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In both the United States and Europe, concerns have been raised about
whether preservice and in-service training succeeds in equipping teachers
with the professional knowledge they need to deliver consistently high-quality
instruction. This article investigates the significance of teachers’ content
knowledge and pedagogical content knowledge for high-quality instruction
and student progress in secondary-level mathematics. It reports findings
from a 1-year study conducted in Germany with a representative sample
of Grade 10 classes and their mathematics teachers. Teachers’ pedagogical
content knowledge was theoretically and empirically distinguishable from
their content knowledge. Multilevel structural equation models revealed
a substantial positive effect of pedagogical content knowledge on students’
learning gains that was mediated by the provision of cognitive activation
and individual learning support.
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Since Lee Shulman’s presidential address at the 1985 American Educational
Research Association meeting—in which Shulman went beyond the gener-

ic perspective of educational psychology, emphasizing the importance of
domain-specific processes of learning and instruction—educational research
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has distinguished three core dimensions of teacher knowledge: content
knowledge (CK), pedagogical content knowledge (PCK), and generic peda-
gogical knowledge (Shulman, 1986). Various authors have added to, and fur-
ther specified, these core components of teachers’ professional knowledge
(e.g., Grossman, 1995; Sherin, 1996; Shulman, 1987). In the research literature
on teaching and teacher education, there is a shared understanding that
domain-specific and general pedagogical knowledge and skills are important
determinants of instructional quality that affect students’ learning gains and
motivational development (Bransford, Darling-Hammond, & LePage, 2005;
Bransford, Derry, Berliner, & Hammerness, 2005; Grossman & McDonald,
2008; Grossman & Schoenfeld, 2005; Hiebert, Morris, Berk, & Jansen, 2007;
Munby, Russell, & Martin, 2001; Reynolds, 1989). Yet few empirical studies
to date have assessed the various components of teachers’ knowledge directly
and used them to predict instructional quality and student outcomes
(Fennema et al., 1996; Harbison & Hanushek, 1992; Hill, Ball, Blunk,
Goffney, & Rowan, 2007; Hill, Rowan, & Ball, 2005; Mullens, Murnane, &
Willet, 1996; Rowan, Chiang, & Miller, 1997). The National Mathematics
Advisory Panel (2008) summarizes the situation as follows:

Finally, with the exception of one study that directly measured the
mathematical knowledge used in teaching, no studies identified by
the Panel probed the dynamic that would examine how elementary
and middle school teachers’ mathematical knowledge affects instruc-
tional quality, students’ opportunities to learn, and gains in achieve-
ment over time. (p. 37)

In this article, we present findings from a 1-year study in which mathe-
matical teachers’ CK and PCK were assessed directly and linked to data from
a comprehensive assessment of mathematics instruction and student out-
comes. The core question guiding the study was whether these two compo-
nents of teacher knowledge each make a unique contribution to explaining
differences in the quality of instruction and student progress.

The COACTIV1 study was conducted in Germany from 2003 to 2004 as
a national extension to the 2003 cycle of the Organisation for Economic
Co-operation and Development’s Programme for International Student
Assessment (PISA; Prenzel, Baumert, et al., 2006). The study, which had
two measurement points, surveyed a nationally representative sample of
Grade 10 classes and their mathematics teachers. Its objective was to
investigate the implications of CK and PCK for processes of learning and
instruction in secondary level mathematics (Kunter et al., 2007; Kunter,
Klusmann, & Baumert, 2009). To this end, we used newly constructed
knowledge tests to assess teacher knowledge directly. The teacher data
were then linked to data on aspects of instruction and student outcomes.
Specifically, we investigated the following hypotheses: that CK and PCK
represent distinct knowledge categories, that PCK is directly associated
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with the quality of instruction, and that its effect on student learning is
mediated by the quality of instruction.

Prior Research on CK and PCK

There is consensus in the teacher education literature that a strong
knowledge of the subject taught is a core component of teacher competence
(e.g., American Council on Education, 1999; Grossman & Schoenfeld, 2005;
Mewborn, 2003; National Council of Teachers of Mathematics, 2000;
National Mathematics Advisory Panel, 2008). Opinions on what exactly is
meant by subject matter knowledge are divided, however, even for mathe-
matics. There is disagreement on the necessary breadth and depth of teach-
ers’ mathematical training (cf. Ball & Bass, 2003; Deng, 2007; Shulman &
Quinlan, 1996): Do secondary mathematics teachers need a command of
the academic research knowledge taught in the mathematics departments
of universities? Or is it mathematical knowledge for teaching that matters,
integrating both mathematical and instructional knowledge, as taught at
schools of education? There is, however, agreement among mathematics ed-
ucators that ‘‘teachers must know in detail and from a more advanced per-
spective the mathematical content they are responsible for teaching . . .
both prior to and beyond the level they are assigned to teach’’ (National
Mathematics Advisory Panel, 2008, p. 37). What is required is a conceptual
understanding of the material to be taught (Mewborn, 2003; National
Council of Teachers of Mathematics, 2000; National Mathematics Advisory
Panel, 2008).

It is thus all the more surprising that quantitative research on teacher
competence is based almost exclusively on proxies such as certification sta-
tus and mathematics course work completed (Cochran-Smith & Zeichner,
2005). Qualitative studies, in contrast, have closely examined the importance
of a conceptual understanding of the content to be taught (Ball, Lubienski, &
Mewborn, 2001; Leinhardt, 2001). In the following, we first outline the find-
ings of quantitative studies that use distal indicators of teacher knowledge or
that conceptualize CK as knowledge of high school mathematics. We then
present findings from qualitative studies. Finally, we consider the findings
of the research group led by Deborah Ball at the University of Michigan.
This group was the first to measure elementary school teachers’ mathemat-
ical knowledge for teaching directly and to examine its relationship to stu-
dent progress (Hill et al., 2005; Hill et al., 2007).

Findings of Studies Using Distal Indicators

In recent years, a number of review articles have been published provid-
ing overviews of quantitative studies that have, for the most part, used distal
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indicators of teachers’ knowledge and made no distinction between CK and
PCK (Ballou & Podgursky, 2000; D’Agostino & Powers, 2009; Darling-
Hammond, 2000; Floden & Meniketti, 2005; Goe, 2007; Wayne & Youngs,
2003; Wilson & Floden, 2003).

Several studies have investigated whether state certification as an indi-
cator of teacher quality is reflected in enhanced student learning gains.
When certification in a subject is assessed and correlated with student
achievement in the same domain, findings tend to indicate a positive rela-
tionship, especially for mathematics. The most important evidence to this
effect is provided by Goldhaber and Brewer’s reanalyses (2000) of the
National Education Longitudinal Study data and Darling-Hammond’s
analyses (2000) with combined data from the Schools and Staffing Survey
and mathematics and reading data from the National Assessment for
Educational Progress. Findings on teachers’ qualifications (major/minor
or B.A./M.A.) and course attendance are rather more complex. The empir-
ical basis is provided by the work of Goldhaber and Brewer (2000), Monk
(1994), and Rowan et al. (1997). Higher teacher qualifications tend to be
associated with better student performance at secondary level, particularly
in mathematics. Findings for the number of courses attended in the teach-
ing subject are inconsistent across school subjects but generally positive for
mathematics. Exposure to teachers who took more mathematics courses
during the university-based phase of teacher training seems to have posi-
tive effects on secondary students’ learning gains. Monk (1994) reported in-
teractions with students’ prior knowledge: The higher the students’ prior
knowledge, the more important the subject matter component of teacher
training. Monk also found decreasing marginal returns on course atten-
dance. Neither of these findings has yet been replicated. There is a clear
need for studies that assess teachers’ CK by means other than distal meas-
ures (National Mathematics Advisory Panel, 2008).

