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Abstract—Care issues and costs associated with an increasing
elderly population are becoming a major concern for many coun-
tries. The use of assistive robots in “smart-home” environments has
been suggested as a possible partial solution to these concerns. A
challenge is the personalization of the robot to meet the changing
needs of the elderly person over time. One approach is to allow
the elderly person, or their carers or relatives, to make the robot
learn activities in the smart home and teach it to carry out behav-
iors in response to these activities. The overriding premise being
that such teaching is both intuitive and “nontechnical.” To evaluate
these issues, a commercially available autonomous robot has been
deployed in a fully sensorized but otherwise ordinary suburban
house. We describe the design approach to the teaching, learning,
robot, and smart home systems as an integrated unit and present
results from an evaluation of the teaching component with 20 par-
ticipants and a preliminary evaluation of the learning component
with three participants in a human–robot interaction experiment.
Participants reported findings using a system usability scale and
ad-hoc Likert questionnaires. Results indicated that participants
thought that this approach to robot personalization was easy to
use, useful, and that they would be capable of using it in real-life
situations both for themselves and for others.

Index Terms—Activity recognition, robot companion, robot
learning, robot personalization, robot teaching.

I. INTRODUCTION

A
SSISTIVE robots in “smart-home” environments have

been suggested as a possible cost and care solution to

demographics changes characterized by an increasing elderly

population [1], [2]. The vision is that service robots are available

in the home to help and assist elderly residents. Furthermore, the

robot might also motivate and provide active support in terms of

reablement—defined as “Support people ‘to do’ rather than ‘do-

ing to / for people”’ [3]—and co-learning—working together

to achieve a particular goal. Thus, the assistive robot and the

person form a partnership which is ever changing and evolving

to meet the changing needs of the elderly person as they age,

the robot effectively becoming a trusted companion to the per-

son. We define this mechanism of providing support, assistance,

and active engagement over time as personalization. This paper

describes an approach to service robot personalization based on
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end-user robot teaching and learning designed to be used by

carers, relatives, and elderly persons themselves. Personaliza-

tion has been shown in longitudinal studies to reinforce rapport,

cooperation, and engagement with a robot [4].

The work described in this paper uses a commercially avail-

able robot, the Care-O-bot3 [5]. The robot resides in a fully

sensorized but otherwise completely standard British three bed-

room semi-detached house (we call this the robot house). This

environment is more ecologically valid than a scientific labora-

tory for evaluating human–robot interaction (HRI) studies.

II. PROBLEM DEFINITION

A. Co-learning and Reablement

The idea of co-learning in this context refers to the situation

whereby a human user and a robot work together to achieve a

particular goal. Typically, the robot can provide help and assis-

tance, but in return also requires help and assistance. Usually,

the human teaches the robot how to solve a problem; however,

the robot can also assist by suggesting to the human that it has

particular capabilities and techniques which may prove fruit-

ful. This concept is extended by considering that the robot will

need to learn from the user about the user’s activities and sub-

sequently be able to exploit this information in future teaching

episodes. This means that cooperation will typify the user’s in-

teraction with the robot. The concept of reablement [6] exploits

the co-learning capability in order not to disenfranchise the

human partner. Thus, rather than passively accepting imposed

solutions to a particular need, the user actively participates in

formulating with the robot their own solutions and thus remains

dominant of the technology and is empowered, physically, cog-

nitively, and socially. This idea is extended by ensuring that the

robot engages in empathic and socially interactive behavior. For

example, the robot should not attempt to encourage immobility

or passivity in the user, but to reable the user by making moti-

vating suggestions to persuade the user to be active or engage in

an activity in the home. For example, it could prompt the user

to carry out tasks, for example, writing a greeting card after re-

minding the user of a relative’s birthday, or bring relevant events

to the user’s attention and suggest to the user an activity in order

to avoid social isolation. Thus, the user–robot relationship is one

of mutually beneficial support, assistance, and companionship.

B. Background

Achieving personalization presents many challenges for a

companion robot. Simple scripting of interactions will not

achieve the above aims due to the dynamics of the interaction

and the key requirement of the robot to develop and learn.
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1) Robot Teaching and Learning: Approaches in robot

learning attempt to derive a policy based on one or more demon-

strations from the user and subsequently execute that policy at

the appropriate time. Other key challenges are how to refine

the policy from further demonstrations, how to scaffold differ-

ent policies together to form more complex robot behaviors,

and how to allow the robot to inform the user of its exist-

ing repertoire of policies. For a more detailed surveys, see [7]

and [8].

2) Learning by “Following”: This approach typically in-

volves both robot and user sharing a close context. The robot

often uses a vision system or some other sensory modality (e.g.,

infrared sensors, electronic markers) to detect the presence of the

user and then follow him/her. By closely following the user, the

robot is able to approximately experience the same perceptions

as those experienced by the user. Thus, the “state” of the user,

which is not normally perceivable by the robot, can be perceived

indirectly. The “following” approach has been used in work by

Nicolescu and Mataric [9], where a mobile robot tracks a human

teacher’s movements by following the teacher and matching pre-

dicted postconditions against the robot’s current proprioceptive

state. It then builds a hierarchical behavior-based network based

on “Strips” style production rules [10]. This work attempts to

provide a natural interface between robot and a teacher (who

provides feedback cues) whilst automatically constructing an

appropriate action-selection framework for the robot. During

the learning process the robot can use external environmental

perceptions and any available internal proprioceptive feedback

in order to replicate the user’s behavior (for a more detailed

discussion, see [11]). In the personalization research reported

in the current paper, we exploit many of these techniques; how-

ever, external sensory cues are provided to the robot exclusively

via the smart home sensors.

3) Behavioral Cloning: Behavioral cloning is used primar-

ily as a way of encoding human knowledge in a form that can be

used by a computational system. The actions of a human subject,

who will be typically operating a complex control system, are

recorded and analyzed. The actions and decisions are extracted

and used to control the system without human presence. An ex-

ample of behavioral cloning is Claude Sammut’s “learning-to-

fly” application [12], [13], where recordings of control parame-

ters in a flight simulator flown by human subjects were analyzed

using Quinlan’s C4.5 induction algorithm [14]. The algorithm

extracts a set of “IF–THEN” control rules. Van Lent and Laird

extended this work by providing a user interface which could

be marked with goal transition information [15]. This allowed

an action selection architecture to be constructed using “Strips”

style production rules [10]. In the current paper, we also provide

the house resident with an interface for teaching robot behaviors

based on previously learnt activities using Quinlan’s C4.5 rule

induction system. The resulting robot behavioral rules are also

based on a production rule approach.

