the fully three-dimensional scheme will be presented.

V. VERIFICATION OF THE TE/TM SCHEME AND APPLYING IT TO ACCELERATOR PROBLEMS

A. Realization of TE/TM and TE/TM-ADI2 schemes for rotationally symmetric geometries

In this section we describe the realization of the TE/TM scheme for the case of rotationally symmetric geometries. We

consider this case separately since the TE/TM scheme (13) is already economical and the application of the splitting

method considered in the previous section can be avoided.

For a bunch moving at the speed of light c at an offset a from and parallel to the axis of a rotationally symmetric

structure, the source current ~j can be represented as

~j � ~c��z=c� t�,�r� a�
-a

X1

m�0

cosm’

1� ,m0
;

where ��s� is the longitudinal charge distribution and m is the azimuthal mode number.

Numerical scheme (13) for an azimuthal mode number m has the form

ĥn�0:5’ � ĥn�0:5’

4� � M��1
’

�

Pzê
n
r � Pr

ên�0:5z � ên�0:5z

2

�

;
ĥn�0:5r � ĥn�0:5r

4� � �M��1
r

�

Pzê
n
’ �m

ên�0:5z � ên�0:5z

2

�

;

We
CN

ên�0:5z � ên�0:5z

4� � M"�1z P

r

�

ĥn�0:5’ ���

2
M��1

’
�Pzênr � Prê

n�0:5
z �

	

�M"�1z P

’

�

�ĥn�0:5r � ��

2
M��1

r
��Pzê

n
’ �mên�0:5z �

	

�M"�1z
^̂
j
n

z ;

ên�1’ � ên’

4� � M"�1’

�

P

zĥ

n�0:5
r � P


r

ĥn�1z � ĥnz

2

�

;
ên�1r � ênr

4� � �M"�1r

�

P

zĥ

n�0:5
’ �m

ĥn�1z � ĥnz

2

�

;

Wh
CN

hn�1z � hnz

4� � M��1
z
Pr

�

ên’ � ��

2
M"�1’ �P


zĥ
n�0:5
r � P


rĥ
n
z �
	

�M��1
z
P’

�

�ênr �
��

2
M"�1r ��P


zĥ
n�0:5
’ �mĥnz �

	

;

(26)

where

Wh
CN�

�

I���
2

4
M��1

z
PrM"�1’ P


r�
��2

4
m2M��1

z
M"�1r

	

;

We
CN�

�

I���
2

4
M"�1z P


rM��1
’
Pr�

��2

4
m2M"�1z M��1

r

	

;

(27)

and the fact that P’ � mI is used.

If the material matrices M��1 ;M"�1 are diagonal, then

operators (27) are tridiagonal matrices and equations

involving them can be solved easily. For the case of non-

diagonal matrices M��1
’
;M��1

r
, we will proceed in the

same way as described at the end of the previous section.

We rewrite the equation with the operator We
CN in the

form

�I�A0 � B0��ên�0:5z � ên�0:5z �
� Fn � �A1 � B1��ên�0:5z � ên�0:5z �; (28)

where

A0�
��2

4
M"�1z P


rM
0

��1
’
Pr; B0�

��2

4
m2M"�1z M0

��1
r
;

A1�A�A0; B1�B�B0;

and M0

��1
’
;M0

��1
r

are diagonal parts of the material
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matrices. System (28) can be solved iteratively

Gi �
�
0 i � 0

��A1 �B1��ên�0:5;i�1z � ên�0:5z � i > 0;
�I�A0 � B0�ên�0:5;iz � �I�A0 � B0�ên�0:5z � Fn �Gi;

i � 0; 1; 2; . . . ; p:

(29)

Scheme (26)–(29) will be referred to as TE=TM�p�. Note that just as for the TE=TM-ADI2�p� scheme, it is sufficient to

perform only one iteration [scheme TE/TM(1)] to obtain a stable solution.

As noted at the beginning of this section, for geometries of revolution we do not need to apply the transverse operator

splitting. However, in order to check the achieved accuracy, the TE=TM� ADI2�p� scheme was implemented for

rotationally symmetric geometries, too.