Findings of Studies Conceptualizing CK as Knowledge

of High School Mathematics

Given the widespread agreement that teachers must know the mathemat-
ical content they are responsible for teaching not only from a more advanced
perspective but beyond the level they are assigned to teach, it is surprising that
several empirical studies on the impact of teacher knowledge have conceptu-
alized teachers’ mathematical CK as knowledge of high school or even ele-
mentary school mathematics. Harbison and Hanushek (1992) administered
a mathematics test to fourth graders in rural areas of Brazil as well as to their
teachers and used the teacher scores to predict change in students’ scores in
Grade 4. Mullens and colleagues (1996) used the scores attained by elemen-
tary school teachers in Belize in their final mathematics test at the end of com-
pulsory schooling, at the age of 14 years, as an indicator of their mathematical
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CK. In these studies, both indicators proved to predict student learning gains
in mathematics. Drawing on data from the National Education Longitudinal
Study of 1988, Rowan et al. (1997) found a positive relationship between stu-
dents’ learning gains and teachers’ mathematical CK, as assessed by a single
test item tapping teachers’ knowledge of high school mathematics. Even the
latest comparative international assessment conducted by the International
Association for the Evaluation of Educational Achievement, the Teacher
Education and Development Study in Mathematics, assesses teachers’ CK at
the level of advanced high school knowledge (Schmidt et al., 2007), despite
attempts made in the pilot study to conceptualize it at a higher level
(Blömeke, Kaiser, & Lehmann, 2008).

Findings of Qualitative Studies on the Importance of
a Conceptual Understanding of Content

A considerable body of qualitative studies on the structure and effects of
teacher knowledge has developed in the last 20 years, providing a rather
more informative picture than that of the distal approach (Ball et al., 2001;
Leinhardt, 2001; Stodolsky & Grossman, 1995). One of the major findings
of qualitative studies on mathematics instruction is that the repertoire of
teaching strategies and the pool of alternative mathematical representations
and explanations available to teachers in the classroom are largely depen-
dent on the breadth and depth of their conceptual understanding of the sub-
ject. Studies in which teachers were presented with examples of critical
classroom events revealed that an insufficient understanding of mathemati-
cal content limits teachers’ capacity to explain and represent that content
to students in a sense-making way, a deficit that cannot be offset by peda-
gogical skills. Ball (1990) and Ma (1999) demonstrated this relationship for
multiplication and place values; Borko et al. (1992) and Simon (1993), for
division; Even (1993), Stein, Baxter, and Leinhardt (1990), and Heaton
(2000), for patterns and functions; and Putnam, Heaton, Prawat, and
Remillard (1992), for geometry. Given their case studies, Putnam et al. con-
cluded that the efforts of teachers with a limited conceptual understanding
‘‘fell short of providing students with powerful mathematical experiences’’
(p. 221).

In her comparison of teachers in China and the United States, Ma (1999)
showed that a ‘‘profound understanding of fundamental mathematics’’ is re-
flected in a broad repertoire of pedagogical strategies over a range of math-
ematical topics. The breadth, depth, and flexibility of Chinese teachers’
understanding of the mathematics they teach afford them a broader and
more varied repertoire of strategies for representing and explaining mathe-
matical content than what is available to their colleagues in the United States.
Intervention studies show that enhancement of mathematical CK can lead to
higher-quality instruction (e.g., Fennema & Franke 1992; Swafford, Jones, &
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Thornton, 1997). Qualitative research on teacher knowledge acknowledges
that the mathematical CK required for high-quality instruction is not general
mathematical knowledge that is picked up incidentally but profession-
specific knowledge that is acquired in university-level training and can be
cultivated through systematic reflection on classroom experience (Ball et al.,
2001; Berliner, 1994; Grossman, 2008).

Qualitative Studies Distinguishing Between CK and PCK

CK is not a panacea, however. Findings show that CK remains inert in
the classroom unless accompanied by a rich repertoire of mathematical
knowledge and skills relating directly to the curriculum, instruction, and stu-
dent learning. The case study by Eisenhart et al. (1993) brought fame to Ms.
Daniels, who had a reasonable conceptual understanding of the division of
fractions but was unable to present her students with a correct mathematical
representation of the problem. Similar findings have been reported for rates
(A. G. Thompson & P. W. Thompson, 1996; P. W. Thompson & A. G.
Thompson, 1994) and for multiplication (Ball, 1991). These findings are com-
plemented by case studies of specific instructional episodes, which show that
teachers with equivalent levels of subject matter knowledge may differ consid-
erably in their pedagogical repertoire and skills depending on their teaching
experience (Schoenfeld, 1998; Schoenfeld, Minstrell, & van Zee, 2000). PCK
thus seems to vary—at least to a certain degree—independently of CK and
to be a knowledge component in its own right.

In the words of Kahan, Cooper, and Bethea (2003), strong mathe-
matical CK seems to be ‘‘a factor in recognizing and seizing teachable
moments’’ (p. 245), but it does not guarantee powerful mathematical
experiences for students. What is required here is PCK, ‘‘which involves
bundles of understandings that combine knowledge of mathematics, of
students, and of pedagogy’’ (Ball et al., 2001, p. 453). According to Ball
and colleagues (2001), it is PCK in particular that underlies the develop-
ment and selection of tasks, the choice of representations and explanations,
the facilitation of productive classroom discourse, the interpretation of stu-
dent responses, the checking of student understanding, and the swift and
correct analysis of student errors and difficulties. In summary, findings sug-
gest that—in mathematics at least—a profound understanding of the subject
matter taught is a necessary, but far from sufficient, precondition for pro-
viding insightful instruction (see also Borko & Livingston, 1989; Kahan et
al., 2003).

Mathematical Knowledge for Teaching

Drawing on both CK and PCK, the research group headed by Deborah
Ball at the University of Michigan has developed a theoretical framework
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and set of measurement instruments for the assessment of elementary school
teachers’ mathematical knowledge for teaching (Ball & Bass, 2003; Hill,
2007; Hill, Schilling, & Ball, 2004). Ball and colleagues see mathematics teach-
ers’ professional CK as the mathematics they need to know in order to teach
effectively. On this basis, they distinguish common knowledge of content
(the mathematical everyday knowledge that all educated adults should have)
from specialized knowledge of content (the specialist knowledge acquired
through professional training and classroom experience; Hill et al., 2004;
Schilling & Hill, 2007). They further distinguish a third dimension of mathemat-
ical knowledge, which links mathematical content and student thinking (typi-
cal errors or student strategies)—namely, knowledge of students and content.
Three content areas of elementary school mathematics are distinguished: num-
bers/operations, patterns/functions, and algebra. The Michigan group used
a matrix of these content areas and knowledge dimensions as a theoretical
structure for developing test items, in which items were allocated to individual
cells of the matrix on the basis of a priori theoretical considerations.

We can gain insights into the Michigan group’s conceptualization of its
knowledge dimensions by taking a closer look at its descriptions of these
dimensions and published test items. First, items developed to tap common
knowledge of content draw on everyday knowledge (‘‘What is the number
halfway between 1.1 and 1.11?’’; ‘‘Can the number 8 be written as 008?’’) as
well as on typical secondary school knowledge that is often lost after school
(‘‘What power of ten equals one?’’; Hill et al., 2004). Second, the authors see
teachers’ specialized knowledge of content as both a conceptual under-
standing of topics typically taught at school (‘‘Show that any number is divis-
ible by 4 if the number formed by its last two digits is divisible by 4’’) and the
specific knowledge required for teaching, ‘‘including building or examining
alternative representations, providing explanations, and evaluating uncon-
ventional student methods’’ (Hill et al., 2004, p. 16)—that is, knowledge
that could also be classified as PCK (Ball et al., 2001). Third, items tapping
knowledge of students and content assess diagnostic skills, such as evaluat-
ing the diagnostic potential of tasks or recognizing typical student errors
(Hill et al., 2004; Schilling & Hill, 2007)—another facet of PCK.