4) Learning by Demonstration: Learning by Demonstration

normally refers to the direct interaction between a human teacher

and a robot.1 The interaction is direct because the teacher sends

1”Learning by Demonstration” is often also used in a wider sense to denote
all of the research areas that study robot teaching.

instructions to the robot directly through some external control

mechanism (e.g., a joystick or screen based GUI). This direct ap-

proach avoids many of the complexities of the Correspondence

Problem [16]. Early work by Levas and Selfridge [17] controlled

a robot via teleoperation and then used the robot’s propriocep-

tive feedback to construct a set of production rules. Teaching

service robots by observing humans in this manner have also

been carried out by Dillman et al. [18]–[21]. Kaiser trained vari-

ous robotic platforms in order to compute a control policy using

function approximation techniques and recognized the impor-

tant role of the human teacher in providing feedback. Similar

observations have also been made by Thomaz and Breazeal [22].

5) Learning From Observation: Learning from Observation

normally decreases the closeness of shared context between

learner and user. Thus, the robot operates by sharing context

with the user but at a distance. This research relies on recog-

nizing human motions and thus faces a difficult vision problem.

In order to obviate this problem, complex vision techniques are

sometimes employed. Often, however, the problem is simplified

using colored markers or some other tagging technique. Exam-

ples of learning using an observational approach include [23]

and [24] where hierarchical and symbolic representations of as-

sembly tasks are learned from human demonstration. Johnson

and Demiris [25] use learning from observation in their work

where coupled inverse and forward models [26], [27] are used

to allow a robot to imitate observed human actions and recog-

nize new actions. In the smart home context described in this

paper, we do not directly use observational approaches but use

the human feedback derived from the house sensor activations

(including human location tracking).

C. Teaching and Learning in Smart Home Environments

Teaching, learning, and adaptation in smart home environ-

ments tend to be based more on automatic service discovery

where the home automatically learns the daily activities of the

resident. Often called “Cognitive Robotic Ecologies” they at-

tempt to understand the requirements of the house residents

based on perception, planning, and learning from the house

“ecology” and derive robotic actions to service these require-

ments. These methods face problems in identifying the infor-

mation needed to make these judgments and to identify the

appropriate teaching information to adapt such services.

Typical approaches include capturing and merging sensor

information via machine learning techniques and then predicting

resident behavior [28]–[30], the majority of which use labeled

training examples built from annotation of resident activities.

However, labeling can be costly and time consuming.

III. METHODOLOGICAL FORMULATION

Our work allows the house resident to personalize the robot

to meet their changing needs and to exploit the robot’s existing

competencies to achieve this where necessary. All basic activ-

ities, be they robot behaviors or house sensory states, can be

easily interpreted by the house resident. Furthermore, the un-

derlying design ensures that any new behaviors or activities can

be interpreted as basic activities and exploit any services that

apply to these activities.
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A. Extending the Idea of a Sensor

Consider a situation where the elderly resident has a robot that

is capable of navigating autonomously around the house, can

move to the user’s location, is equipped with a raisable tray, and

has the ability to “speak” text strings. She would like the robot to

always be present in the kitchen when she is using the microwave

in order to carry items back to the dining table. She might teach

the robot to do this by providing simple directives such as

If the microwave is on

then go to the kitchen and raise

your tray

In this example, the microwave sensor is a basic physical

sensor, and the robot actions are navigation and tray actuation.

Simple sensory information could also be enhanced with tem-

poral constraints. For example:

If the microwave has been on

for more than 5 minutes

Then go to the user location

and say ‘the microwave is

still on’

Furthermore, the simple sensory states could be replaced by

states with higher levels of meaning. For example:

If ‘food is being prepared’

then come to the kitchen

where the sensory state “food is being prepared” is derived

from activity recognition (for example recognizing that the mi-

crowave or main oven or fridge were being used). Additionally,

these higher states could be temporally extended:

If ‘food is being prepared’

and this has been happening

for more than

30 minutes

then go to the user location

and say ‘I think you are making

a meal, do you need help?’

Similar grouping of basic robot actions should also be possi-

ble. Thus, simple sets of robot actions such as

go to user location, lowering tray

if tray empty

could simply be labeled:

come to me

By enabling constructs of this kind, the robot behavior per-

sonalization is enhanced. Consider a carer setting up a robot

behavior to remind the elderly resident that her daughter visits

her in the afternoon on Tuesdays and Thursdays:

If it is Tuesday or Thursday and 1pm

then ‘come to me’

and say ‘Irene is coming to

visit you today’

In this paper, the definition of “sensory state” is expanded

to include both physical and semantic states and the definition

of robot action expanded via the ability to “scaffold” robot

behaviors [31] to create more complex but semantically simpler

behaviors. This makes the overall system easier to understand

and hides the technical complexities of robotics and smart home

systems from the user.

Two complimentary approaches to achieving this level of

personalization were designed and called “Teach Me/Show Me.”

These were implemented as a program running on a laptop

computer. The “Teach Me” system allows residents’ to define

and test robot behaviors based on both house sensory activities

and basic robot actions. These new behaviors, once defined, can

be used to create more complex behaviors. The “Show Me”

system allows the resident to “show” the robot new activities

(such as “preparing a meal”) by simply carrying out that task.

Once learned that activity becomes part of the available sensory

activities exploitable by the Teach Me system.

An advantage of this approach is that there is no pre-labeling

of activities. Labeling of sensory combinations of all types is

effectively carried out by the resident. The resident thus per-

sonalizes requirements and is thus enabled and enfranchised by

being at the center of the personalization process.

B. System Architecture

We regard the house as one entity rather than as a collec-

tion of individual parts. In practice, this means that the house

sensor information is considered to be no different from robot

sensor information, the sensory information derived from the

occupants activities or from semantic sensors. This provides the

bedrock for the main focus of our work enabling co-learning

and reablement by not artificially treating the robot, user or

the house as separate entities but rather focus the generation of

behavioral activity on the complete system.

1) Robot House Ontology: The robot house consists of sen-

sors, locations, objects, people, the robot and (robot) behaviors.

These were analyzed to yield a house ontology instantiated in

a “mySQL” database. Procedural memory, defined as the robot

actions together with pre- and post-behavioral conditions, is also

held as tables in the database. However, the rules are encoded as

SQL statements, which refer back to the semantic information

created by the sensor system.

2) Robot Capabilities: We use the Care-O-bot3 (see Fig. 2)

designed for research in assistive environments. It uses ROS

navigation [32] using its laser range-finders to update a map

of the house in real time and can thus navigate to any given

location whilst avoiding obstacles and replanning routes. The

robot is equipped with facilities for manipulating the arm, torso,

“eyes,” robot LED’s, tray and has a voice synthesizer to express

given text. High-level commands are sent via the ROS “script

server” mechanism and interpreted into low-level commands

by the robot software. Typical commands would be “raise tray,”

“nod,” “look forward,” “move to location x,” “grab object on

tray,” “put object x at location y,” and “say hello.”