As a test example we consider free oscillations of the TM mode [28]

H’�r; 3; ’; �� � k
�kr�0:5
r

J1:5�kr�
@

@3
P11� cos�3�� cos�’� sin�k��; Hr�r; 3; ’; �� � 0;

H3�r; 3; ’; �� � k
�kr�0:5
r sin�3� J1:5�kr�P

1
1� cos�3�� sin�’� sin�k��; ka � 6:116 764;

in a sphere of radius a � 1.

The initial field is converted to the cylindrical coordi-

nates and set in the entire calculation domain. After a

period of time T �
���

2
p
a we compare the numerical solu-

tion with the exact one. A series of equidistant meshes with

the cell sizes 4r � 4z � h is used.

Figure 4 shows the results for the time step 4� � 4z
and for the mesh resolution a=h � 10. The left-hand figure

shows convergence of the noniterative schemes TE/TM(0)

(26)–(29) and TE/TM-ADI2(0) (18)–(25). Both schemes

achieve the same rate of convergence. The right-hand

figure shows conservation of the discrete energy En
TE=TM

for the schemes. With an increase of the number of iter-

ations p the discrete energy in the TE=TM�p� scheme

converges to the constant value of the noniterative TE/

TM scheme. However, in order to see the same effect for

the TE=TM-ADI2�p� scheme, the energy norm has to be

changed to the one with operator Q from the noniterative

scheme (18). We do not show this result here, since it

already follows from Fig. 4 that the considered schemes

are stable for the time step 4� � 4z, when they do not

have dispersion in the longitudinal direction.

As a further test example we use the circular collimator

structure shown on the left-hand side of Fig. 5 (with inner

radius b not indicated in the figure). Figure 6 shows the

results for the dipole wake field (m � 1) and compares the

TE/TM scheme results to the ones obtained with the clas-

sical Yee’s scheme (E=M scheme). The latter results are

calculated with the help of code ABCI [29] (FDTD method

with triangular approximation of the boundary). The geo-

metric parameters are a � 35 mm, L � 20 cm, and b �
c � 2 mm, where b is the inner radius of the collimator.

10 100

0.01

0.1

1

2a h

TE/TM(0)

( )O h

3( )O h
2( )O h

TE/TM-ADI2(0)

( )hδ

0 200 400 600 800 1000

1

1.001

1.002

1.003

1.004

n

TE/TM
n

Ε

TE/TM(0)

TE/TM

TE/TM(1)

TE/TM-ADI2(0)

FIG. 4. The left-hand figure shows second order convergence of the TE/TM(0) (solid line) and TE/TM-ADI2(0) schemes for the

sphere. The right-hand figure presents conservation of the discrete energy by different methods for 4� � 4z.
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The left-hand drawing in Fig. 6 shows the transversal

dipole wake potential [30]

W1
?�s� � jW1

?�s; r; 3 � 0�jr�1;

W1
?�s; r; 3� �

1

Q

Z 1

�1
�E? � �v� B�?�t��z�s�=vdz

for the collimator with L � 20 cm and a relativistic

Gaussian bunch with rms length 9 � 1 mm. The solid

curves show the results for ABCI and the dashed ones

present the results for the new scheme.

In the right-hand figure the transversal dipole loss factor

L1? � 1

Q

Z 1

�1
W1

?�s���s�ds

for the collimator is shown for different mesh resolutions

9=h, where h � 4z � 4r is the mesh step. The error

compared to the reference value (obtained with the finest

mesh resolution) is also shown in the figure. The dashed

line shows the results for the TE/TM code and the solid line

for ABCI.

From the above example we see that the reference code

ABCI demands a much more dense mesh for the same

accuracy.