Hill et al. (2004) and Schilling (2007) tested their theoretical model with
a large sample of teachers at California’s Mathematics Professional
Development Institutes. The empirical findings did not provide support
for the complex structure of the model. Rather, exploratory factor analyses
suggested a model with three factors: two content factors (numbers/opera-
tions and patterns/functions/algebra) and a student factor that seems to
tap diagnostic skills. Common knowledge and specialized knowledge of
content were not empirically distinguishable. Given these analyses, the au-
thors decided to develop a unidimensional item response theory–scaled
test to assess elementary school teachers’ mathematical knowledge for teach-
ing that included both common knowledge items and specialized
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knowledge items but no items tapping students’ thinking. This test thus as-
sesses an amalgam of the mathematical everyday knowledge needed by
adults, the conceptual understanding of mathematical topics typically taught
at elementary school, and the mathematical knowledge relating directly to
the instructional process (PCK), excluding diagnostic skills.

Hill et al. (2005) examined the predictive validity of their competence
measure by using the item response theory score to predict elementary stu-
dents’ learning gains. They drew on a sample of schools participating in
three Comprehensive School Reform programs and a matched group of con-
trol schools. Multilevel analyses showed that elementary teachers’ mathemat-
ical knowledge for teaching indeed predicted students’ learning gains in two
different grades; in fact, the effect was practically linear. This study provided
the first conclusive evidence for the practical importance of teachers’ math-
ematical knowledge in terms of both the mathematical knowledge that
adults use in everyday life and the specialized knowledge that teachers
use in classrooms. From a video study of 10 teachers, Hill and colleagues
(2007) presented more qualitative data indicating that mathematical knowl-
edge for teaching as assessed by the Michigan group is also associated with
the mathematical quality of instruction. Thus, this test seems to provide
a good overall assessment of mathematical knowledge for teaching, but it
does not test the implications of CK and PCK for instruction. Insights
into these mechanisms are particularly important for the design of teacher-
training programs, however.

The Present Study: Theoretical Framework

and Research Questions

What kind of subject matter knowledge do teachers need to be well pre-
pared for their instructional tasks? To what degree does their mastery of the
content influence their instructional repertoire? To address these questions,
we need to draw a theoretical and empirical distinction between CK and
PCK and examine their implications for teaching and learning. The present
study therefore investigates specific samples of teachers who—as a result of
their different training—can be expected to differ substantially in terms of
both CK and PCK.

Conceptualizing and Assessing CK and PCK Separately

The present research evolved as part of the COACTIV study conducted
at the Max Planck Institute for Human Development, Berlin, in collaboration
with mathematicians at the universities of Kassel, Bielefeld, and Oldenburg.
COACTIV investigates the professional knowledge of secondary school
mathematics teachers. The objective is to conceptualize and measure CK
and PCK separately, to determine the implications of each component of
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teachers’ professional knowledge for processes of instruction and learning
(Krauss, Brunner, et al., 2008; Kunter et al., 2007).

The COACTIV framework draws on the work of Deng (2007), Goodson,
Anstead, and Mangan (1998), Shulman and Quinlan (1996), and Stengel
(1997), who have pinpointed the specific and, at the same time, related
nature of knowledge embedded in academic disciplines and school subjects.
This approach clearly differs from conceptions that localize teacher CK at the
level of advanced high school knowledge (e.g., Schmidt et al., 2007). For
reasons of theoretical clarification, Krauss, Baumert, and Blum (2008) pro-
posed the following hierarchical classification of mathematical knowledge:
(a) the academic research knowledge generated at institutes of higher edu-
cation, (b) a profound mathematical understanding of the mathematics
taught at school, (c) a command of the school mathematics covered at the
level taught, and (d) the mathematical everyday knowledge that adults retain
after leaving school. We conceptualize mathematics teachers’ CK as the sec-
ond type: a profound mathematical understanding of the curricular content
to be taught. This approach is in line with the National Council of Teachers
of Mathematics (2000) and the National Mathematics Advisory Panel (2008),
which refer to a conceptual understanding of the mathematics to be taught.
CK required for teaching has its foundations in the academic reference dis-
cipline, but it is a domain of knowledge in its own right that is defined by the
curriculum and continuously developed on the basis of feedback from
instructional practice (Deng, 2007; Goodson & Marsh, 1996; Mitchell &
Barth, 1999).

Moreover, the COACTIV framework assumes that this CK is theoretically
distinguishable from PCK, which forms a distinct body of instruction- and
student-related mathematical knowledge and skills—the knowledge that
makes mathematics accessible to students. From suggestions by Shulman
(1986), Krauss et al. (2008) distinguished three dimensions of PCK: knowl-
edge of mathematical tasks as instructional tools, knowledge of students’
thinking and assessment of understanding, and knowledge of multiple rep-
resentations and explanations of mathematical problems (cf. Ball et al.,
2001). These three components were derived by considering the demands
of mathematics instruction:

1. One defining characteristic of mathematics instruction is that it is choreo-
graphed through the teacher’s selection and implementation of tasks and activ-
ities. Tasks and subsequent task activities create learning opportunities and
determine the internal logic of instruction, the level of challenge, and the level
of understanding that can be attained (De Corte, Greer, & Verschaffel, 1996;
Hiebert et al., 2005). Knowledge of the potential of mathematical tasks to facil-
itate learning is thus a key dimension of PCK.

2. Teachers have to work with students’ existing beliefs and prior knowledge.
Knowledge of student beliefs (misconceptions, typical errors, frequently used
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strategies) and the ability to diagnose students’ abilities, prior knowledge, knowl-
edge gaps, and strategies are thus a core component of PCK. Errors and mistakes
in particular provide valuable insights into students’ implicit knowledge
(Vosniadou & Vamvakoussi, 2005; Vosniadou & Verschaffel, 2004).

3. Knowledge acquisition and, especially, the achievement of a deep understand-
ing of mathematical content are active processes of construction. These pro-
cesses require guidance and support, however (Mayer, 2004; Sfard, 2003),
particularly when comprehension problems occur. One of the ways in which
teachers can support students’ mathematical understanding is by offering mul-
tiple representations and explanations.

Given these theoretical considerations, the COACTIV group has devel-
oped a CK test to assess teachers’ deep understanding of the mathematical
content covered in secondary school, as well as a separate PCK test to assess
their knowledge of tasks, student ideas, and representations and explana-
tions. As Krauss, Brunner, et al. (2008) have shown, confirmatory factor anal-
yses support the theoretically postulated two-factor structure of mathematics
teachers’ subject matter knowledge. The two factors show substantial inter-
correlation (rlatent 5 .79) that increases as a function of teachers’ expertise
but are clearly distinguishable. For each test, a one-dimensional two-
parameter item response theory model provides a good fit to the empirical
data. The technical details of the tests are presented in the Method section.
In a validation study with samples of advanced university students majoring
in mathematics, certified mathematics teachers, biology and chemistry teach-
ers, and high school students in advanced placement courses in mathemat-
ics, Krauss, Baumert, and Blum (2008) found empirical evidence for the
classification of mathematical CK as proposed above as well as for the con-
ception of CK and PCK as specific facets of teachers’ professional
knowledge.

Systematic Variation in CK and PCK: An Effect of Teacher Training?

