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i4bstract This paper considers computationai learning from the view- 

point of teaching. We isltroaace a notion of teachiability with which we 

establish a relatiionship between the learnabiiity and teachability. We 

also discuss the complexity issues of a teacher in relation to learning. 

Keywords: Tea,ching, Cornprrtationa! Learning, PAC-learning: Com- 

putational Complexity. 

I Introduction 

Many attentions have been directed to the learning theory based on computationai 

complexity theory. Worve~er, feiv approacies have been taken to the problem from 

the vieurpoimt of tezching 191, 

In this paper we defixe a notion of teachahility. It formalizes the possibility 

xhat a, teacher can make ail consistent learners u2derstand a concept by using a 

small numiser of examples. iVe establish a relatioriship between the notions of 

teachability and learnability, 

For this purpose, we first discuss the notions of learnabiiity and learnability 

from selected exarnpies simply based on the numher of examples required to learn. 

The learnability from selected examples introduced here is one intended for teach- 

ing whiie the learnability is one studied as the PAC-learnability j10j. These two 

learnabilities can be seen to be eq~ivalent and any concept class teachable by exam- 

pies is learnable. However: we show that there is a concept class which is learnable 

but nofieachable by examples. 



We also relate these learnabilities with the time required for learning, We 

show that there is a gap between the polynomial-time iearnabiiity from selected 

examples and the poiynomiai-"Lime iearnabifity under the assumption of RP+NP. 

These resuits mean that time for Learning is important to consider the effect of 

teaching, 

The complexity issues of a teacher are investigated In relation to learning. IVe 

regard the work of a teacher as selecting a small size set s f  good examples called a 

key, Ther, the problem of finding a minimum size key is shown to  be NP-compiete. 

On the other hand, there is a polynomial-time approximation algorithm for it. FVe 

also present two concept classes. One is easy to teach and learn. The other is easy 

to teach but hard to  learn. 

Although the proofs for these results are technically easy, this paper cla,rifies 
3 -  

some hn d a m n t a f  problems which arise naturaily when we consider the effect of 

teaching to learning. 

Let X = Y" be the sei of 811 stricgs o17_ the binary alphabet Z: = {0,1). Xn denotes 

'the set of all strings of length n or less for n 2 0.  X concepi e is a subset of X ,  

Viexed in another wa5; a concept is a function e : C* t ( O ,  I), where ejzj = I 

implies z is in the concept and cjz) = 0 otherwise. A cocccpt mealis a function 

or a set depending on the context. A concept ciass is a nonempty s e x  C C~ of 

concepts For a concept c E C and an integer n > 0, we define the nth szlbcZass of 

C by Cn = i cq  e fr C), iv'here c, = c ii X,. An example on cc E X for a concept c 

is a pair (2, c (z j ) .  For z = jzl,. . . , z,) E X m  and a concept c, the sample of size 

m on ?i is defined by scrm,(~)  = ( jzl, c(zl)), . . . , jz,, c(z , ) ) j .  The sample space of 

C is defined to be SS = j s a m , ( ~ )  1 e E C.m 2 0; 2 E X"). For convenience, we 

assume herezfter that a polynomial pjz:, . . . , x,) is nondecreasing with respect to 

each argument rc,, and its value is rostnded up to an integer jrp<xl, . . . , z,)] . 
In this section we discuss two k i d s  of learnabilities which are defined by the 

existence of a learner identifying the given concept class. One is the usual learn- 

ability introduced in [13], The other is concerned with teaching. It is called the 

iearnabiiity from selected examples, which formalizes a view that &ere is at least 

one learner -~\-ho can identify the target concept if appr02riate examples are chosen 

and given to the learner by her/his teacher, 

Let @ be a concept ciass, A mapping A : Sc - C is called a learn mapping 

for C. Ac denotes the set of all Learn mappings for C, For A E Ac and e E C, 
a izypothesis on sarn,jz) by A is the concept h = A ( s a m , ( ~ ) ) ,  where E X m .  
For a probability distribution P on X,, we define  error^ ,p (2) = 3 j c  @ h ) ,  where 

the probability on X - X, is assunled to be 0 and c 8 h denotes the symmetric 

diEererice e U h - c 0 h ,  



Definition P Let C be a concept class and A be a learn mapping for. C, We 
say that a concept class &: is learnable by A if there exists a polynomial p ( - ;  ., .) 
satisfying the condition (1): 

