NMARZZMIBRY R MY

Kyushu University Institutional Repository

Teachability in Computational Learning

Shinohara, Ayumi
Research Institute of Fundamental Information Science Kyushu University

Miyano, Satoru
Research Institute of Fundamental Information Science Kyushu University

http://hdl. handle. net/2324/3133

HhR1E%R : RIFIS Technical Report. 26, 1990-04-19. Research Institute of Fundamental
Information Science, Kyushu University
N—3 v

HEFIBEMRR

¥, KYUSHU UNIVERSITY

RIFIS-TR-CS-26

RIFIS Technical Report

Teachability in Computational Learning

Ayumi Shinohara
Satoru Miyano

April 19, 1990

Research Institute of Fundamental Information Science
Kyushu University 33
Fukuoka 812, Japan

E-mail: ayumi@rifis.sci.kyushu-u.ac.jp Phone: 092(641)1101 Ext.4458

Teachability in Computational Learning

Ayumi SHINOHARA and Satoru MIYANO
Research Institute of Fundamental Information Science,

Kyushu University 33, Fukuoka 812, Japan.

Abstract This paper considers computational learning from the view-
point of teaching. We introduce a notion of teachability with which we
establish a relationship between the learnability and teachability. We
also discuss the complexity issues of a teacher in relation to learning.

Keywords: Teaching, Computational Learning, PAC-learning, Com-
putational Complexity.

1 Introduction

Many attentions have been directed to the learning theory based on computational
complexity theory. However, few approaches have been taken to the problem from
the viewpoint of teaching [9].

In this paper we define a notion of teachability. It formalizes the possibility
that a teacher can make all consistent learners understand a concept by using a
small number of examples. We establish a relationship between the notions of
teachability and learnability.

For this purpose, we first discuss the notions of learnability and learnability
from selected examples simply based on the number of examples required to learn.
The learnability from selected examples introduced here is one intended for teach-
ing while the learnability is one studied as the PAC-learnability {10]. These two
learnabilities can be seen to be equivalent and any concept class teachable by exam-
ples is learnable. However, we show that there is a concept class which is learnable
but not teachable by examples.

We also relate these learnabilities with the time required for learning. We
show that there is a gap between the polynomial-time learnability from selected
examples and the polynomial-time learnability under the assumption of RP#NP.
These results mean that time for learning is important to consider the effect of
teaching.

The complexity issues of a teacher are investigated in relation to learning. We
regard the work of a teacher as selecting a small size set of good examples called a
key. Then the problem of finding a minimum size key is shown to be NP-complete.
On the other hand, there is a polynomial-time approximation algorithm for it. We
also present two concept classes. One is easy to teach and learn. The other is easy
to teach but hard to learn.

Although the proofs for these results are technically easy, this paper clarifies
some fundamental problems which arise naturally when we consider the effect of
teaching to learning.

2 Preliminaries on Learnabilities

Let X = X* be the set of all strings on the binary alphabet ¥ = {0,1}. X, denotes
the set of all strings of length n or less for n > 0. A concept ¢ is a subset of X.
Viewed in another way, a concept is a function ¢ : ¥* — {0,1}, where ¢(z) = 1
implies z is in the concept and ¢(z) = 0 otherwise. A concept means a function
or a set depending on the context. A concept class is a nonempty set C C 2% of
concepts. For a concept ¢ € C and an integer n > 0, we define the nih subclass of
Cby C,={c, | c€C}, where ¢, = cNX,. An ezample on z € X for a concept ¢
is a pair {z,c(a)). For & = (z4,...,2,) € X™ and a concept ¢, the sample of size
m on Z is defined by sam (&) = ({(z1, c(z1)), ..., {(@m, c(2m)}). The sample space of
C is defined to be S¢ = {sam. () | c € C,m > 0,2 € X™}. For convenience, we
assume hereafter that a polynomial p(z4,...,z,) is nondecreasing with respect to
each argument z;, and its value is rounded up to an integer [p{z1,...,2,)].