3) Robot House Sensors: All sensory information (both

from physical and from semantic sensors) is held in a “sen-

sors” table and a “sensor logging” table in the database. Each
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Fig. 1. Interior of the robot house “living room” with the Care-O-Bot3 robot.
The images on the left side of the picture show the view from the robot camera,
the robot itself, and the real-time mapping visualization showing person and
robot location.

Fig. 2. Layers in operation in the robot house. Sensory information from the
robot, house and people together with semantic sensors update the database in
real time. Taught behaviors use these sensors to access behavioral preconditions
and may set semantic sensors during execution. All behavioral preconditions
are continually evaluated by the scheduling system and become available for
execution if all preconditions are met. Actions that require planning call an HTN
planner. Lower level functions such as navigation and arm manipulation work
at a reactive level.

individual sensor is held as a row in the sensors table and each

row provides the instantaneous value of the sensor as well as

the time it changed and its previous value. Each row in the log-

ging table contains the historical sensor value over time. The

“TeachMe” system uses only the current and previous sensor

values, whereas the “ShowMe” system exploits the historical

sensor log. The robot house (see Fig. 1) contains around 50

“low level” sensors. These range from electrical (e.g., fridge

door open), to furniture (e.g., cupboard door closed), to services

(e.g., toilet flushing, taps running) and pressure devices (e.g.,

bed occupied). Sensory information from the robot is also sent

to the database or, for high throughput, is acquired via ROS mes-

saging [32]. In addition user locations are known to the robot via

ceiling mounted cameras [33] and robot locations are available

via ROS navigation [32] in a common framework. There are an

unlimited number of semantic sensors dependent on what the

resident teaches the robot.

4) Behavior Encoding: Behaviors are automatically gener-

ated from the teaching facilities in Section III-C. However, each

behavior generated follows a template similar to Nillson’s T-R

formalism [34] of evaluating preconditions, followed by execu-

tion of robot actions and updating of postconditions. Precondi-

tions can be applied to any form of sensory information, both

set by the environment or set at a “semantic” level. An example

of such a behavior:

IF the oven has been on for 90 minutes

// house sensor precondition

AND the user has not already been

reminded

// semantic sensor precondition

THEN ‘come to me’

// scaffolded robot action

say ‘The oven has been on for

a long time’

// basic robot action

update the database to signal

that the user has been reminded

// set semantic sensor

// post-condition

The preconditions would be automatically encoded by the

teaching system as SQL statements (two SQL statements repre-

senting preconditions would be generated for the example given

above):

SELECT * FROM Sensors

WHERE sensorId = 50

AND value = ‘On’

AND lastUpdate+INTERVAL 5400

SECOND <= NOW()

SELECT * FROM Sensors

WHERE sensorId = 701

AND value = ‘notReminded’

If a row is returned from the execution of the SQL state-

ment, then that precondition is deemed to be true, otherwise

false. Typical robot actions, e.g., calling the navigation system

to move the base, making the robot say something, and updating

a semantic sensor are shown below:

base,0,[4.329:0.837:51],999,wait

speak,0,The oven has been on for a

long time

cond,701,reminded

These commands, depending on the command type (e.g., for

the example above, “base” moves the robot, “speak” invokes

the voice synthesizer, and “cond” sets the value of a semantic

sensor), would then either be sent to the planner (see Section III-

B9), or sent directly to a lower level control module if planning

was not required.

5) Sensors and Sensor Abstraction: All sensory informa-

tion updates the database in real time and all robot behaviors
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continually retrieve information from these sensors to assess

whether their behavioral preconditions are met allowing behav-

ioral scheduling and execution (explained in Section III-B11).

Behaviors will continue to execute if their preconditions remain

true or unless they are pre-empted by a higher priority behavior.

6) Semantic Sensors: In order to cope with ongoing events

in the house which are not reflected by the physical house sen-

sors a set of “semantic sensors” can be created by the teaching

system, e.g., a sensor with the label “User has been reminded

that the oven is on.” This latter sensor would be set to ‘re-

minded’ following the spoken oven reminder in the example in

Section III-B4 above. Similarly, an activity context recognition

system can update semantic sensors in real time based on the

“Show Me” system described in Section III-C2 below. Thus, if

the user has shown the system what activities constitute “prepar-

ing a meal,” then the “preparing a meal” semantic sensor would

be set to “true” when these events occur.

7) Temporal Aspects of Sensors: Using sensors at a physical

and semantic level provides the opportunity to apply temporal

constraints. Consider a doorbell; this type of sensor is “on” only

for a short period of time, and thus, rather than ask “Is the

doorbell ringing?” we would ask “has the doorbell rung within

the last 30 s?” This is checked by holding episodic values and

we can query previous values at a previous point in time:

SELECT * FROM Sensors

WHERE sensorId = 59

AND lastActiveValue > 0

AND lastUpdate+INTERVAL 30

SECOND >= NOW()

The further capability of assessing how long a sensor has

been active (or inactive) allows for greater behavioral expres-

sivity [35]. For example, “Has the user been sitting on the sofa

for longer than 2 h?” “has the user been reminded to call his

friend Albert this week?” These encoding facilities can, there-

fore, cope with a very wide range of situations and capture

information related to current activity, past activity, and socially

desirable activity, the latter being primarily set through the cre-

ation of semantic sensors.

8) External Sensors and External Actions: The sensor sys-

tem provides a standardized way of encoding information and

provides possibilities for associating semantic sensors with

other, typically external, events. For example, by polling an

external weather service it would be possible to set a “weather”

sensor. This could be checked by a behavior which might sug-

gest that this was a good day for a walk, or to do some garden-

ing. This way, the idea of reablement can be operationalized.

External actions could also be run, for example calling a text

messaging (SMS) service. For example, a behavior that checks

whether the bed pressure sensor had been active for more than

12 h and that there had been no activity in the kitchen might

then send a text message to the user’s caregivers suggesting that

the person might need assistance to get out of bed.

9) Planning: Our general approach is to plan only when

needed and when necessary. The overall behavior of the system

is driven primarily by the environmental conditions via house or

semantic sensors values queried via behavioral preconditions.

Behaviors are explicitly scheduled. However, there are instances

where, due to multiple choices being available for robot action

(e.g., in a multiroom environment, navigation may take multiple

paths), or when there is conflict between available resources

when planning is necessary. We consider that creating planning

domains to be too complex for end-user involvement and we

precode these where necessary.