Finally, we show in Fig. 7 (left) the dipole wake poten-

tials of a Gaussian bunch with 9 � 1 mm for the TESLA

cryomodule of total length �11 m [31]. The cryomodule

contains 8 cavities and 9 bellows whose geometries are

outlined in Fig. 8. The iris’ radius is 35 mm and the beam

tube’s radius is 39 mm.
The moving mesh in the last example covers the bunch

longitudinally in the range from �59 to 1009. The length

of the moving mesh is only 0.105 m, which results in a

drastic reduction of the computational demands (storage

and CPU time) compared to the stationary mesh of total

length �11 m.
The right-hand side of Fig. 7 shows the difference

between the results obtained by the TE/TM(1) and TE/

TM-ADI2(1) schemes and the reference result calculated

with the vector potential method (POT-2.5) described in

[12,13]. The presented results are calculated with the mesh

resolution 4z � 4r � 9=5. It can be seen that the new

FIG. 5. The geometry of round and rectangular collimators.

FIG. 6. The transverse dipole wake function (left) and loss factor (right) for the collimator with L � 20 cm. The solid lines show the

results for the E=M scheme (Yee’s scheme) and the dashed lines display the results for the TE/TM scheme. The relative errors are

given regarding the reference value (marked as ‘‘ref.’’ on the graphs) calculated by the TE/TM method with the finest mesh.
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methods introduced in this paper produce numerical results

of the same level of accuracy as the vector potential

method (POT-2.5). However, the TE/TM method is at least

2 times faster due to the smaller number of required

operations.

B. Numerical examples calculated with the three-

dimensional TE/TM-ADI2 scheme

Finally, we discuss the results of numerical computa-

tions with the fully three-dimensional realization of the

TE=TM-ADI2�p� scheme (18)–(25). Two test problems

are considered.

Before presentation of the numerical results we want to

discuss briefly the realization of the scheme in the code. To

be able to calculate long structures, we should spare the

computer memory and not keep all geometric information.

For this purpose we cut the long structure in short blocks,

discretize them, and keep the geometric information in the

external memory. The information will be loaded only at

the instant when the head of the bunch arrives at a geo-

metric block and it will be deleted after the bunch (together

with the moving mesh) has passed through the block.

To be able to check the accuracy of the three-

dimensional realization of the TE/TM scheme we have

chosen rotationally symmetric structures for numerical

tests. However, in the three-dimensional calculations the

symmetry of the structures was not exploited.

In the first example we consider a structure consisting of

the 20 TESLA cells [31] bounded by infinite ingoing and

outgoing pipes with a diameter of 35 mm.

Figure 9 shows the longitudinal wake potential [30]

Wk�s; x; y� � � 1

Q

Z 1

�1
�Ez�x; y; z; t��t��z�s�=vdz

FIG. 8. The geometry of the TESLA cavity (bottom) and the bellow (top).

FIG. 7. The left-hand figure shows the transverse wake potential for the TESLA cryomodule excited by a Gaussian bunch with a rms

width 9 � 1 mm as obtained from the reference code [16]. In the right-hand figure the solid line shows the difference between the

reference potential and the one obtained with the help of the TE/TM(1) scheme, and the dashed line shows likewise the result for the

TE/TM-ADI2(1) scheme.
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for a Gaussian bunch with a rms length 9 � 1 mmmoving

on the axis. The solid line (POT-2.5D) corresponds to the

reference solution obtained with the vector potential

method [13]. The two other lines show results obtained

with different mesh resolutions from the TBCI code [32,33]

based on the classical Yee’s scheme (E=M-2:5D). The

oscillations that appear are due to the dispersion error of

the Yee’s scheme. The gray points represent the result

obtained by the three-dimensional scheme (18)–(25)

(marked as TE/TM-3D).

It can be seen that the three-dimensional TE/TM-ADI2

scheme produces very accurate results even for the coarse

mesh. Indeed, the three-dimensional code uses only 2.5

mesh points per 9 in the longitudinal direction. In the

transverse direction the mesh steps are even 3 times bigger.

As the next example we use the round collimator again.

Figure 10 demonstrates the wake potential for the collima-

tor with parameters a � 30 mm, b � 2 mm, c � 50 mm,

L � 200 mm and a Gaussian bunch with a rms length 9 �
1 mm. Again the high accuracy of the suggested three-

dimensional scheme can be seen.