As forms of domain-specific professional knowledge, CK and PCK are
thought to be acquired through formal training at the university level,
supervised internships, and reflected teaching experience and not picked
up incidentally. We expect the level of knowledge attained to depend on
the length, intensity, and quality of the teacher-training program attended.
Germany offers a unique natural experiment for testing the relationship
between teachers’ CK/PCK and type of training. Whereas in the United
States there is much variety in preservice training (Grossman &
McDonald, 2008; Zeichner & Conklin, 2005), thereby making it difficult
for researchers to define treatments and provide evidence for effects,
teacher education in Germany is standardized by the state. Moreover,
universities and colleges offer two distinct teacher education programs,
corresponding with the tracking system implemented after Grade 4. In
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almost all German states, students approaching the end of Grade 4 are as-
signed to different secondary tracks—usually in separate schools—on the
basis of their performance to date. The number of tracks implemented
ranges from two (Gymnasium, Sekundarschule) to four (Gymnasium,
Realschule, Hauptschule, Gesamtschule). In all states, however, a clear
distinction is made between the academic track (Gymnasium) and the
nonacademic tracks. This distinction is reflected in the structure of teacher
training. Teacher candidates aspiring to teach at secondary level must
choose between degree programs, qualifying them to teach in either the
academic track (Gymnasium; 5-year training program) or the other sec-
ondary tracks (e.g., Realschule or Sekundarschule; 4-year training pro-
gram). The university curricula are state regulated, with the basic
structure being determined at federal level, and the two program types dif-
fer in certain ways across all states. In terms of subject matter courses, the
requirements for the academic track (Certification Type 1) are on average
one third higher than those for the nonacademic tracks (Certification Type
2). In terms of teaching methods courses, requirements are similar for both
certification types. If at all, they are higher in nonacademic track pro-
grams. Teacher candidates for the academic track attend the same subject
matter courses as students majoring in mathematics, in mathematics de-
partments. Teacher candidates for the nonacademic tracks attend subject
matter courses taught by mathematics educators in mathematics depart-
ments or in schools of education, who are also responsible for the meth-
ods courses in both types of program. Having completed the university-
based part of their training, all teacher candidates enter a structured and
supervised induction program lasting 18–24 months.

A third group of teachers was certified in the former German Democratic
Republic (Certification Type 3), having attended training programs lasting 4
years (until 1982) or 5 years (1983–1989). In many cases, courses covered
both subject matter and teaching methods, making it impossible to quantify
the amount of time allocated to each. These integrated training programs
included an internship of several months.

If CK, as we conceptualize it, is indeed dependent on the type of train-
ing program attended, teachers of the different certification types can be ex-
pected to differ markedly in their CK, even when selective intake to the
programs is controlled. Specifically, we expect Type 1 teachers to outscore
their colleagues of the other types. It is harder to make predictions for
PCK. Because we hypothesize CK to be a necessary condition for PCK, we
expect Type 1 teachers to outscore Type 2 teachers in PCK, but the differen-
ces between the two groups to be much smaller than for CK. We do not
expect these differences in PCK in favor of Type 1 teachers to persist
when CK is controlled. Given the integrated nature of their training, no pre-
dictions can be made with respect to the PCK scores of teachers certified in
the former German Democratic Republic (Type 3).
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The Differential Implications of CK and PCK
for Teaching and Student Progress

PCK is inconceivable without CK. Given the findings of the qualitative
case studies described above, however, we assume that PCK is needed
over and above CK to stimulate insightful learning. We address our hypoth-
esis that CK and PCK have differential implications for teaching and learning
by testing the predictive significance of the two knowledge constructs (Hill
et al., 2007).

As Seidel and Shavelson (2007) have pointed out, the reviews and meta-
analyses summarizing the state of research on learning and instruction over the
last two decades differ considerably in terms of the labeling and categorization
of teaching variables. It is thus difficult to compare effect sizes. Nevertheless,
although the terminology differs, three components of instruction have emerged
consistently as being crucial for initiating and sustaining insightful learning pro-
cesses inmathematics lessons (Brophy, 2000;Helmke, 2009; Scheerens&Bosker,
1997; Seidel & Shavelson, 2007; Shuell, 1996; Walberg & Paik, 2000; Walshaw &
Anthony, 2008). These three components are as follows: cognitively challenging
andwell-structured learningopportunities; learning support throughmonitoring
of the learning process, individual feedback, and adaptive instruction; and effi-
cient classroom and time management.

In mathematics lessons, the level of cognitive challenge is determined
primarily by the type of problems selected and the way they are imple-
mented. Cognitively activating tasks in the mathematics classroom might,
for example, draw on students’ prior knowledge by challenging their beliefs.
Cognitive activation may also be prompted by class discussion if a teacher
does not simply declare students’ answers to be ‘‘right’’ or ‘‘wrong’’ but en-
courages students to evaluate the validity of their solutions for themselves or
to try out multiple solution paths. It is often the implementation of tasks in
the classroom that trivializes cognitively challenging problems, turning them
into routine tasks (Stigler & Hiebert, 2004). Another facet of cognitively acti-
vating instruction is the fit between the topics and materials chosen by the
teacher and the curricular demands of the grade or course. Instructional
alignment ensures that the instruction provided corresponds with the level
specified in the curriculum (Attewell & Domina, 2008). This is particularly
important in continental European countries, where curricula with compul-
sory subject content are mandated by the state.

The second dimension of high-quality instruction considered in COACTIV
is the individual learning support provided by the teacher. Studies based on
motivational theories show that simply providing students with challenging
tasks is not enough to motivate them to engage in insightful learning process-
es; rather, they need to be supported and scaffolded in their learning activities
(Pintrich, Marx, & Boyle, 1993; Stefanou, Perencevich, DiCintio, & Turner,
2004; Turner et al., 1998). The ongoing monitoring of difficulties and
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calibrated support that addresses students’ difficulties while respecting their
autonomy not only foster students’ motivation but are essential components
of powerful learning environments in terms of cognitive outcomes (Greeno,
Collins, & Resnick, 1996; Puntambekar & Hübscher, 2005).

The third crucial dimension of instruction is that of classroom manage-
ment. Given the complex social situation of the classroom, where interper-
sonal conflicts and disruptions are an everyday reality, it is crucial to ensure
sufficient learning time by establishing and maintaining structure and order.
Efficient classroom management—that is, preventing disruption and using
classroom time effectively—is a robust predictor of the quality of instruction
and of students’ learning gains (Seidel & Shavelson, 2007, p. 481; Walberg &
Paik, 2000; Wang, Haertel, & Walberg, 1993).

In our longitudinal extension of PISA 2003 (COACTIV), we drew on stu-
dent and teacher ratings, as well as a sample of instructional materials, to
assess these three components of instruction (Kunter et al., 2007). Kunter
et al. (2006) and Dubberke, Kunter, McElvany, Brunner, and Baumert
(2008) showed that the three-component model provided a good fit to the
empirical data and substantially predicted student progress.

In the present study, we assume teachers’ professional knowledge to
be an important resource in facilitating the provision of varied, challeng-
ing, and motivating learning opportunities. Specifically, we expect PCK
to be a major prerequisite for instruction that is both cognitively activat-
ing and adaptive, with teachers responding constructively to student er-
rors and providing individual learning support; furthermore, we expect
CK to be necessary for, but not identical with, a rich repertoire of skills
and methods for teaching mathematics. This higher instructional quality
should be reflected in higher student learning progress. We thus propose
a mediation model, in which the positive effect of PCK on students’
learning gains is mediated by the provision of cognitively challenging
learning opportunities and individual learning support. If the hypothesis
formulated on the basis of the qualitative studies on teacher knowledge
holds and CK alone is not a sufficient precondition for the provision of
powerful learning environments, the mediation model estimated for PCK
should not apply to CK, or it should apply to only a limited extent: The
relations between CK and cognitive activation/individual learning sup-
port are expected to be statistically significantly lower than those esti-
mated for PCK.

To test the discriminant validity of our assessments of CK and PCK, we
include classroom management in our model, which should vary indepen-
dently of mathematical knowledge.

Moderation Hypothesis: Interaction of PCK and Secondary Track

Given a reanalysis of the mathematics data from the Tennessee Class
Size Experiment (Project STAR; Nye, Hedges, & Konstantopoulos, 2000),
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Nye, Konstantopoulos, and Hedges (2004) showed that in the first 3 years of
elementary schooling, the variance in student learning gains that is attribut-
able to teacher effectiveness is larger in low socioeconomic status (SES)
schools than in high SES schools. In other words, the teacher assigned to
a class matters more in low SES schools than in high SES schools. The au-
thors interpret this finding as reflecting a creaming effect: High SES schools
are able to recruit better teachers and thus develop a more homogeneous
staff (Zumwalt & Craig, 2005). We expect this moderator effect to occur sys-
tematically in tracked systems, such as those implemented in the German-
speaking countries.