In this section we discuss two kinds of learnabilities which are defined by the
existence of a learner identifying the given concept class. One is the usunal learn-
ability introduced in [10]. The other is concerned with teaching. It is called the
learnability from selected examples, which formalizes a view that there is at least
one learner who can identify the target concept if appropriate examples are chosen
and given to the learner by her/his teacher.

Let C be a concept class. A mapping A : S¢ — C is called a learn mapping
for C. Ag denotes the set of all learn mappings for C. For A € 4g and c € C,
a hypothesis on sam.(Z) by A is the concept h = A(sam.(Z}), where 7 € X™.
For a probability distribution P on X, we define errors.p(Z) = P(c® h), where
the probability on X — X, is assumed to be 0 and ¢ @ h denotes the symmetric
difference cUh — c N h.

Definition 1 Let C be a concept class and A be a learn mapping for C. We
say that a concept class C is learnable by A if there exists a polynomial p(-,-,)
satisfying the condition (1):

(1) For anyintegern > 0, any concept ¢ € C, any real numberse, § (0 < ¢,6 < 1),
and any probability distribution P on X,,, the following inequality holds:

prntfe1/é) (i € ij(“’l/‘s’l/s) errory . p(Z) < E) >1-—6.
We say that C is learnable if there exists such learn mapping A € A¢.

We are interested in whether the learnability can be possibly changed if a helpful
teacher selects good examples for a learner. To formally discuss this matter, we
define the learnability from selected examples as follows.

Definition 2 Let C be a concept class and A be a learn mapping for C. We say
that a concept class C is learnable from selected examples by A if there exists a
polynomial p(n) satisfying the condition (2):

(2) For any integer n > 0 and any concept ¢ € C, there exists 7 € X2 such
that &, = ¢,, where & = A(sam.(T))-

We say that O is learnable from selecied examples if there exists such learn mapping

A€ Ac.

Natarajan [6, 7] introduced an interesting complexity measure for concept classes.

Definition 3 ([6, 7]) For a concept class C' and n > 0, the dimension of the nth
subclass C,, is defined by dimC,, = log, |C,|. We say that a concept class C is of
polynomial dimension if there exists a polynomial d(n) such that dimC, < d(n)
for all n > 0.

The following proposition summarizes the equivalence of the above learnabilities
in this framework.

Proposition 1 Let C be a concept class. Then the following statements are equiv-
alent: "

{a) C is learnable from selected examples.
(b) C is learnable.

{(c) C is of polynomial dimension.

Proof (a) = (c) Assume that C is learnable from selected examples by a learn
mapping A € A¢. Let p(n) be the polynomial which satisfies the condition (2)
of Definition 2. For each n > 0, let 5, be the set of samples of size p(n) on
X, ie., S, = {sam.(z) | 2 € X?™ ¢ € C}. Then |5, < (21X.|)’™. Let H,
be the set of hypotheses of A for the samples of size p(n), ie., H, = {A(s) €
C | s € S,}. Then |H,] <|S,]. On the other hand, |C,| < |H,| since for each
¢ € C there exists h € H, with ¢, = h,. Thus |Co] < (21X.))"™ holds and it
means dim C, = log|C,| < p(n)log2|X,| < p(n)(n + 2), which shows that C is of
polynomial dimension.

(c) = (a) Suppose that C is of polynomial dimension, i.e., there is a polynomial
d(n) such that |C,| < 24" holds for all n > 0. For each n, we define an equivalence
relation Zon C by ¢ = ¢ & ¢, = ¢, for ¢ and ¢ in C. Since C is divided into
at most 24”) equivalence classes, we can associate each equivalence class with an
identifier (r,s) with 1 < ¢ < 24", These identifiers can be encoded with the
samples of size d(n) + logn or less using two distinct examples of C. Let A € Ao
be a learn mapping which maps the code of {n,?) to a concept in the equivalence
class corresponding to (n,i). For samples which are not the codes defined above,
A is defined arbitrarily. Then we can easily see that A identifies any concept in C,
i.e., C is learnable from selected examples by A.

by (o)By [7]. O

We observed that the learnability and learnability from selected examples are
equivalent. It means in some sense that teachers are worthless. But there may be
a possibility that a teacher can help a learner in saving time.