(1) For any integer n 2 0 ,  any concept e E C, any realnumbers e7 6 (0 < E ; S  < I) ,  

and any probabiiity distribution P on X,, the following inequality holds: 

\Ve say that C Is Iearnabie if there exists such learn mapping A E Ac. 

iVe are interested in whether the Learnability can be possibly changed if a heipS-01 

teacher selects good examples for a learner. To formally discilss this matter, vie 

define the learnability from selected exarnpies as foi!o;vs. 

Definition 2 Let C be a concept class and _A be a learn mapping for C .  tVe say 

that a concept class C is i e a m a b l e  from selected ezamples  b y  A if there exists a 

polynomial p ( n )  satisfying the condition ( 2 ) :  

(2) For any integer n >_ 0 and any concept c E C, there exists 3 E x$") suck2 

that h, = cn, \.;here is = A(sam, j~)  j, 

Vie say that C is learnable from seleeteci e x a m p l e s  if there exists srrch learn mapping 

E Ac. 

Natarajan [6, 71 introduced an interesting complexity measure for concept c?asses, 

Defini-tion 3 ((6, 71) For a concept class C and n >_ 0, the dzmemsion of the nth 

subciass C, is defined by dirnC, = log, jC,i. Rye say that a concept class C is of 

potynomial dimension if there exists a poiyncmiai d(n)  such "cat dirn6, < dja)  

for all n > 9, 

The ifnlio~ing proposition summarizes the equivalence of the above learnabilities 

in this framework. 

Proposition 1 Let C be a concept class. Theri the foliowing statements are ecjuiv- 

a!ent : 

(a) C is learnable from selected exarnpies. 

(bj C is learnable. 

( c )  C is of polynomial dimension, 



Prosf (a) 3 ( c )  Assume that C is learnable from selected examples by a learn 

mapping A E ,APac. Let p ( n )  be the polynorniak which satisfigs the condition ( 2 )  

of Definition 2, For each n 2 O 9  let S, be the set of samples of size ~ ( n  j on 

X,, i.e., S, = jsarn,(j) 1 %  E ~ $ ~ : ( " ) , c i  C). Then I & /  5 ~ 2 i ~ , l ) ~ ( " ) .  Let $I, 
be the set of hypotheses of A for the samples of size pjn), i.e., H, = {il(s) E 

C 1 s E S,). Then 5 jS,\. Or,-thehsthcrKaad, lC,\ 5 since for each 

c E C there exists h E H, with c, = h,. Thxs \C,/ < (21.~1)~ '" '  holds and it 

means dim6, = log \C,j 5 p(n) log2iXnj < - pi;n)(n +- 2)), which shows that C is of 

polynomial dimension. 

jcj =+ (a) Sugpose ;hat C is cf poiyraomiai dirnensio~l, i,e., there is a polyno~ijlai 

dja) such that ICn\ < ~ ~ i ~ )  holds for a l h  ri, 0. For each n, we d e h e  an eqhzivaknce 
n n 

relation on C by c c' c, = G; for c and c' in 6. Since C is Zlvided into 

at most 24%) equivalence clzsses, we can associate each equir-alence class with an 

identifier jn,ij with 1 < - i < - 2411"- These identiiiers can be encoded with the 

samples of size d(nj $ logn or less using two distinct examples sf C .  Let A E Ac 
be a learn rnappisig which maps the code of (n,i) to a cozcept in the equivalence 

class corresponding to (aq%). For samples which are not the codes defined above, 

A is defined arbitrarily, Then we can easiiy see that A identifies any concept in 6, 

i.e., C is learnable from selected examples by A. 

(b) FS (cj By [7]. D 

We observed that the iearnebiiity and learnability from selected exanples are 

equivalent, It means in some sense that teachers are worthless. But there may be 

a possibility that a teacher can help a learner in saving time. 

Vditi., polynomial- time restriction, 5ve shoiv that a gap esis-is between the polynomiai- 

time learnability and the polynomial-time learnabiiity from selected examples. 