If teachers’ CK and PCK scores depend on the type of training pro-
gram attended, then the CK and PCK of mathematics teachers in the lower
nonacademic tracks can be expected to be lower than that of their col-
leagues in the academic track. Moreover, if the quality of mathematics
instruction is indeed dependent on PCK, an interaction effect of PCK
and secondary track can be expected for student progress. In this case,
teacher knowledge should be particularly important for the learning gains
of weaker students.

Method

Study Design

COACTIV was conceptually and technically embedded in the German
extension to the 2003 cycle of the Organisation for Economic Co-operation
and Development’s PISA study (2004), which extended the international
cross-sectional design involving an age-based sample of 15-year-olds to
a grade-based study spanning a 1-year period from the end of Grade 9 to
the end of Grade 10. Grade 10 students in Germany are the same age as their
counterparts in the United States. In some German states, however, students
in the lowest secondary track (Hauptschule) graduate and begin occupation-
al training after Grade 9. As such, our study population covers about 80% of
the age cohort and is thus more selective than what it would be for cohorts
of freshmen in U.S. high schools.

Only classes in the school types that implement a 10th grade nationwide
participated in the longitudinal extension. At the end of Grades 9 and 10, stu-
dents in the PISA classes were administered achievement tests, as well as
questionnaires assessing background data and aspects of their mathematics
instruction. Within the framework of COACTIV, the mathematics teachers of
these PISA classes were administered tests on facets of their professional
knowledge, as well as questionnaires regarding their social and occupational
background, motivational aspects of the teaching profession, beliefs on
teaching and learning, perceptions of their own instruction, and professional
self-regulation skills (Kunter et al., 2007).
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Sample

A sample of Grade 9 students and their mathematics teachers that was
representative for Germany was drawn in a two-step sampling process.
First, a random sample of schools stratified by state and school type
was drawn proportional to size. Second, two intact Grade 9 classes and
their mathematics teachers were selected at random in each school.
The coverage rate was 100% at the school level, 95% at the student level,
and 94% and 84% at the teacher level in the first and second wave of
assessment, respectively (Carstensen, Knoll, Rost, & Prenzel, 2004). A
total of 181 teachers with 194 classes and 4,353 students participated in
the longitudinal study (13 of the participating teachers taught parallel
classes in the same school). All teachers had studied mathematics at uni-
versity level and were licensed to teach the subject. Teacher candidates in
Germany are required to study two teaching subjects at college. Of the
teachers in our sample, 147 had majored in mathematics and 34 had min-
ored in the subject; 26% had completed a 5-year training program for the
academic track (Certification Type 1); 43%, a 4-year program for the non-
academic track (Certification Type 2); and 31%, a 4-year integrated train-
ing program in the former German Democratic Republic (Certification
Type 3).2 Unsurprisingly, 84% of teachers with Certification Type 1 taught
in the academic track; 96% of teachers with Certification Type 2 taught in
the nonacademic track. Teachers of Certification Type 3 taught in both
tracks (66% nonacademic, 34% academic). With a mean age of 48 years,
most of the teachers in the sample (48% women) looked back on many
years of classroom experience (M 5 22 years). Mean class size was 24
students. Analysis of sampling bias at the student level showed that the lon-
gitudinal sample can be considered representative of the 10th grade, which
excludes Hauptschule students (Prenzel, Carstensen, Schöps, & Maurischat,
2006). Likewise, findings can be generalized to the population of mathematics
teachers teaching in Grade 10 classrooms in Germany.

Measures

Teachers. The paper-and-pencil test used to assess CK consisted of 13
items covering arithmetic (including measurement; 4 items), algebra (2
items), geometry (1 item), functions (1 item), probability (1 item), and geom-
etry, functions, and algebra (4 items). An additional item tapping probability
was excluded due to poor model fit. All items required complex mathemat-
ical argumentation or proofs. The items covered mathematical topics that are
compulsory for Grades 5 to 10 and that are particularly appropriate for as-
sessing the conceptual understanding of mathematical content. A sample
item is presented in Figure A1 of the appendix. The reliability of the total
test was rKR20 5 .83 (Krauss, Brunner, et al., 2008).
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Three facets of mathematics teachers’ PCK were assessed. The tasks
dimension assessed teachers’ ability to identify multiple solution paths (4
items). The students dimension assessed their ability to recognize students’
misconceptions, difficulties, and solution strategies. To this end, teachers
were presented with classroom situations and asked to detect, analyze, or
predict typical student errors or comprehension difficulties (7 items).
Finally, the instruction dimension assessed teachers’ knowledge of different
representations and explanations of standard mathematics problems.
Teachers were presented with 10 vignettes of typical classroom situations
and asked to suggest as many ways as possible of supporting insightful
learning per situation (10 items). Most items were partial-credit items. The
reliability of the total test was rKR20 5 .78 (Krauss, Brunner, et al., 2008).
Figure A1 also presents a sample item for each facet of PCK.

For each test, approximately twice as many items were first trialed in
individual interviews and then piloted in a separate sample. The tests
were then optimized in terms of psychometric quality, content validity,
and test time. The content validity of the two final tests was rated by experts.
To ensure that the tests really assess knowledge specific to mathematics
teachers, we administered both tests to small samples of (a) high school stu-
dents in advanced mathematics courses and (b) science teachers who had
not studied mathematics. Both groups found the items of both tests practical-
ly unsolvable (Krauss, Baumert, et al., 2008).

For reasons of validity, all questions were open-ended; no multiple-
choice items were used (Schoenfeld, 2007). The tests were conducted by
trained test administrators in standardized single-interview situations as
power tests without time limits. The mean total time needed to complete
both tests was about 2 hours, which proved to be the maximum reasonable
test time. The use of calculators was not permitted, because it would have
compromised the validity of some items.

All items were coded independently by two trained raters using a stan-
dardized manual. In the case of rater disagreement, consensus was reached
by means of discussion. Interrater agreement was satisfactory, with a mean
r 5 0.81 and SD 5 0.17 (Brennan, 2001; Shavelson & Webb, 1991). The tests
were item response theory–scaled using PARSCALE 4.1 (Scientific Software
International, Lincolnwood, IL); a two-parametric partial-credit model was
applied. The model fit for both tests was good. The person parameters are
weighted likelihood estimates.

Instruction. The three aspects of instruction were assessed via different data
sources. We assessed the provision of cognitively activating learning opportuni-
ties using a newly developed domain-specific approach that reconstructs learn-
ing situations at the task level. Specifically, participating teachers were asked to
submit all tests and examinations they had set in the school year, as well as sam-
ples of homework assignments and tasks used to introduce two compulsory

Teachers’ Knowledge and Student Progress

149
 at Max Planck Ins on July 27, 2011http://aerj.aera.netDownloaded from 

http://aerj.aera.net


topics in Grade 10 mathematics. All tasks were compiled in a database and cat-
egorizedby trainedmathematics students using a classification schemespecially
developed for COACTIV (Jordan et al., 2006). Pilot studies showed that the tasks
set in tests and examinations, in particular, provide a valid reflection of the task
structure found in instruction. In Germany, teachers are obliged to set tests four
to six times per school year at the end of each instructional unit. These tests are
always developed by the teachers themselves. Practically all questions have an
open-ended format; multiple-choice questions are rare. The content, structure,
anddemandsof these tasks reflect the teachers’ expectationsof their students. In
accordance with the classification system developed by Jordan et al. (2006), the
cognitive demands of the test and examination tasks were coded on three di-
mensions: type of mathematical task (three levels: purely technical, computa-
tional modeling, conceptual modeling), level of mathematical argumentation
required (four levels: no argumentation required, low, intermediate, high level
of argumentation), and translation processes within mathematics (four levels:
no translation required, low, intermediate, high level of translation). The
mean score across all test tasks submitted for the school year was used in the
further analyses. On average, each teacher submitted 53 tasks.