With polynomial-time restriction, we show that a gap exists between the polynomial-
time learnability and the polynomial-time learnability from selected examples.

We assume that a concept class € is at most countably infinite. Further we
assume a representation system for € as follows: An inder of C is a function
I:C — 2% such that ¢ # ¢ implies I{c)NI(c) = § for any ¢, ¢ € C. A
representation of a concept ¢ € C is an element of I{c). It should be noted that
the learnability of a concept class depends on the representation system.

A learning algorithm for C is an algorithm which takes a sample of ¢ € ' as an
input and outputs a representation of a concept A € C, which is called a Aypothesis.
Lo denotes the set of all learning algorithms for C.

The following is the usual definition of polynomial-time learnability [1, 7].

Definition 4 Let C be a concept class and A be a learning algorithm for C. Wesay
that a concept class C is polynomial-time learnable by A if the following conditions

hold:

{(3) A runs in polynomial time with respect to the length of the input.

(4) There exists a polynomial p(-, -, -) such that for any integer n > 0, any concept
¢ € C, any real numbers €, § (0 < ¢,6 < 1), and any probability distribution

P on X, if A takes a sample of size p(n, i, %) which is generated randomly

4

and independently according to P, then A outputs a representation of a
hypothesis & such that P(c® h) < ¢ with probability at least 1 — 6.

We say that C is polynomial-time learnable if there exists such learning algorithm
A€ Le.

In a way analogous to Definition 2, we define as follows.

Definition 5 Let C be a concept class and A be a polynomial-time learning al-
gorithm for €. We say that a concept class C' is polynomial-time learnable from
selected ezamples by A if the following conditions hold:

(5) A runs in polynomial time with respect to the input length.

(6) There exists a polynomial p(n) such that for any integer n > 0 and any
concept ¢ € C, there exists z € X2 such that if A takes sam.(Z) then A
always outputs a representation of a hypothesis A with k, = ¢,.

We say that C is polynomial-time learnable from selecied examples if there exists
such learning algorithm A € L.

Definition 6 For an integer n > 0, a bit vector & € {0,1}" and an integer k
with 0 < £ < @ &, an n-argument threshold function is defined by Thy(d) = {Z ¢
{0,1}" | @-% > k}, where @- T denctes the inner product of @ and Z. THRESHOLD
denotes the concept class of all threshold functions, i.e., THRESHOLD = {Th,(2d) |
e {0,1}*, 0< k<& & n>0}

Proposition 2 If RP#NP, there exists a concept class of polynomial dimension
which is not polynomial-time learnable but polynomial-time learnable from selected
examples.

Proof The concept class THRESHOLD is of polynomial dimension but not polynomial-
time learnable if RP#INP by [5, 8]. On the other hand, every n-argument threshold
function Thy(d) € THRESHOLD can be expressed by the bit vector @ € {0,1}"
and the integer £ (0 < k < n). Here, we can encode the pair (d,k) with n + logn
examples. An algorithm which decodes these samples in polynomial time will learn

C from selected examples. Therefore ¢ is polynomial-time learnable from selected
examples. O

The above proposition claims that a teacher may improve the quality of infor-
mation. The consideration on time required in learning is also important when a
teacher is allowed.

3 Teachability

This section defines a notion of teachability. Intuitively, we say that a concept class
is teachable if it can be taught to alllearners who follow their teacher. This notion
differs from the learnability from selected examples introduced in Section 2 on the
point that it deals with plural learners.

A learn mapping A € Ag for a concept class C is consistent if it satisfies the
following condition (7):

(7) Forallc e C and all Z = (z1,...,2,) € X™ (m > 1), A{z;) = ¢(z;) holds for

eachi=1,...,m, where h = A{sam.(7)).

Namely, a consistent learn mapping produces a hypothesis consistent with a given
sample. We denote by ,Ahc the set of all consistent learn mappings for C.

Definition 7 A concept class C is teachable by ezamples if there exists a polyno-
mial p(n) satisfying the following condition (8):

(8) For any integer n > 0 and any concept ¢ € C, there exists 2 € X?(*) with
ha = ¢, for all A€ A%, where b = A(sam.(&)).