VJe assume that a concept class C Is at most countably infinite. Furtiler we 

assume a representation system for C as foflows: A 2  zndez of C is a function 

i : C 4 2"* such that c f ci iim2lies I ( c )  ri f ( c l )  = @ for acy c; c' E C. X 
representation of a concept, c E C is an element of I [c ) .  It shouid be noted that 

the learnability of a concept class depends on the rqresentation system. 
1 '  X learning algorithnz for @ is an aigonthm -which takes a sample of r: E C as an 

i n p t  and outputs a representation of a concept h f C, which is caller! a h ypcthesis. 

Cc denotes the set of all learning algorithms for C. 
The fo5lov:ing Is the usual deiinition sf polynomial-time learnabiiity jl, 71, 

Definition 4 Let C he a concept class and A be a Learning algorithm fsr C. We say 

that a concept class C is polynomial-time learnable by A if the folloviing coaditions 

hold: 

(3) A runs in poiynomia! time ivith respect, to the length of the input 

(4) There exists a polynornialp(-, =. .) such that for any integer 12 > 8, any concept 

c E C, any real numbers E ,  6 (0 < E ,  S < 11, and any probability ciistribution 

P on X,. if A takes a sample of size p(n, $, $1 which is generated random!y 



and incfependertly according to P. "Len A outputs a representation of a 

hypothesis h such that Pjc $ h )  < E with probability at l e a s t l  - 6. 

tire say that @ is poJynomiali-time learnable if there exists such learning aigoriehn 

A E LC. 

In a way analogous to Definition 2, u7e define as folloivs, 

Definition 5 Let C be a concepnciass and A be a po9ynomial-time learning ai- 

gorithm for @. IVe say that a concept class C is po l ynomia l - t i ne  learnable froin 

selected esamples b y  A if the f01io\ving condiiions hold: 

( 5 )  A runs in polynomial time with respect to the input length, 

(6) There exists a poly~omiai p(n) such that for any integer n 2 0 and any 

concept c E 6, there exisrs 5 E x,P~"! such that if A takes sam,(%) then A 
altvays outputs a representation of a hypothesis h with h, = c,. 

kVe say that C is polynom%~l i - t ime  learnable jrom selected examples if there exists 

such Learning aigordthm A E LC. 

Definition 6 For an integer n 2 0;  a. bit i7ector Z E { O .  11% and an integer k 

with 0 5 k 5 u" . u'; an n-argument threshold fucction is defined by ThkCZ) = (2 E 

(0.1)" j Z. 2 > - k); ;.;liere 2.2 denotes the inner product of ii and 2. THRESHOLD 
denotes the coricepl class of all threshold functions, i.e., TRRESHOLD = (Thk(Zi') j 
i i E  ( O , 1 ) " ,  O 5 k < z * n " ,  7220). 

Proposition 2 If RP.fNP, there exists a concept ciass of po?ynom;ai dimension 

i%-hich is not polynomial-time learnable but polynomial-time learnable from selected 

examples. 

Proof The concept ciass THRESMOLD is of polynomial dimension bet aot poiynornial- 

time learnable if RPf NP by [5: 81. On the other hand, e ~ ~ e s ~ ~  n-argumert threshold 

function Thk(a") E THRESHOLD can be expressed by the bit vector i? 5 ( 0 , i ) '  

and the integer k (0 5 k < n ) ,  Here, ive can enccde the pair (2, k )  with rz +- log n 

examples. An algorithrrs which decodes these samples in polynomial t i n e  wi!l learn 
C'Z iseonl selected examples. Therefore G is polynomial-time learnable horn selected 

examples. Ci 

The above proposition claims that a teacher may Improve the quality of infor- 

mation. The consideration on time required in learning is also important when a 

teacher is ailo~ved. 



This section defines a notion of teachabliity. Intuitively, we say that a concept class 

is teachable if it can be taught to all learners who follow their teacher. This notion 

differs from the learnability from selected examples introduced in Section 2 or, the 

point that it deals with piurai learners. 

-4 learn mapping A f AC for a concept class G is consistent if it satisfies the 

biXowing condition (7 ) :  

( 7 )  For ail c E C and ail 3 = (zl,. . . , rc,) E _fim [m > I), bz(z,) = c(z,) holds for 

each 2: = 1,. . . m, where h = A(sam,(?)j. 