The curricular level of tasks was used as an additional indicator of cog-
nitive activation. To this end, all test and examination tasks were coded by
curriculum experts in terms of their correspondence with the Grade 10 cur-
riculum (low alignment: knowledge of elementary mathematics; moderate
alignment: knowledge of simple junior high school mathematics; high align-
ment: knowledge of advanced junior high school mathematics). The mean
score across all tasks was used in the further analyses. Figure A2 provides
examples of tasks of differing cognitive demands and curricular levels.

The second dimension of instructional quality, individual learning sup-
port, was operationalized by six student rating scales, each comprising three
to four items. The scales tapped the degree to which teachers provided adap-
tive explanations, responded constructively and patiently to errors, whether
students perceived the pacing as adequate, and whether the teacher–student
interaction was respectful and caring (see Table A1 for item examples). The
intraclass correlation coefficient (ICC) taking into account the number of stu-
dent raters per class (ICC2) was used as a reliability measure (Lüdtke,
Trautwein, Kunter, & Baumert, 2006). Overall, ICC2 above .82 indicated
good reliability of the student responses aggregated at class level (see
Table A1 for reliabilities and further notes on ICC1 and ICC2).

Effective classroom management was operationalized by scales tapping
student and teacher perceptions. Agreement between teacher and student
judgments was high (Kunter & Baumert, 2006). General disciplinary climate
was measured by an eight-item scale tapping teachers’ perceptions of their
classrooms (Cronbach’s a 5 .82). The two other indicators, which addressed
the prevention of disruption and effective use of time, were each operation-
alized by a three-item scale tapping student perceptions. With an ICC2 of .89
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and .90, respectively, the reliability of the class-mean student ratings was
very high (see Table A1 for sample items and reliabilities).

Students. Mathematics achievement was assessed at the end of Grade 10
by a test covering the standard content stipulated in the federal states’ curric-
ula for Grade 10 mathematics. Rasch scaling was conducted using ConQuest
2.0 (Assessment Systems, St. Paul, MN), and the partial credit model was
used for all analyses (Wu, Adams, & Wilson, 1997). The reliability of the
full test was rKR20 5 .79. To derive latent estimates of mathematics achieve-
ment in multilevel structural equation models, we split the test into two parts
at random. Two achievement scores per person are thus available as weight-
ed likelihood estimates (Warm, 1989).

The PISA literacy tests (Organisation for Economic Co-operation and
Development, 2004) were used to assess mathematics and reading literacy
at the end of Grade 9. Both tests, which are Rasch scaled, use a multimatrix
design to ensure a broad coverage of content domains (Carstensen et al.,
2004). Their reliability was rKR20 5 .93 and rKR20 5 .88, respectively.
Weighted likelihood estimates were used for the person parameters.
Mental ability was assessed by two subtests of the Cognitive Ability Test
that tap verbal and figural reasoning and are regarded as markers of fluid
intelligence (Heller & Perleth, 2000). All students were tested at the end of
Grade 9. The subtests were Rasch scaled together using ConQuest; weighted
likelihood estimates were again used for the person parameters (Wu et al.,
1997). Reliability was rKR20 5 .88. The social status of the students’ families
was operationalized by the International Socio-Economic Index, which was
developed by Ganzeboom and Treiman (2003) on the basis of the
International Labour Office’s occupation classification system. Both parents’
most recent occupations were compared, and that with the higher status was
used in the analyses. The family’s educational background was measured by
six hierarchically ordered levels of qualification that were dummy coded
(Baumert & Schümer, 2001). Migration status was defined in terms of the pa-
rents’ country of birth. If at least one parent was born outside Germany, the
family was classified as immigrant. Parental occupation, education, and
immigration status were assessed by a parent questionnaire.

Data Analyses

Statistical model. This study uses a mediation model to test the extent to
which CK and PCK influence instructional quality, in turn affecting students’
learning gains in mathematics. To this end, the study capitalizes on the nat-
urally occurring variation in instructional quality between classes. The allo-
cation of students to classes, and of classes to teachers, does not occur at
random, however. As outlined above, not only are students allocated to
tracks on the basis of their aptitude and achievement, but teachers in the aca-
demic-versus-nonacademic tracks differ in their training and certification. As
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a result, the comparison groups are not equivalent, and teacher characteris-
tics covary with school type. For treatment effects to be properly estimated, it
is thus vital that the nonobserved assignment process be correctly specified
(Rosenbaum & Rubin, 1983; Winship & Morgan, 2007).

For students, the transition from elementary schooling to the tracks of the
secondary system is highly institutionalized. Students are allocated to second-
ary tracks on the basis of a teacher recommendation, which is based on their
German and mathematics achievement as well as an assessment of their gen-
eral ability and aptitude. The teacher’s recommendation tends to be binding.
Empirical studies show that parental decisions deviating from this recommen-
dation can be explained by the family’s SES and education. Given data on a stu-
dent’s achievement in German and mathematics, mental ability, and social and
ethnic background characteristics, it is possible to predict with a high degree of
certainty the secondary school track attended (Ditton, 2007). Parents’ freedom
to choose between schools of the same track is limited in Germany by the dif-
ferentiated structure of the secondary system (all tracks must be accessible
within a reasonable distance) and by the low proportion of private schools.
As a rule, parents choose the school nearest their home. To account for this
assignment process, we used the following variables obtained at the Grade 9
assessment to control for selective intake to school types and classes at the indi-
vidual level: prior knowledge of mathematics, reading literacy, mental ability,
parental education, social status, and immigration status.3

Teachers’ allocation to schools of the academic or nonacademic track is
determined by their university training. Within tracks, teachers are centrally
allocated to schools on the state level; the schools have no formal say in
the decision. The decisive criterion is the fit between the teaching subjects
required at the school and the teachers’ combination of teaching subjects
(major/minor). If there is more than one teacher with a suitable profile in
the central applicant pool, the overall grade awarded at state certification is
decisive. This procedure results in a quasi-randomized allocation of teachers
to schools within tracks. To control for selective access to the different teacher
education programs, we asked teachers to report their final high school grade
point average on a categorical scale from 1 (highest) to 6 (lowest).

We used multilevel structural equation models with latent variables for
our analyses. We specified a two-level model, controlling for selective intake
to classes at the individual level and then investigating the influence of teach-
ers’ professional knowledge on instructional quality and students’ learning
outcomes at the class level. The dependent variable—student achievement
at the end of Grade 10—was modeled as a latent construct indicated by the
scores on the two parts of the mathematics achievement test as described
above. On the class level, CK, PCK, and the dimensions of instructional quality
were specified as latent constructs at the class level. For CK, the 13 test items
were divided into two parcels, which served as indicators of the latent factor.
For PCK, the three subscales were the manifest indicators for the latent
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construct. The dimensions of instructional quality assessed by student reports
were conceived as hierarchical factors and modeled on the individual and
class level simultaneously. The covariates at individual level were manifest
variables. In addition, we controlled for the academic track of the class.

We specified the model presented in Figure 1, which was estimated sep-
arately for PCK and CK. We then compared the structural parameters of the
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Figure 1. Hierarchical linear model to test the significance of teachers’ pedagog-

ical content knowledge (PCK) and content knowledge (CK) for instructional qual-

ity and student learning.
Note. SES 5 socioeconomic status; - - - 5 no relation expected.
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two models at the class level in terms of their correspondence with the pre-
dictions of the theoretical framework.

All analyses were conducted with Mplus 4.01 (Muthén & Muthén, 2004).
We report several goodness-of-fit measures: chi-squre, comparative fit index,
root mean square error of approximation, and standardized root mean
square residual (Bollen & Long, 1993). Effect sizes were computed using
the model constraints module implemented in Mplus.