We show the relation between teachability and learnability.
Theorem 1
(a) If a concept class C is teachable by examples, then C is learnable.

(b) There is a concept class which is not teachable by examples but learnable.

Proof (a) Suppose that C is teachable by examples. It is obvious that there is
a consistent learn mapping As. Then Ag learns C from selected examples. By
Proposition 1, C' is learnable.

(b) For each pair of integers ¢ and j (> 1, 0 < j < 2!, [¢,5] denotes the
string which encodes j using ¢ bits in binary. For example, [1,0] = 0, [3,0] = 000,
and [3,5] = 101. X denotes the null string. Now we consider the concept class
C={tu{c?|i>1, 0<j <2}, where c® = {A} and ¢7 = {}, [, 4]} for each
i>1and 0 <5 <24

First, since |C,| = 2"™! — 1, we see that C is of polynomial dimension. Hence
C' is learnable by Proposition 1.

On the other hand, let n be an arbitrary fixed integer. Let us choose an integer
m and & = (z1,...,%m,) € X" such that A(sameo(Z)), = ¢ for all A € AL, We
shall derive that Z must contain all strings in X,, — {A}. Suppose that there is a
string {¢, 7] with 1 < i < n and 0 < j < 2" which does not appear in Z. Then we
consider a learn mapping A;; defined as follows:

' if ([k,1],1) appears in s for some k > 1 and 0 < [< 2%

Aii(s) = {cij else if ([z, j],0) does not appear in s

" otherwise.

Note that A;; is well-defined since no two distinct positive examples ([k, j],1) and
{[#',7'],1) appear in a sample s € S¢. It is not difficult to see that A;; is consistent,
ie., A;; € .Ahc, because ¢/ disagrees with ¢ only on the point [i,]. Since i < n,
Aij(samee(Z))n = ¢7 = ¢ # ¢ = % holds, which contradicts the assumption
Aij(samwo(Z)), = . Therefore m > |X,, — {A}| = 2"*! —~ 2. Thus there is no
polynomial which bounds m. Hence C is not teachable by examples. O

The above theorem claims that a learnable concept can not always be taught to
all consistent learners correctly. On the other hand, it is known that if a concept
class is learnable then every consistent learner can learn it [6, 7]. This suggests that
for the concept class defined in the proof of (b) of Theorem 1, natural examples are
more valuable than any polynomial number of examples selected by any teacher.

4 Burden of a Teacher

In the conventional computational learning theory, a teacher is defined as an oracle
for a learner [10]. It is not required to consider computational complexity or even
computability. But our concern is to study learning via teaching. In the section
2, we have already shown that the consideration on time required by learner is
important in this setting. Thus we should take account of the complexity required
by a teacher.

In this section, we regard the work of a teacher as choosing a small size sample
called a key, which can express the target concept without any misunderstanding.
We prove the following observations formally in the subsequent subsections.

® Teachability can be characterized by the size of a key.
o A concept which is easy to teach is not always easy to learn.

s It is intractable to make a key of minimum size in general. The work of a
teacher is not easy.

e But approximate solutions can be found in polynomial time.

4.1 Key and teachability

Definition 8 Let S be a finite set and F be a family of subsets of 5. Let ¢ € F.
A subset T of S is a key to the set ¢ in £ if for all ¢/ € F with ¢ # ¢/, T contains
some z € T with c(z) # ¢/(z). We simply call T a key to ¢ if £ is clear from the
context. The size of T i1s the number of elements in 7.

Note that S is a trivial key to all ¢ € E. In other words, for each ¢ € F, there
is at least one key to ¢. There may be some keys to ¢ of different size. We can
characterize the teachability of a concept class by the size of a key as follows.

Theorem 2 Let C be a concept class. Then the following (a) and (b) are equiva-
lent:

(a) C is teachable by examples.

(b} There exists a polynomial p(n) such that for each n > 1 and ¢ € C, there is
a key of size p(n) to ¢, in the nth subclass C,.