10) Planning Domain: We use an open-source state-of-the-

art hierarchical task network (HTN) planner (SHOP2 [36]) to

cope with these situations. We follow the approach in [37] and

[38], in that each planning domain is individually coded in the

lisp-like syntax of SHOP2 and called when the high level action

is required. SHOP2 returns the planning actions as robot actions.

After each action execution, we recall the planning component

just in case the environment has changed between actions.

11) Preemptive Scheduling: Behaviors can be created via a

technical interface [39], used when the system is first installed

by technical personnel or by the end user using the “TeachMe”

facility described in this paper. The “technical” interface allows

a priority to be given to each behavior whereas the “TeachMe”

system sets all created behaviors to have the same priority.

On execution, the scheduling system continually checks all of

the preconditions of all of the behaviors (in a manner similar

to [40]). Should all of the preconditions of a behavior be sat-

isfied the behavior becomes available for execution, with the

highest priority behavior being executed first. Priority ties result

in a random choice of behavior for execution. Due to continual

checking of all behavioral preconditions, behaviors may become

valid or invalid for execution as the currently executing behavior

operates. In this manner, the set of environment and semantic

sensors drive behavior execution. Some behaviors can also be

set as non-interruptible, for example if a behavior was reporting

on a critical house event—such as the bathroom taps running

for a long time.

C. Teaching and Learning Interfaces

The teaching interface allows users to create robot behaviors,

the learning interface allows users to create higher level semantic

sensors for use by the teaching system. For example, the user

might create a sensor called “relaxing in the afternoon” using

the learning system and exploit it in a robot behavior such as “If

I am ‘relaxing in the afternoon’ for longer than 3 h remind me

to take some exercise.”

1) Teaching Interface—“Teach Me”: In order to create be-

haviors, the user as a minimum would need to specify what

needs to happen (the actions of the robot) and when those ac-

tions should take place (setting preconditions based on the val-

ues of physical or semantic sensors). Having specified “what”

and “when” the system automatically generates many of the

sub-behaviors required to operationalize the system. It does this

by using templates. This simplification trades generality for ease

of use so that the system can be used by non-experts in real-life

scenarios.

Consider a user who wants to be reminded to take medicine

at 5 P.M. If we were to create this task, individual behaviors

would need to be created to associate each precondition with the
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TABLE I
TAUGHT ROBOT BEHAVIORS INCREASING IN BEHAVIORAL COMPLEXITY

Taught Behaviors - Set 1

Whenever you open the microwave oven, make the robot come to

the kitchen and wait outside.

If the TV is ON, and you are sitting on the sofa, make the

robot join you at the sofa.

If the doorbell rings and the TV is ON, make the robot say

“There’s someone at the door” and then go to the Hallway.

Taught Behaviors - Set 2

Make the robot come to the table and remind you to always call

your friend “Mary” on Thursday at 2 P.M.

On Mondays, Wednesdays, and Fridays make the robot stand in the

hall and remind you that your lunch is being delivered at 12:30 P.M.

If you are sitting on the sofa for more than 30 min, make the

robot come to the sofa and tell you to take some exercise. Make the

robot do this again after another 30 min if you are still sitting there.

Make the robot come to the table and remind you to take your

medicine at 12 P.M. and 4 P.M. every day, yellow pills at 12, pink at 4 P.M.

Taught Behaviors - Set 3

Make the robot come to the sofa and tell you to “move about a bit,”

if, in the afternoon, you have sat on the sofa for longer than

1 h continuously.

If it is after 9 P.M., and you have left the sofa for over 5 min

and the TV in ON, make the robot go to the hall entrance and say

“turn off the TV.”

If the microwave has been open or on for more than 1 min, make

the robot come to the table and tell you that the microwave is open

or ON. Make the robot remind you every minute until the microwave

is turned OFF and door is closed.

appropriate sensor, including the semantic sensors, effectively

creating two behaviors, one to carry out the task and one to reset

conditions, as follows:

1) The first behavior would need to check that the time was

after 5 P.M. and that the user had not been already re-

minded, i.e., a “user not yet reminded” semantic sensor

would be true. If both of these conditions are true, then

the robot carries out a procedure of moving to the user

and saying “It’s time for your medicine” then resetting

the semantic sensor to false to indicate that the user has

been reminded.

2) At some point later, a second behavior would need to run,

which in this example would be: if after midnight, reset

the “user not yet reminded” sensor to true so that it can

fire the next day.

Thus two behaviors need to be created, and careful alignment

of reminder rules need to be inserted.

However, the sort of behaviors (see Table I) that we envis-

age users setting up themselves tend to follow a set of common

templates, e.g., diary like functions, or direct actions based on

sensory conditions in the house. We can, therefore, exploit these

templates to generate the appropriate conditional logic. The tem-

plate in the example above is based on “diary” like conditions

and the automatic setting and creation of support behaviors

(such as the resetting behavior above). In this manner, much

of the cognitive load is removed from the user and left to the

behavior generation system. Co-learning is operationalized by

allowing the robot to provide details of its existing sets of skills

that can then be exploited by the user. Reablement is supported

simply in the act of teaching the robot.

The standard template for “diary like” robot actions is as

follows:

Entered by user via GUI:

reminderTime = t (e.g. 5pm)

textItem e.g. ‘Have you taken

your medicine?’

repeatAfter = n (e.g. 60 seconds)

<other robot actions> e.g. ’’Move

to user’’

Created automically:

Cond-Reminder = TRUE

Cond-Remind-again = FALSE

Then create the following robot behaviors automatically:

1) ReminderX-reset: % resets conditions

IF NOW between midnight and t

AND

Cond-Reminder = FALSE

SET Cond-Reminder = TRUE

SET Cond-Remind-again = FALSE

2) ReminderX: % the actual diary

reminded

IF NOW >= t

AND

Cond-Reminder = TRUE

EXECUTE <other robot actions>

SAY <text item>

SET Cond-Reminder = FALSE

SET Cond-Remind-again = TRUE

An example of the user teaching GUI is in Figs. 3 and 4 and

displays the actions a person would use to create the example

behavior above. The steps consists of “what” the robot should

do followed by “when” the robot should do it.

1) The user chooses to send the robot to the current user

location and then presses a “learn it” button. This puts the

command into the robot memory.

2) Then the user makes the robot say “It’s time for your

medicine.” This is not in the robot’s current set of skills

and is entered as a text input. This is followed by a press

of the “learn it” button.

3) Now the two actions are in the robot’s memory and the

user completes the “what” phase and starts on the “when”

phase.

4) The user is offered a number of choices including reacting

to events in the house, or user or robot locations or a diary

function (second screen in Fig. 3).

5) The user chooses a diary function and enters 17:00 in the

“at this time” box (first screenshot shown in Fig. 4).