Missing values. Missing values are a widespread problem in longitudinal
studies. Cases with missing values are often removed from data sets (listwise
or pairwise deletion) or replaced by mean values. Both these approaches
assume that data are ‘‘missing completely at random.’’ There is now consensus
thatmultiple imputationor the full informationmaximum likelihoodestimator,
both of which assume only that data are ‘‘missing at random,’’ are preferable
methods for dealing with missing values (Peugh & Enders, 2004). Although
the amount of missing data in our study was relatively small, its management
merits careful consideration. The percentage of missing values differed across
assessment domains. Mathematics scores were missing at one point of mea-
surement for atmost 4.2%of students; mental ability scores (assessed at the first
point of measurement only) were missing for 1.2% of students. The maximum
percentage of missing data on the student questionnaires was 5.2%. In the
teacher survey, 10.0% of teachers did not report on the disciplinary climate
in the PISA class; 12.8%of teachers did not submit test and examination papers.
In the following, we use the full information maximum likelihood algorithm
implemented in Mplus, which estimates the missing values using the full infor-
mation of the covariance matrices at individual and class level under the ‘‘miss-
ing at random’’ assumption (Muthén & Muthén, 2004).

Results

This section begins with a descriptive overview, after which we discuss
differences between teachers with different training backgrounds. We then
present the mediation models investigating possible effects of teachers’ CK
and PCK on instructional features and student progress, focusing on the dif-
ferential effects of the two knowledge components. Finally, we address the
moderation hypothesis, which predicts that the effects of PCK are stronger in
lower-achieving classes.

Descriptive Findings

The sample of 194 classes comprised 80 academic track classes and 114
classes distributed fairly equally across the nonacademic tracks. Given their
structural similarities, the nonacademic tracks were collapsed into a single
category for the following analyses. As shown in Table 1, the academic track
is selective not only in terms of mental ability, prior knowledge of mathemat-
ics, and reading literacy but also in terms of SES, parental education, and
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ethnic background. The higher mean age of the students in the nonacademic
tracks points to higher levels of grade retention.

Between-track differences were also found at the class level (see Table
2). The cognitive and curricular levels of the tasks set were somewhat lower
in the classes of the nonacademic track. The level of cognitive challenge was
low overall, however. Most of the tasks set were purely technical; few
required mathematical reasoning and argumentation or conceptual flexibili-
ty. No consistent between-track differences were found for individual learn-
ing support or classroom management. Teachers of the academic and
nonacademic tracks did not differ statistically significantly in terms of their
age (M 5 48 years), teaching experience (M 5 22 years), gender distribution
(52% male), or high school grade point average.

Teacher Training Program Attended and Subject Matter Knowledge

As shown in Table 3, teachers’ CK and PCK scores proved to be highly
dependent on the type of training program they had attended (see Krauss,
Baumert, et al., 2008). As predicted, teachers certified to teach in the aca-
demic track (Certification Type 1) had much higher CK scores than did

Table 1

Descriptive Findings at Student Level (N 5 4,353)

Total

Nonacademic

Tracks

Academic

Track Dtracks

Variables M SD M SD M SD t p

Mathematics achievement,

end of Grade 10

0.05 0.98 –0.31 0.90 0.53 0.86 –30.3 .000

Mathematical literacy,

end of Grade 9

0.04 0.97 –0.32 0.92 0.53 0.87 –31.6 .000

Reading literacy,

end of Grade 9

0.06 0.96 –0.25 0.92 0.47 0.85 –19.3 .000

Mental ability,

end of Grade 9

0.05 0.96 –0.22 0.96 0.43 0.81 –23.4 .000

Age, years 15.7 0.66 15.8 0.71 15.6 0.67 10.4 .000

Socioeconomic statusa 53.4 16.0 48.6 14.6 59.9 15.4 –24.4 .000

% % % x2,

(df 5 1)

p

Parents with

university degree

32.3 19.1 50.7 40.9 .000

Immigrant background 19.3 21.4 16.6 5.7 .000

aAs operationalized by the International Socio-Economic Index. Specifically, the analysis
used the higher-status occupation between the two parents.
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teachers certified for nonacademic tracks (Certification Type 2) or teachers
who attended an integrated training program in the former German
Democratic Republic (Certification Type 3). The mean difference between
teachers of Type 1 versus Type 2 was d 5 1.26 SD; between teachers of
Type 1 versus Type 3, d 5 1.18 SD. Teachers of Type 2 versus Type 3 did
not differ statistically significantly in their CK scores. The differences re-
mained practically unchanged when selective intake was controlled in terms
of the final high school grade point average (see Krauss, Brunner, et al.,
2008). The dramatic differences of more than one standard deviation in
CK scores may be attributable to the higher requirements placed on teacher
candidates in the academic program and/or to the potentially stricter de-
mands of mathematics departments. These two effects are confounded
and cannot be separated in our study.

The teachers trained for the academic track also outscored their col-
leagues on PCK, even though the training requirements for teaching meth-
ods courses tend to be higher, if at all, in Type 2 programs and the
courses were given by the same staff. As predicted, however, the mean dif-
ference in PCK between Certification Type 1 and Type 2 was much smaller
than for CK (d 5 1.26 SD), at d 5 0.43 SD. When CK was controlled, Type 2
teachers in fact outscored Type 1 teachers on PCK (d 5 0.35 SD). The PCK of
Type 3 teachers was much lower than that of Type 1 and Type 2 teachers (d
5 1.02 and d 5 0.60, respectively), although the CK level of Type 2 and
Type 3 teachers did not differ.

To test whether the differences in CK and PCK leveled out over the
teaching career, we specified interactions between certification type and
years of service. No significant interactions emerged, indicating that the dif-
ferences persisted over the entire teaching career.

As outlined above, teachers in Germany are generally assigned to
schools of the different tracks on the basis of their certification. As a result,
there are marked differences in the CK and PCK of the teachers of the differ-
ent tracks (see Table 4). In the United States, it is a matter of grave concern
that the least qualified teachers work at low SES schools attended by the low-
est-achieving students (Nye et al., 2004). In Germany, the correspondence
between teacher training and the tracking system produces similar effects.
The implications of this mechanism are discussed below.

Mathematical Knowledge of Teachers, Classroom
Instruction, and Student Progress

In this section, we test the hypothesis that it is PCK and not CK that has
the decisive impact on key aspects of instructional quality—namely, cogni-
tive activation and individual learning support—and thus on student prog-
ress. We first present the results for the PCK model and then the CK
model before comparing the two.

Baumert et al.
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A series of multilevel structural equation models with latent variables
was specified to test the mediation model presented in Figure 1. The mea-
surement model for the latent variables in the full mediation model is
shown in Table A2 of the appendix. All manifest indicators made a substan-
tial contribution to defining the respective latent construct. The estimates
for the structural parameters of the fitted models are summarized in
Table 5.

In a first step, the variance in mathematics achievement was decom-
posed into within- and between-class components (unconditional model).
The results showed that 54.5% of the variation in achievement was within
classes and that 45.5% was between classes, highlighting the effects of early
tracking in the German school system. When the between-class variance was
partitioned into a between-track component (academic versus nonacadem-
ic) and a between-class within-track component, 23.5% and 22.0%, respec-
tively, of the variance was explained.

In a second step, we specified the individual model (Model 1, Table 5),
which we propose to reflect the mechanism of student assignment to differ-
ent classes and teachers. We estimated a random intercept model with 10
achievement predictors, all of which were assessed at the end of Grade 9.
As shown in Table 5 (Model 1), the decisive control variables at the individ-
ual level were prior knowledge and mental ability. The most important pre-
dictor was that of mathematical knowledge at the end of Grade 9 (b 5 .49),
followed by mental ability (b 5 .24), and reading literacy (b 5 .21).
Consistent with our assignment model, social background, parental educa-
tion, and immigration status proved to be less important. The individual
model explained a total of 64% of the variance in mathematics achievement
at the end of Grade 10 within classes.