Proof Assume that C is teachable by examples and let p(rn) be a polynomial
satisfying the condition (8) of Definition 7. Then for each concept ¢, € C,, there
exists = (21, .. -, Tpm)) € X2 such that A(sams(F))n = ¢, for all A € AL. Now
let T be the set {z4,...,Zym)} It is not difficult to see that 7" is a key to ¢, for
C,, and |T'| < p(n) holds. The converse can also be shown similarly. O

The following figure shows the relations obtained so far.

Sample size Polynomial-time Restriction
learnable from selected examples ... polynomial-time learnable
from selected examples
i J i RP#NP
learnable .-+ polynomial-time learnable
| |
polynomial dimension --- polynomial dimension and
Ut polynomial-time randomized hypothesis
teachable by examples finder (see [1, 3])

I

polynomial size key

4.2 Teachability and learnability

If we consider that the work of a teacher is to make a key of small size to the target
concept, we can measure the complexity of the teacher by the complexity of finding
such key. If a small size key can be constructed to each concept in short time, we
regard that the concept class is easy to teach. -

We show that MONOMIAL is a concept class which is both easy to teach and
easy to learn. On the other hand, we also see that THRESHOLD can be taught
easily but is not easy to learn. Thus a concept which is easy to teach is not always
easy to learn.

It is known that THRESHOLD is not polynomial-time learnable if RP # NP
5, 8].

Theorem 3 On the concept class THRESHOLD, a key of size at most 2n to an
n-argument threshold function can be constructed in O(n?) time.

Proof Let Thy(@) be an n-argument threshold function. In the case of £ = 0, it
can be easily seen that T = {0"} is a key to The(a) = {0,1}"™.

Now we consider the case of k¥ > 1. For the vector @ = a;---a,, let J = {7]
a; = 1}. We can assume |J| > k. For each 1 = 1,...,n, let J; be any subset of
J— {3} with |J;] = k — 1 and let @} = u; - - u, € {0,1}" be the characteristic bit
vector of J; U {1}, 1.e.,u; =1if j € J; U {i} and u; = 0 otherwise for j =1,...,n.
Foreachi=1,...,n,let 0 = uy - -u;_18;Uip1 -+ Un, where @; = 1 & a; = 0. Let
U={glied},V={8|i=1,...,n},and T = UUV. We show that T is a key
to Thi(d@). Note that @; € Thy(@) holds for each #%; € U since 4, - & = k and that
T; & Thi(a) holds for each ¥; € V since 0; - d =k — 1. Let b and [be a bit vector
and an integer which satisfy both (i) @ € Th(8) forall @ € U and (ii) ¥; ¢ Th(b)
for all #; € V. We show that the above b and are unique and the same as @ and
k, respectively. For an index ¢ with a; = 1, since €@; and ¥; differ only at the ith
bit, we see that b; = 1 and I = k. For an index ¢ with a; = 0, we see ; = 0 by (ii)
Therefore T is a key to Thi(d) and its size is [T = [U|+|V]|=d-d+n<2n. Itis
not difficult to see that T' can be constructed from given & and £ in O(n?) time. O

Definition 9 For an integer n > 0 and a bit vector & € {0,1}", an n-argument
monotone monomial is defined by mono(d) = {¥ € {0,1}* |@-Z =d-a}. MONO-
MIAL denotes the concept class of monotone monomials, i.e., MONOMIAL =
{mono(d@) | d € {0,1}", n > 0}.

Viewed in another way, MONOMIAL is the subclass of THRESHOLD since
MONOMIAL = {Thy(a@) |d € {0,1}", k=d-a, n > 0}.

MONOMIAL is known to be polynomial-time learnable [10]. We also obtain
the following result.

Corollary 1 On the concept class MONOMIAL, a key of size at most n to an
n-argument monotone monomial can be constructed in O(n?) time.

4.3 Making a minimum size key is intractable

Definition 10 The minimum key problem (MKP) is defined as follows:

Instance: A collection E of subsets of a finite set S, a set ¢* € E, and a positive
integer ¢ < |5].

Question: Is there a key to ¢* of size ¢ or less?