6) Again this is followed by pressing the “learn it”

button.
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Fig. 3. Screenshots of the teaching interface (note that not all screens are
shown—see main text and Fig. 4). In the top figure, the user has entered the
words that the robot is meant to say. The second screen allows choice of differing
activities, such as polling sensors or setting diary events.

Fig. 4. Final 2 screenshots of the teaching interface. The top image shows the
diary option selected in this case and the condition “after 5 P.M.” is entered. The
bottom screen shows the final behavior created.

7) Having completed both “what” and “when” phases the

user is shown the complete behavior for review and can

modify it if necessary (bottom of Fig. 4).

8) Once happy the user presses a “make me do this from now

on” button and the complete behavior becomes part of the

robot behavioral repertoire.

2) Learning Interface—“Show Me”: The “Show Me” ap-

proach is contingent on the house occupant indicating to the

robot that activities are underway. For example, the person might

indicate that he or she are “preparing food.” Activities typically

have a nested and sometimes hierarchical nature. For example,

“preparing food” might include “making a hot or cold drink” or

“using the toaster.” The start and end times and durations of the

main task and the sub-tasks are variable. However, when any of

the subtasks are active (e.g., using toaster) the main task must

also be active (i.e., preparing food).

Consider that the person has indicated to the robot that he or

she are “preparing food” and at some point also indicated that

he or she are now “using the toaster.” If the robot learns the set

of sensory activities associated with these tasks it should be able

to recognize them when they occur in the future. Thus, the robot

would recognize when the toaster is active and infer not only

that “using the toaster” is true but also that “preparing food” is

true.

Given that these activities can be recognized by the robot (via

the house sensory system), it would then be possible to exploit

these in the teaching system and the person would be able to

teach the robot based on the higher level semantics associated

with the task. For example, the user might teach “When I am

‘Preparing food,’ the robot should come to the kitchen and raise

its tray.”

The learning system provides symbolic entries by automati-

cally creating semantic sensors labeled with the descriptive term

(e.g., “preparing food”) provided by the user. These can then be

exploited to create new behaviors on the robot.

The challenges for a learning system are to recognize that

learnt situations can be active in parallel, have an implicit nested

hierarchy, and that higher levels in the hierarchy (typically)

represent higher level of semantic knowledge. These need to

be represented as lexical symbols in the memory architecture

which the teacher can then exploit.

3) Approach to Learning: To learn typical activities in the

house the robot needs to recognize when these situations re-

occur. This recognition would be primarily based on the current

sensory state of the house; however, in more complex circum-

stances, both the historical sensory state and a predicted future

sensory state may also be necessary (for example, in historical

terms, to recognize that the postman called this afternoon, or in

the predicted sense, that the house occupant is likely soon to go

to bed). In the work presented in this paper, we only consider

the current sensory state.

We also have to consider that the certainty of situations cannot

always be represented by a simple true/false dichotomy. For

example, if I am in the kitchen it is likely I am preparing food,

but it is not a certainty. The confidence of the task assessment

by the robot has to be considered.
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Our approach falls under the banner of ambient activity recog-

nition in that house resident activities are modeled by analyzing

a sequence of ambient sensor events. The various approaches to

this research area typically apply supervised machine learning

techniques such as decision trees/rule induction [41]) (as is used

in the studies presented in this document), HMM’s and dynamic

Bayesian networks [42], template matching techniques such as

k-NN [43] or dynamic windowing techniques [29]. Sensor data

are typically pre-labeled by an external observer (although some

techniques also search for common patterns in daily activities

[28]). Our approach differs from a strict supervised learning ap-

proach in that the house resident is responsible for “labeling” the

data and does this by providing the label and then carrying out

the activity, while the system records and automatically assigns

the label to the sensory data. The newly acquired activity can be

subsequently used for direct robot teaching. Activity recogni-

tion is based on streaming vectorized sensor data—an approach

which allows multiple activity patterns to be recognized in

parallel.

The memory system is based on rule sets held as behaviors;

these are human readable and taught by the human using the

teaching system. Ideally, a learning system should be human

readable. We employ a rule induction approach to learning based

on Quinlan’s C4.5 Rule induction algorithm (C5.0) [14] which

allows generation of rule sets in human readable form.

4) Verification of Approach: In order to verify the plausi-

bility of our approach, we exploited some existing end user

behavior data [44].

In these previous studies, 14 participants were asked to carry

out a series of typical daily activities within the house. Each

participant took part in two sessions of approximately 45-min

duration each. In the first (training) session, the experimenter

suggested to the participant particular tasks that should be car-

ried out. In the second (test) session, the experimenter asked

the participant to carry out any of the tasks (or none) at their

own discretion. All house sensory data were recorded and all

sessions videotaped. The video tapes were annotated by Duque

et al. [44] and an external observer and marked with the task and

subtask start and end times. These were then matched against

the recorded sensory data. Duque et al’s. [44] aim was to manu-

ally create a rule-set, derived from the training sessions, which

could be applied to the test data and accurately predict the activ-

ity that was being carried out by the participant. This rule set was

constructed and applied to the test data resulting in recognition

accuracy (based on precision, recall and accuracy) of over 80%.

In the work presented in this paper, we tested the plausibility

of our approach by replacing the designer generated rules with

rules automatically derived using the C5.0 algorithm. We then

assessed the performance of this approach.

The training data for the 14 participants was used to train

a learner using C5.0 with boosting over 10 trials. The learner

was then applied to the test data and the resulting performance

analyzed for four activity states displayed on ROC curves (see

Fig. 5).

Each data point in the ROC curves indicate a participant’s

training or testing session. Also shown are the combined re-

sults after aggregation of data of all of the 14 participants into
Fig. 5. ROC curves showing the results of the applying the induction system
on both the training and testing data for four categories of classification.
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Fig. 6. “Show Me” learning GUI. Here, the user has entered “Preparing Food”
and when ready presses the “press me to start showing the robot” button. They
then carry out actions associated with preparing food (e.g., starting the mi-
crowave oven). If a subtask is required (in this case “Preparing a Hot Drink”),
the user can continue to enter new tasks up to a maximum of three levels deep.
Once each task completes, the user presses the red “Press me when you have
finished” button. Testing can be carried out by pressing the “Test Me” button.
This operates in real time and allows the user, while repeating the task, to check
if the system correctly identifies it. A probability % is also given based on the
predicted accuracy of the real-time classifier using the learned rules. The color
of the classifier symbol turns green if the probability exceeds 50%. Note that the
system automatically creates lexical symbols which are then available within
the robot teaching interface. In the testing example (shown being tested with
the house simulator), the microwave is ON; therefore, the system infers that
“Preparing Food” is 80% certain. However, as the kettle is off, “Preparing Hot
Drink” is very unlikely (0%).

one dataset. Clusters that occur in the top left quadrant of the

ROC curves indicate a strong level of learning and recognition

performance.