Namely, a consistent iearn mapping produces a hypothesis consistent with a giiien 

sample. T$7e denote by AL the set of all consistent learn mappings for C.  

Definition 7 A concept class C is teachable by examples if there exisfs a poiyno- 

mia! p(n) satisfying the following condition (8): 

(8) For m y  integer n > O and ariy concept c E 6, there exists 2 E x$") iv i~h 

h, = c, for all A E A;, where .4 = A(sam, (~ ) ) .  

We show the relation between teachability and learnability. 

(a) If a concept class C is teachable by examples. then C is learnable. 

{b) There is a concept class which is not teachable by examples but iearnable. 

Proof (a) Suppose that C is teachable by examples. it is obvious that there is 

a consistent iearn mapping Ao, Then A. learns G from selected examples, By 
F"roposi:ion I ,  C is learnable. 

(b) For each pair of integers i and j ji >_ I. O 5 j < 2'1, ii. j ]  denotes the 

string which encodes j using i bits in binzry. For example, [I ,  O ]  = 0, [3,O] = 000, 

and i3,5] = 101, X denotes the null string. Now sve consider the concept class 

C = jco0)u  (c23 j i > 1. 0 < 3 < 2'3, where coo = {A)  and c" = { A ,  [2,3]) for each 

z > l a n d O < j < 2 ' .  
1 - 7  I First, since iC,j = - 1. we see that C is of polp~isrnial dimension, Hence 

C is learnable bg- Proposition 1. 

On the other hand. lei n be an arbitrary fixed integer. Let us choose an integer 

m and z = (zl.. . . ,5, j E X r  such that A(sam,oo ($)I, = czo for ail A E sf;. W e  

shall derive that 2 must contain all strings in X, - {A) .  Sxippose that there is a 

string ji, j ]  i-:ith 1 <_ i <_ 2 and 0 5 j < "2 "wl-tich does not appear in 5.  Then we 

consider a iearn mapping A,, defined as foiiows: 

ck' if {[k, I ; ,  I j  appears in s for some k > 1 and O < 6 < 2" 
C" else if ([i; j ] ,  0) does not appear in s 

\ c" otherwise, 

6 



Kate that A,, Is well-defined since no two distinct positive examples ( [ k ,  j ] >  1) and 

( [E ' , j j " ' ; ,  1) appear in a sample s E Sc. l e  is not d i%c~l t  to see that A,, is consistent, 

i,e., A,, E AL, because c'j disagrees with c" only on the point. [a. j ] ,  Since z <. n, 
c'J = cEJ =jL coo = C: holds, which condradlcls the assumption A,2(\sampo(~)), = 

-423(~am,o(~))n, = c:'. Therefore rn >_ iX, - { A l l  = ZnS1 - 2. Thus there is no 

polynomial which bounds m. Hence C is not teachable by examples. 

The zbove theorem claims that a learnable concept can not always be "taught, to 

ail consistent iearners correctly. On the other hand, it is known that if a concept 

class is learnable then every conslstenr: learner can iearn it [ti, 71. This suggesu that 
P / I  \ for the concept class defined in the proof 01 (D)  of Theorem 1, natural examples are 

more valuable than any polynomial number of examples selected by any teacher. 

4 Burden of a Teacher 

In the con~entionai computational Learning theory, a teacher is defined as an oracle 

for a learner [10j. Ifu is not required to consider computational complexity or even 

conpu"cbllit5;. But our concern is ro study learning via teachlag. In tile section 

2. we have already sho~vn that the consideration on time required by learner Is 

iaportant  in %his setting. Thus we should take accolant of the complexity required 

by a t e a c h e ~ .  

In this sectioa, we regard the ivork of a teacher as choosing a small size sample 

called a keyi -which can express the tasget concept without any misunderstanding, 

i47e prove the fo'ollowing observations formally in the subsequent subsectio~s. 

s Teachability can be characterized by the size of a key. 

e A concept which is easy to teach is aot a?ivays easy to learn. 

e It is intractable to make a key of minimum size in general. The work of a 

teacher is not easy, 

e But approximate solutions can be found in poiynornia2 time. 