Finally, in the last example we calculate the longitudinal

wake potential for the fully three-dimensional rectangular

collimator shown in Fig. 5 on the right. Figure 11 demon-

strates the wake potential for the collimator with parame-

ters a � 30 mm, b � 5 mm, d � 20 mm, c � 50 mm,

L � 200 mm and a Gaussian bunch with a rms length 9 �
5 mm moving on the axis. Figure 11 (left) compares the

wake potential on the axis for the rectangular (solid line)

and the round (dashed line) collimator. The round collima-

tor has the same geometric parameters and an aperture with

a radius of b � 5 mm. As is well known, the wake poten-

tial of a round collimator does not change in the transverse

plane. Quite contrary, for the rectangular collimator a

variation of the wake potential in the transverse plane is

expected. Indeed, this can be observed in Fig. 11 (right),

where the energy gain for a test particle moving at the

position s � 9 behind the bunch center is shown.

C. Cherenkov radiation calculated with the damping

scheme

In the preceding sections the numerical examples for the

scheme without damping were shown. In this section we

show the damping of the numerical noise on the example

suggested in [25].

Figure 12 shows Cherenkov radiation emitted from a

particle traveling faster than the local phase velocity of

light. In this simulation an electron is moving in a perfectly

conducting pipe filled with a dielectric (" � 4"0). The tube

has a radius of 1 cm. The electron travels at twice the local

phase velocity of light. This is a very strenuous test as the

motion excites very short wavelengths. A noisy nonphys-

ical wake is seen behind the particle. Damping schema

(17), in contrary, produces an accurate and quiet wake.

VI. CONCLUSION

A new fully three-dimensional implicit scheme for the

calculation of electromagnetic fields in the vicinity of

FIG. 9. Comparison of the wake potentials obtained by differ-

ent methods for the structure consisting of 20 TESLA cells

excited by a Gaussian bunch with 9 � 1 mm. The solid line

shows the reference solution obtained with the help of the

scheme described in [13]. The dashed line describes the solution

obtained by classical Yee’s scheme with mesh resolution of 5

mesh steps per 9. The dotted line describes the solution obtained

by Yee’s scheme with 2 times denser resolution in the longitu-

dinal direction. The picture shows coincidence of the reference

result (solid line) with the results on the coarse mesh obtained

from the 3D TE/TM code (gray points).

FIG. 10. Comparison of the wake potentials obtained by differ-

ent methods for the round collimator excited by a Gaussian

bunch with 9 � 1 mm. The solid line shows the reference

solution obtained with the help of the scheme described in

[13]. The dashed line shows the solution obtained by Yee’s

scheme with a mesh resolution of 5 mesh steps per 9. The

dotted line describes the solution obtained by Yee’s scheme with

a 2 times denser resolution. The picture shows coincidence of the

reference result (solid line) with the results on the coarse mesh

obtained from the 3D TE/TM code (gray points).

TE/TM FIELD SOLVER FOR PARTICLE BEAM . . . Phys. Rev. ST Accel. Beams 8, 042001 (2005)

042001-13



relativistic charged bunches was introduced. As shown by

several numerical examples, the scheme is able to model

curved boundaries with high accuracy and allows for a

nondeteriorating calculation of the field solution for very

long simulation times.

To develop the new scheme we proceeded as follows:

first, we replaced the E=M splitting of Yee’s scheme by the

TE/TM splitting. This resulted in an implicit scheme re-

quiring the solution of the Crank-Nicholson equation for

the two-dimensional scalar wave equation. We then intro-

duced the TE/TM scheme based on the ADI2 splitting

method and studied several test examples. In order to avoid

reduction of the maximal time step and to obtain a scheme

without dispersion in the longitudinal direction, the con-

formal approach with nondiagonal material matrices was

exploited. It requires the application of iterative proce-

dures. However, already the first iteration produces an

accurate and stable solution for all considered examples.

The implicit TE/TM scheme assures energy and charge

conservation. Usage of damping terms does not violate the

charge conservation and allows one to suppress the high

frequency noise generated due to the transverse dispersion.

The dispersion relation of the damping scheme was

analyzed.

The high overall accuracy of the scheme was demon-

strated for realistic collimator problems. The scheme al-

lows one to use a moving mesh and thus to calculate wake

fields of very short bunches for a range of problems, for

which presently available 3D codes experience severe

problems.
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