The ROC analysis indicated that such a learning approach can

allow the robot to recognize human activities in the robot house.

However, in a “real” situation we are faced with having no

observer of human actions and no annotator of those actions to

derive a classification set. To address this issue, we allowed the

house occupant to become the observer/annotator by informing

the robot when tasks are starting and finishing. To carry this

out, an end-user training GUI was developed which we called

“Show Me” (see Fig. 6). The GUI allowed users to state what

they are currently doing (up to three hierarchical levels) and

subsequently test whether the system correctly recognizes these

actions.

5) Learning and Execution Mechanism: Data for the induc-

tion algorithm are held as a table of single row sensor vectors

each labeled with the user-defined text provided by the GUI.

The sensor vectors are used by C5.0 to produce its rule sets.

These rule sets are then applied in real time to incoming sen-

sory data from the house. The effectiveness of the rule set is

Fig. 7. “Show Me” system first asks the user to provide a label for the activity
and captures vectorized sensor data to a file in real time. The recorded file is
subsequently processed by the C5.0 algorithm resulting a rule set. The system
also creates a semantic sensor labeled with the name given by the user. Real-time
sensory data from the house and robot is queried by the rule set generated by
C5.0, which results in the labeled semantic sensor being set either true or false.

expressed by C5.0 as a percentage. If this percentage exceeds

50%, the labeled semantic sensor is set to true, otherwise false.

A pictorial representation of the process is shown in Fig. 7.

IV. EVALUATION OF THE TEACHING AND LEARNING SYSTEMS

A. Procedure for the Teaching System—“Teach Me”

The evaluation of the template-based teaching system in-

volved 20 participants. The experimental procedure is outlined

in Table II.

Each participant was introduced to the experimenter, a tech-

nician, and the experiment psychologist. The technician was

present to ensure the safety of the participant (a requirement of

the ethics agreement) and stationed in a part of the room outside

the main interaction area.

The psychologist asked the participant to complete: a consent

form, a demographics form, a questionnaire assessing computer

and robot experience, and the Ten Item Personality Inventory

(TIPI) [45].

The psychologist retired to a different room. The experi-

menter then explained the purpose of the experiment, the nature

of the sensorized house and the capabilities of the robot (in

this experiment, the robot capabilities were restricted to mov-

ing to differing locations and speaking, although the tray and

arm/gripper were visible).

The robot had previously been taught to approach the exper-

imenter and participant and to introduce itself by saying “wel-

come to the robot house.” This gave the experimenter a chance

to explain the robot capabilities and for the participant to see

the robot in action.

Examples of three sets of behaviors, each with increasing

complexity, were shown to participants (see Table I). The be-

havior relating to “answering the doorbell” in set 1 was used by

the experimenter to show the participant how to use the teaching

GUI.
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TABLE II
EXPERIMENTAL PROCEDURE FOR TEACHME EVALUATION

1. Psychologist: Requests participant completes consent,

demographics, computer and robot experiences

and 10-item personality Inventory (TIPI) questionnaires

2. Experimenter: Explains purpose of experiment, nature of

sensorized house and capabilities of robot

3. Experimenter: Explains sets of behaviors to be taught

to the robot by the participant

4. Experimenter: Shows participant how to use the TeachMe GUI

by jointly creating the “answering the doorbell”

behavior and then testing it

5. Experimenter: Ask participant to choose 1 behavior from each

of the three sets of behaviors (3 in total) and use the

TeachMe GUI to teach the robot each behavior.

Once taught, test and modify if necessary

6. Psychologist: Requests participant to complete

System Usability Scale and Ad-Hoc questionnaires

7. Psychologist: Participant invited to ask questions

and comment on the experience

TABLE III
SYSTEM USABILITY SCALE QUESTIONNAIRE

Modified Brooke’s Usability Scale (5 point Likert scale)

I think that I would like to use the robot teaching system

like this often.

I found using the robot teaching system too complex.

I thought the robot teaching system was easy to use.

I thought the robot teaching system was easy to use

I think that I would need the support of a technical person who

is always nearby to be able to use this robot teaching system.

I found the various functions in the robot teaching system

were well integrated.

I thought there was too much inconsistency in the robot

teaching system.

I would imagine that most people would very quickly learn to use

the robot teaching system.

I found the robot teaching system very cumbersome to use.

I felt very confident using the robot teaching system.

I needed to learn a lot of things before I could get

going with the robot teaching system .

Participants were then asked to choose one behavior from

each set of behaviors and use the teaching GUI to teach the

robot these behaviors.

During the teaching process, the experimenter stayed with

the participant and helped when asked. The post-experimental

questionnaire asked them to indicate whether they thought they

could continue to use the teaching system without the help of

the experimenter. The participant’s use of the teaching system

was also videotaped for later analysis.

Having taught the robot a new behavior, the experimenter

then invited the participant to test it. If the behavior operated

successfully then the participant moved on to teaching the next

behavior in the subsequent set. Alternatively, they could modify

the existing behavior and retest. Having taught all three behav-

iors (one from each set), the experimenter retired to another

room and the psychologist returned and asked the participant to

fill in a post-evaluation questionnaire based on Brooke’s usabil-

ity scale [46] that had been adapted to the HRI domain from

its typical form in HCI (see Table III). A subsequent question-

TABLE IV
COMPUTER USAGE IN THE SAMPLE

Activity Yes No

Work or Study 18 2

Socialising 19 1

Recreation 8 12

Programming 0 20

TABLE V
PERSONALITY IN THE SAMPLE

Mean SD

Extraversion 4.38 1.48

Agreeable 5.35 1.14

Conscientious 5.83 1.15

Emotional Stability 4.85 1.36

Openness 5.17 1.10

naire (see Table VII) was also completed, which focused on the

usefulness of the robot and teaching system specifically.

After completion of the questionnaires, the participant was

invited to ask questions. All of the participants were very inter-

ested to know how the house and robot worked.

B. Results of the “Teach Me” Evaluation

1) Demographics: There were 20 participants in the study:

16 females and four males. The mean age was 44 years, with

a median age of 49 years. The age range was from 20 to 67

years. The computer usage of the participants (see Table IV)

suggests the that majority of participants used computers for

work/studies as well as for social reasons. There was a split

in respect to using computers for recreational reasons, such as

games. None of the participants programmed computers. The

mean number of hours spent on computers was 35 h (SE =
2.98) with a median number of hours of 33. Only one of the

participant had had any experience with robots. Table V shows

the responses to the TIPI in the sample.