Theorem 4 The minimum key problem is NP-complete.

9

Proof We use an NP-complete problem called the hitting set problem [2]: Given
a collection E of subsets of a finite set S and a positive integer ¢ < |5], decide
whether there is a subset 7' with {T'| < ¢ such that T contains at least one element
from each subset in . MKP is NP-hard since the hitting set problem is a special
case with ¢* = {. Obviously, MKP is in NP. O

4.4 Approximation algorithm for the minimum key problem

Theorem 5 Let E be a collection of subsets of a finite set S. A key toeachc* € E
with size &(c*)(log, | £]+1) or less can be computed in time O{|S|*|E|), where k(c*)
is the minimum size of a key to c*.

Proof First we convert an instance of MKP to that of the minimum set cover
problem which is stated as follows: Given a collection U of subsets of a finite set Z
and a positive integer | < |U|, decide whether U contains a set cover for Z of size
[or less, i.e., a subset U’ C U with |U’| < [such that every element of Z belongs
to at least one member of U’.

Let § = {z1,...,2,} and E = {c*,¢c1,...,cn} C 2° constitute an instance of
MKP, where ¢*, ¢y, ..., ¢ are mutually distinct. Then let Z = {z1,..., 2}, where
Z1,..., %, are m distinct elements. For ¢ = 1,...,n, we define u; = {2; € Z |

c*(z;) # ¢;(z;)}. Let U = {uy,...,u,}. Then U can be computed in O(mn) time.
For a subset U’ of U, let Ty = {z; € S | u; € U'}. 1t is not difficult to see that U’
is a set cover for Z if and only if Ty is a key to c*.

Johnson [4] devised an O(JU[?|Z|) time greedy algorithm that produces a set
cover of size at most K{log, M + 1), where K is the minimum number of sets from
U needed for covering Z and M = max {|w;] | u; € U}. With this algorithm, we
can find a key of size at most k(c*)(log, |E|+ 1) in O{|S|*|E]) time since M < |E|.
O

5 Conclusion

Teaching and learning may be closely but delicately related. It is said that:

“To teach is to learn.”
“Learning is one thing, and teaching is quite another.”
“There is nothing so good for learning as teaching.”

These words involve some truths though they seem inconsistent one another. This
paper tried to capture such truths in a mathematical framework.

10

References

[1] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M.K., “Learnability
and the Vapnik-Chervonenkis dimension”, Journal of the ACM, Vol. 36, No. 4,
pp. 929-965, 1989.

[2] Garey, M.R. and Johnson, D.S., Computers and Intractability: A Guide to
the Theory of NP-Completeness, W.H. Freeman, 1979.

(3] Haussler, D., Kearns, M., Littlestone, N., and Warmuth, M.K., “Equivalence
of models for polynomial learnability”, in Proceedings of the 1st Workshop on
Computational Learning Theory, Morgan Kaufmann, pp. 42-55, 1988.

[4] Johnson, D.S., “Approximation algorithms for combinatorial problems”, Jour-
nal of Computer and System Sciences, Vol. 9, pp. 256-278, 1974.

[3] Kearns, M., Li, M., Pitt, L., and Valiant, L., “On the learnability of boolean
formulae”, in Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, pp. 285-295, 1987.

[6] Natarajan, B.K., “On learning boolean functions”, in Proceedings of the 19th
Annual ACM Symposium on Theory of Computing, pp. 296-304, 1987.

[7] Natarajan, B.K., “On learning sets and functions”, Machine Learning, Vol. 4,

No. 1, pp. 67-97, 1989.

(8] Pitt, L. and Valiant, L.G., “Computational limitations on learning from ex-

amples”, Journal of the ACM, Vol. 35, No. 4, pp. 965-984, 1988.

[9] Shinchara, A. and Miyano, S., “A foundation of algorithmic teaching”, Tech-
nical Report RIFIS-TR-CS-22, Kyushu University, December, 1989.

[10] Valiant, L.G., “A theory of the learnable”, Communications of the ACM,
Vol. 27, No. 11, pp. 1134-1142, 1984,

11