4.1 Key and teachability 

Definitisla 8 Let S be a finite set and E be a family of subsezs of 5. Let e E E. 

A subset T of S is a key to the set c in E if for ail c' E E with c f ci ;  T contains 
7 7 

some z E T with G ( L )  f c ' ( x ) .  i17e simply call T a key to c if E is clear from the 

context, The size of T is the number of elements in T. 

Note that S is a trivial key to ail G E E. In other words) for each c E E ,  there 

is at least one key to  c. There may be some keys to c of different size. We can 

characterize tile teachability of a concept class by tile size of a key as follows. 



Theorem 2 Let @ be a concept class. Theri the foliowing (a) and (b) are equiva- 

lent : 

(a) C is teachable by examples. 

( b ]  There exists e polynol-d?ial p(n) such that for each n > 1 and c f @, there is 

a key of size p(n) to G, in the nth subciass C,, 

Proof Assume that C is teachable by examples and let p(n) be a polynomial 

satisfying "the condition (8) of Definition 7.  Then for each concept c, E C,, there 

exists 5 = (xi,. . . . zPfnj) E XR(") such that A(samJ%)), = c, for all A E A;. Now 

let T be the set {rcl: . . . , z,(,)). it is not difficult to see that T is a key to c, for 

C, and ;TI < p ( n )  holds. The converse can also be shown simiiariy, C3 

The following figure shows the relations obtained so far 

Sample size Polynomial-time Restriction 

Learnable from selected examples . polynomjai-time learnable 

i ron  selected examples 
11 
I ifRP#NP 

learnable - po!ynomiai-time lzarnabk 

I I 1 1  
i 

polynomial dinlension - - . polynomial dimension and 

u] poiynorniai-time randomized hypothesis 
teachable by examples h d e r  ( s ee  [I, 31) 

polynomial size key 

4.2 Teachability and Learnability 

If we c~nsider that the work of a teacher is to make a key of small size to the target 

concept, we can measlxe the cornp!exity of "Lhe .iea&er by the comp?exidy of finding 

such key. If a srnaii size key can be constructed to eac!: concept In short time, we 

regard that the concept class is easy to teach. 

bye show that ?dIOPU'BMIAL is a concepL class which is both easy to teach and 

easy to learn. On the other hand, we also see that THRESHOLD can be taught 

easily but is not easy to learn. Thus a concept which is easy to teach is not alwa,ys 

easy to learn. 

It is known that THRESHOLD is not polynomial-time learnable if RP f NP 

[5 ,  81. 



Theoreax 3 On the concept class THRESHOLD, a key of size at most 271 to an 

n-argument threshold function can be consLructed in 8 (n" )time. 

Proof Let i"hkja") be an n-argument threshold fimction. In the case of k = 0. it 

can be easily seell that T = ( 0 " )  is a key to Tho(.'$ = ( 0 ,  I)", 

Xsw we consider the case of k 2 1, For the vector Z = a: * .  . a,; let J = (i / 
a, = 1). We can assume J !  > k. For each i = 1, . . . , n,  let J3 be any subset of 

d 2 - ( 2 )  with ] J E ]  = k - 1 a ~ d  let ti, = ul - u, E { O .  4In he the characteristic bit 

vector of Jt U ti), i.e., u, = I if j E J, il (i) and uj  = O otherwise for j = 1,. . . . n. 

For each i = 1.. . . , n ,  let = ul - - ul-l~z'lttS1 - tin, where 6 = 1 -+ a, = 0. Let 

L7 = {Gt i i E 91, V = (5% 1 1 = I , .  . . , n), and T = U u" t7. bTa'e show that T is a key 

to Thk(a'). Note that Z, E Thk(Zj  holds for each 2, E U since < G = k and that 
-+ 

v', @ Thkja") holds for each 6 € since Gt ii = k - lI. Let b and 1 be a bit vector 
4 

and an integer which satisfy both ji) L', E Thi(b j  for all 3 E I.' and (ii) Gt @ ~ h ,  (6) 
-4 

for all 5% ",. We show that the above b and i are unique and the same as Z and 

k ;  respectively. For an index i with a, = 1, since G, and 5% differ only at ihe ith 

bit, we see that Ea, = 1 and 1 = k ,  For an index i with a, = 0, we see b, = 0 by jii) 