2) Responses to the “Teach Me” SUS: The mean participant

response to the System Usability Scale regarding the teaching

interface was 79.75 (SE = 2.29), and the median response was

76.25. These scores were significantly higher than the “neutral

score” of 68 (t(19) = 5.12, p < 0.001).

While considering the relationship between the usability

scores to the “neutral” score the collaborative carer/primary user

usage and training scenarios intended for the “TeachMe/Show

Me” system were different from the more industrial settings

where the SUS is more commonly applied. As such, the score

should be taken as representative of the experienced usability

within the interaction context itself rather than merely a repre-

sentation of the interface [47].

A multiple regression analysis was conducted in order to

investigate demographic predictors of SUS responses to this

task. After removing nonsignificant predictors, the final model

had an adjusted r2 of 0.28, and predicted SUS scores signifi-

cantly (F (2, 17) = 4.70, p = 0.02). The model is described in
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TABLE VI
PREDICTORS OF SUS SCORES

Predictor β SE t(19) p

Intercept 0.00 0.00 0.00 1.00

Age −0.49 0.20 −2.48 0.02

Conscientiousness −0.40 0.20 −2.23 0.04

TABLE VII
FREQUENCIES OF RESPONSES TO THE “TEACH ME” AD-HOC LIKERT ITEMS

Do you think it is useful teach a robot?

Very Useful Useful Neither Not Useful Not at all

18 2 0 0 0

Do you think that you would be able to teach the robot?

Def. Yes Yes Neither No Def. No

10 10 0 0 0

Would you be willing to teach the robot for someone else

e.g. if you were a relative or carer of the other person?

Def. Yes Yes Neither No Def. No

14 6 0 0 0

Do you think that robot should already have been completely

setup by someone else?

Def. Yes Yes Neither No Def. No

1 3 4 11 1

Do you think that the robot should be able to carry out

standard tasks but it would be useful to be able to customize it?

Def. Yes Yes Neither No Def. No

13 7 0 0 0

Is it useful knowing what the robot can already do?

Def. Yes Yes Neither No Def. No

12 8 0 0 0

How would you feel about having a robot suggesting

that you take more exercise?

Very Comf. Comfortable Neutral Uncomf. Very Uncomf.

9 8 2 1 0

How would you feel about having a robot suggesting

that you play a game together e.g. a video game or chess/draughts?

Very Comf. Comfortable Neutral Uncomf. Very Uncomf.

6 11 2 1 0

How would you feel about having a robot warning you

that there was a problem in the house

e.g. fridge left open or hot/cold taps running or TV left on?

Very Comf. Comfortable Neutral Uncomf. Very Uncomf.

18 2 0 0 0

How would you feel about having a robot informing someone

else that there was a problem in the house e.g. by texting them,

if the problem had not been resolved?

Very Comf. Comfortable Neutral Uncomf. Very Uncomf.

12 5 2 1 0

Table VI and suggests that both higher age and higher scores

on the Conscientiousness personality trait were associated with

lower scores on the SUS for this task.

3) Responses to the “Teach Me” Ad-Hoc Questions: Par-

ticipant responses to the ad-hoc Likert items can be found in

Table VII. All participant responded “Very Useful” or “Useful”

when asked if they thought it useful to teach a robot. In addition,

all participants answered “Definitely Yes” or “Yes” when asked

if they thought that they would be able to teach the robot, if they

would do so for a relative, and that they would find it useful to

customize the tasks of a robot beyond a set of standard tasks.

The participants did not, however, agree as strongly on whether

or not the robot should be completely set up by someone else,

with a wider range of responses from the participants.

TABLE VIII
EXPERIMENTAL PROCEDURE FOR SHOWME EVALUATION

1. Experimenter: Explains purpose of experiment

2. Experimenter: Show participant how to use the ShowMe GUI

by jointly creating one of the activities in Table IX

and then testing to see if it worked

3. Experimenter: Ask participant to choose corresponding task

in Table X and teach robot to use this activity.

Once taught, test and modify if necessary

4. Psychologist: Requests participant to complete

System Usability Scale and Ad-Hoc questionnaires

5. Psychologist: Participant invited to ask questions

and comment on the experience

Participants also responded that they were overall “Very Com-

fortable” or “Comfortable” with a robot informing them that

there was a problem in their house, and 17 out of the 20 partic-

ipants answered that they were at least “Comfortable” with the

robot informing a third party about an unresolved problem, but

there was less agreement regarding having a robot suggest that

they play a game or exercise.

As these were ordinal Likert items, exploratory Spearman’s

correlations were carried out.

For wanting the robot already set up, there was a correlation

approaching significant between this and the Emotional Sta-

bility personality trait (ρ(20) = 0.40, p = 0.08) indicating that

participants with higher scores along this dimension were less

likely to want the robot fully set up by someone else. There

was also a trend approaching significance for this item and Age

(ρ(20) = −0.37, p = 0.10), in which older participants were

more likely to want the robot already set up.

There were no significant relationships between comfort with

the robot suggesting that one take more exercise and the demo-

graphic measures.

There was a significant relationship between Age and Comfort

regarding the robot contacting a third party in case of a problem

(ρ(20) = −0.53, p = 0.02), where older participants were more

comfortable with this.

4) Teaching Behaviors—“Teach Me”—Summary of Results:

Participants found the interface easy to use. Moreover, all par-

ticipants indicated that they felt able to use a system like this

to teach the robot, and willing to use such a system to set-up

behaviors for an elderly relative or person in their care.

In terms of individual differences, there are some salient rela-

tionships. The relationship between Age and SUS scores are not

unexpected. The older members of the sample found the system

more difficult to use than the younger participants. Related to

this is the impact of age on the ad-hoc item regarding wanting

the robot to be already set up by someone else. Here, older par-

ticipants were more likely to want the robot being fully set up

than younger participants.

Taken together, the current stage of this teaching system may

be better suited for use by carers and relatives of elderly people

to set up the robot’s behaviors for them.

The relationship between items covering the possibility of

the robot contacting third parties in case of problems, and Age

is also interesting (and we envisaged that this would be a key

item that may be taught to the robot). While one explanation
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TABLE IX
SET OF ACTIVITIES USED FOR THE “SHOW ME” EVALUATION

Create an activity called ‘Watching TV.’

Create an activity called ‘Relaxing on the Sofa.’

Create an activity called ‘Preparing a hot drink.’

Create an activity called ‘Preparing a Ready Meal’ using the

microwave

Create an activity called ‘Kitchen Activities’ which is active when

‘Preparing a hot drink’ or ‘Preparing a ready meal’ or when any other

kitchen activity is being carried out

TABLE X
SET OF BEHAVIORS TAUGHT AS PART OF THE “SHOW ME” EVALUATION

Teach the robot that if it is 7.30 and you are ‘Watching TV’

then remind you that your favourite program is about to start.

If you have been ‘Relaxing on the sofa’ for more than 30 min

make the robot come to the sofa and tell you to ‘move about a bit’

If there are ‘Kitchen Activities’ make the robot come to

the kitchen and offer to carry the drink or meal to the dining table

for this result may be that older participants were closer to

having to consider these scenarios in their own lives than their

younger counterparts, a more likely explanation may be that the

older portion of the sample were more likely to have had more

experiences with caring for elderly parents or other relatives and

so might identify more strongly with the third party that is to

be contacted. Some of the informal responses from participants

during the debrief of the study did reference such experiences.

C. Learning System—“Show Me”

A preliminary evaluation of the learning system involved

three persons, all female aged 58 to 66, who were “informal”

carers. They typically looked after an elderly relative. All had

previously been exposed to the “Teach Me” system.

1) Procedure: The experimenter explained the purpose of

the study and ensured that they understood the instructions. The

experimenter then chose one of the activities in Table IX and

explained to the participant how to use the “Show Me” GUI

to allow the robot to learn about this activity—typically by

actually carrying out that activity whilst the “start showing me”

button was active. They could then test whether this activity was

recognized by pressing the ‘test’ button, repeating the activity

and ensuring that the recognition bar turned green (i.e., over

50% probable). If lower than 50% the activity was repeated.

The participant was then asked to choose one of the other

activities shown in Table IX and use the “Show Me” GUI to

allow the robot to learn about the activity. They then tested this

activity to ensure that the robot correctly identified it.

Having successfully tested that the robot had learned about

this activity, the participant was then asked to choose the cor-

responding teaching task in Table X. For example, if the robot

had learned about “watching TV,” then the behavior involving

“watching TV” would be chosen. The participant then taught

the robot the chosen behavior and subsequently tested that it

worked. For example, for “watching TV,” that the robot would

approach the participant (who was now sitting on the sofa watch-

TABLE XI
FREQUENCIES OF RESPONSES TO THE “TEACH ME” AD-HOC LIKERT ITEMS

Do you think it is useful to teach robot activities?

V. Useful Useful Neither Not Useful Not at all

3 0 0 0 0

Do you think that you would be able to teach robot activities?

Def. Yes Yes Neither No Def. No

2 1 0 0 0

Would you be willing to teach activities for someone else

carer of the other person?

Def. Yes Yes Neither No Def. No

2 1 0 0 0

Should activities already have been setup by someone else?

Def. Yes Yes Neither No Def. No

0 0 0 3 0

TABLE XII
COMMENTS MADE ON THE “SHOW ME” INTERFACE

I think it is a great idea to personalize the robot for an individual’s

needs. But also think this can be used alongside prepared repetitive

tasks. I think also very important for the robot to learn activities

rather than or as well as one off tasks. When teaching activities

need to show robot in simple exaggerated steps so that it does not

confuse activities

Not completely set up but a range of everyday types of activities

which can be personalized

ing TV) and inform them about an upcoming TV program. Fol-

lowing this, the participant was asked to complete the System

Usability questionnaire and completed two additional question-

naires on ad-hoc usability and provide, if they wished, an overall

comment on the system. A summary is shown in Table VIII.

2) Results of the “Show Me” Evaluation: The SUS scores

for the “Show Me” interface ranged from 67.5 to 80. The mean

score was 75.83 and the median score was 80. This was larger

than the expected average of 68. Ad-hoc likert item results are

shown in Table XI and some user comments are shown in Ta-

ble XII.

Clearly, such a small sample may only be indicative, however

the results from the SUS suggested that participants found the

interface relatively easy to use. The three participants all found

the “Show Me” feature useful, and felt confident in their ability

to use a feature like this to teach a robot about their own activities

or to use on behalf of someone else. They also felt that this should

not be something that was already set up prior to use.

V. CONCLUSION

We have described a robot personalization system designed

to be used by persons operating in assistive environments in

smart homes, typically carers, relatives or the elderly person

themselves. The teaching component exploits sets of standard

templates in order to generate robot behaviors. This approach

avoids the complexity of robot behavior generation for a large

set of tasks which we believe would be required by such persons,

clearly however more complex tasks would still need technical

personnel involvement. The teaching interface was evaluated

with end users and indicated that participants considered that
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such a system would be both useful and useable by them for

aiding persons to stay in their homes for longer periods. We

have also described and presented a limited evaluation of a

user driven activity learning system which allows the robot and

smart home to recognize user activities. This activity recognition

system compliments the teaching system by allowing a higher

level of semantic behavior creation to be achieved.

The results of both of these studies indicate that such facilities

would be readily accepted for use by carers, relatives and the

elderly themselves. However, with increasing age, the willing-

ness to learn new ways to operate, by personalizing a robot’s

behaviors, decreases.

In these studies the robot was operating primarily as a cogni-

tive prosthetic. However, a question that could be asked is “why

use a robot?” and not simply another device such as a mobile

phone? We would argue that the use of a robot differs in a num-

ber of ways to that of a mobile phone. First, the robot will find

the person to inform them (a mobile phone may be somewhere

else and ignored). Second, there is some evidence [48]–[51] that

the robot, by having a physical presence, is perceived as more

authoritative, i.e., a person is more likely to follow a robot’s

instructions or suggestions rather than, say, a phone.

The exploration, via the “Show Me” system, of creating

higher level semantics, is we believe a novel and promising

way to ease the teaching burden. For example, being able to

instruct a robot by using everyday terms, such as “when it’s

time for bed do...” or “if I’m making dinner do ....” We have

only partially explored such opportunities and issues which sur-

round “showing” a robot typical activities and this work is at

an early stage. A number of improvements and enhancements

to such facilities would be to use both inductive and predictive

mechanisms to increase the reliability of the robot recognizing

user activities. Prediction algorithms already exist which use

past sensory data to predict possible next actions [52]. A fur-

ther extension of this work would be to use those predictions

to then predict again—effectively creating a predictive forward

model for the robot. This forward model then being subject

to the inductive algorithm, which would now use both histor-

ical and predicted sensor vectors to make a decision on user

activity.

This area of research also presents some ongoing design chal-

lenges that are currently being pursued from two largely distinct

viewpoints. The first viewpoint focuses on people-centered ini-

tiatives and improving acceptance by tackling HRI issues by

giving control on personalization and product customization

features. The second viewpoint studies technologically driven

initiatives by building impersonal systems that are able to au-

tonomously adapt their operations to fit changing requirements,

but ignore HRI. In order to inform the development of a new

generation of smart robotic spaces, solutions to the combination

of these different research strands is, we believe, a fundamental

requirement.

Finally, we have demonstrated in this work that person-

alization of an autonomous robot is possible in a domestic

environment.
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