Therefore T is a keyto Thk(Zj and its size is IT\ = i f ; \  i jV/ = Z - ii -t n 5 2n. It is 

not diEcult to see tha: T can he constructed from given Z and k in 0 ( n 2 )  time. '3 

Definition 9 For an integer n 2 0 and a Sit vector 2 E 10, I]", an n-argurner~t 

monotone aoazornitil is defined by msno(Zj = {Z E {(o, lir. 1 a'. Z = d - 2 ) .  hf;fO?uiO- 

MJAL denotes the concept class of xonotone monomials, i x , ,  MONOklIAE = 

(mono(G) 1 a" E (0, I j n ,  n 2 0). 
Viesved i z ~  another way, 3IBNOMIAE is the subciass of THRESHOLD sirice 

510N0:1!1AE = { T h k ( Z )  j 2 E (0, I)", k = Z. Z, n 2 0). 

hlONO&I1AL is known to be polynomial-time learnable 1101. W e  also obtain 

the follzaiving resuit, 

Corollary 1 On the concept class hlOaNOkIIAL, a key of size at most n to an 

n-argumenhonot  one rnonamial can be constructed in 0 (n2)  time. 

4.3 &Taking a miraimulx size key is intractable 

Definition 10 The mini~num k e y  problenz (MMP) is defined as follows: 

Instance: A coilection E of subsets of a finite set S, a sat c" E E ,  and a positive 

integer q 5 IS\. 

Question: is there a key to c* of size q or Less? 

Theorenil 4 The minimum key problem is NP-com~lete .  



Proof %% use an NP-complete problem called the hitting set problem 121: Given 

a csilection E of subsets of a finite set 5 and a positive integer g < IS!, decide 

whether there Is a subset T with /Ti _< q such that T contains at  least one element 

from each subset in E ,  MKP is NP-hard since the hitting set problem is a special 

case with c* = @. Obviously, XIKP is in NP. C3 

4.4 Approximation algorithm for the minimum key problem 

Theorem 5 Let E be a collection of subsets of a finite set S4'. A key to each c" E E 
with size E(c")(iog, /El + 1) or less can be computed in time O{/Sj"iE/), where b(c") 

is the minirnrarn size of a key to c". 

Prosf First we convert an instance of MKP to that of the minimum set cover 

problem which is stated as follo"~irs: Giveo a collection Z' of subsets of a fiaite set Z 

and a positive integer 2 IUi, decide whether Z- contains a set cover for Z of size 

Z or less, i.e., a subset U' 2 t: with jU'I 5 B such that every element of % belongs 

to a t  least one member of li-'. 

Let S = {zl,. . . , cc,] and @ = (c*; c l , .  . . , c,) 2" constitute an instance of 

iblKP, where em, cl, . . . , c;, are nzutuaily distinct. Then let Z = ( a l , .  . . , z,), where 

zl ,  . . . ; z, are rn distinct elements. For i = 1: . . . , n, ~ 5 ~ e  define u, = {z, E Z 
c*(sZ) # C,?(Z%)). Let U = (ul.. . . ,a,). Then U can be cornpurted in O(?nn) time, 

For a subset LT' of l;, let Trl = {z, f S 1 u, f U').  It is not difficult to see that Ui 
is a set cover for Z if and only if rut is a key to c*, 

Johnson i47 devised an O(]lii2jZ1) time greedy algorithm that produces a set 

cover of size at most I<<Jog, 31 + I),  where K is the minimum number of sets from 

l7 needed for covering Z and 111 = max (lit, j 1 u, f U), With this aigorithm, we 

can find a key of size at most k(c")!iog, !El + 1) in O(jSj"jEl) time since 114 5 ]El. 
D 

5 Conclusion 

r, leaching and learning may be closely but delicately related. It is said that: 

"To teach is "s learn." 

"Learning is one thing, and teaching is quite another." 

""There is nothing so good for learning as teaching." 

These words involve some truths t h o ~ g h  they seem inconsistent one another, This 

paper tried to capture such truths in a mathematical framework, 
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