Because in Germany allocation to classes is highly dependent on
student achievement and social background, the variance between

Table 4

Teachers’ Content Knowledge and Pedagogical Content Knowledge by Track

Total Nonacademic Tracks Academic Track Dtracks

Variables M SD M SD M SD t p

CK –0.11 1.00 –0.58 0.84 0.73 0.68 –10.2 .000

PCK

Tasks –0.04 0.97 –0.24 0.89 0.31 1.00 –3.46 .001

Students –0.02 1.00 –0.24 0.98 0.45 0.86 4.68 .000

Instruction –0.03 0.97 –0.31 0.93 0.48 0.85 –5.37 .000

Overall –0.05 0.98 –0.33 0.96 0.49 0.76 –5.65 .000

Note. CK 5 content knowledge; PCK 5 pedagogical content knowledge.
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classes decreased dramatically when these covariates were controlled. The
residual variance between school classes was only r 5 .046. In other
words, a maximum of 4.6% of the variance in achievement at the individual
level can be explained by different treatment at class level. The magnitude
of this potential effect is comparable with findings from other studies (Hill
et al., 2005; Lanahan, McGrath, McLaughlin, Burian-Fitzgerald, & Salganik,
2005; Nye et al., 2004).

In the next step, the four core dimensions of instructional quality were
entered in the model (Table 5, Model 2). The predictors at class level were as
follows: cognitive level of tasks, curricular level of tasks, individual learning
support, and quality of classroom management. With the exception of indi-
vidual learning support and classroom management, the correlation of
which was rlatent 5 .41, the latent constructs of instructional quality were
orthogonal. Cognitive level of tasks, curricular level of tasks, and effective
classroom management proved to be significant predictors of mathematics
achievement at the end of Grade 10. Contrary to our expectations, however,
individual learning support was not found to have a specific effect on math-
ematics achievement over and above the joint effect with classroom manage-
ment (the zero-order correlation between support and achievement was
rlatent 5 .22). The four latent predictors explained 37% of the variance
between classes.

Model 3 tested whether the model also holds when controlling for the
classes’ track membership. The high coefficient of b 5 .58 for school type
(nonacademic versus academic track) indicates that the tracks constitute
differential developmental environments. In principle, however, the
instructional model also holds within school types. Only the curricular lev-
el of tasks was found to be confounded with track membership, which
caused the standardized regression coefficient to drop from b 5 .30 to
b 5 .17. Model 3 explained 68% of the variance in achievement between
classes.

Models 4 and 5 tested whether the PCK of Grade 10 mathematics
teachers is in fact relevant to students’ achievement. These black-box
models test the direct effects of PCK on mathematics achievement at the
end of Grade 10, with and without control for track membership. The find-
ings are clear. The standardized regression coefficient for PCK in Model
4—without control for track membership—was b 5 .62. In other words,
39% of the variance in achievement between classes was explained solely
by the latent variable of PCK. Teachers’ domain-specific instructional
knowledge thus seems to be of key significance for student progress in
mathematics. The relationship between PCK and mathematics achieve-
ment was linear. An additionally estimated quadratic term was insignifi-
cant (cf. Hill et al., 2004).

As shown earlier, track membership and PCK are confounded; as Model
5 shows, however, they can still be distinguished empirically (track
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membership was entered as a control variable in Model 5). Track member-
ship and teachers’ PCK each had considerable specific significance for stu-
dents’ learning gains (both b 5 .42). The explained variance between
classes was R2 5 .54. The shared variance component was R2 5 .23; the
track-specific variance component, R2 5 .17; and the PCK-specific variance
component, R2 5 .14.

Model 6 tested the full mediation model, controlling for the track
membership of the classes investigated. The parameter estimates of the
relationship between instruction and achievement are comparable to
those reported for Model 2. As expected, PCK seems to influence the cog-
nitive level, curricular level, and learning support dimensions of instruc-
tional quality. The finding that PCK affects individual learning support in
mathematics is particularly interesting as it shows that learning support
seems to be dependent not only on a caring ethos but also on domain-
specific knowledge. The independence of classroom management from
PCK can be interpreted as an indicator for the discriminant validity of
PCK. It is possible for classroom management to seem effective on the
surface, even when levels of PCK and cognitive activation are low. The
full mediation model explained 69% of the variance in achievement
between classes.

What Counts: CK or PCK?

Previous findings have shown the substantial correlations between CK
and PCK to increase as a function of the expertise of the teacher group
(Krauss, Brunner, et al., 2008). These findings raise the urgent question of
whether PCK or CK is decisive in the classroom or whether the two compo-
nents of professional knowledge are interchangeable. Our theoretical
assumption is that PCK is inconceivable without a substantial level of CK
but that CK alone is not a sufficient basis for teachers to deliver cognitively
activating instruction that, at the same time, provides individual support for
students’ learning.

To address this question, we also specified the black-box model (PCK
predicting student achievement after controlling for track; Model 5 in
Table 5) for CK (Model 7 in Table 5). Model fit was similar to that of
Model 5. CK was less predictive of student progress than was PCK, however
(b 5 .30 versus b 5 .42). At the same time, the explained between-class var-
iance decreased from R2 5 .54 to R2 5 .44. PCK thus has greater power than
CK to explain student progress.

To examine the implications of these findings for the instructional pro-
cess, we also specified the full mediation model for CK (Model 8). When
the parameters of the regression of the instructional variables on CK were
freely estimated, the distinct effects of PCK and CK became apparent. CK
was not found to affect the cognitive level of tasks and individual learning
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support; the coefficients were practically zero. It was only the curricular
level of the tasks—that is, their curricular alignment—that increased
with increasing levels of CK (b 5 .32). The observed differences between
PCK and CK as predictors for instruction and student learning can also be
statistically substantiated. To this end, we constrained the critical parame-
ters of the regression of the instructional variables on CK in Model 8 to the
standardized values estimated for PCK in Model 6. Under these conditions,
the fit of Model 8 was significantly reduced: The difference in x2 at 4 de-
grees of freedom was 18.6 (p , .05); Akaike’s information criterion
increased from 129,102 to 129,118. Our findings thus confirm that it is
PCK that has greater predictive power for student progress and is decisive
for the quality of instruction. These results do not imply that CK has no
direct influence on instructional features, however. In fact, teachers with
higher CK scores are better able to align the material covered with the cur-
riculum. But higher levels of CK have no direct impact either on the poten-
tial for cognitive activation or on the individual learning support that
teachers are able to provide when learning difficulties occur. It is the level
of PCK that is decisive in both these cases. Both PCK and CK vary indepen-
dently of effective classroom management.

Effect Size of PCK

The mediation model specified for PCK explained 39% of the variance in
achievement between classes without control for track membership (not re-
ported in Table 5). The amount of variance explained was thus identical with
the effect of PCK in the black-box model (Model 4 in Table 5). What are the
practical implications of this finding? To facilitate interpretation, it is helpful
to evaluate effect sizes based on students’ general learning rates. The mean
increase in mathematics across Grade 10 in our sample was d 5 0.35. To
transform the variance component attributable to teachers’ PCK into an inter-
pretable effect size, we chose a procedure based on Tymms’ proposal (2004)
for calculating effect sizes for continuous Level 2 predictors in multilevel
models. This effect size, which is comparable with Cohen’s d, can be calcu-
lated using the following formula:

D ¼ 2 3 B 3 SDpredictor=se

where B is the unstandardized regression coefficient in the multilevel
model, SDpredictor is the standard deviation of the predictor variable at
the class level, and se is the residual standard deviation at the student
level. The resulting effect size describes the difference in the dependent
variable between two classes that differ two standard deviations on the
predictor variable. This gives—without control for track membership—a
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PCK effect of dclass 5 0.46 (SE 5 .09). In other words, two comparable
Grade 10 classes whose mathematics teachers’ PCK differed by two stan-
dard deviations would differ by d 5 0.46 SD in their mean mathematics
achievement at the end of the school year. Based on the average student
learning rate of d 5 0.35, completely comparable classes taught by teach-
ers with PCK scores in the lower or upper quintile of the competence dis-
tribution can thus be expected—all things being equal—to show learning
gains in the range of about d # 0.15 and d $ 0.55, respectively. This
effect size may be overestimated because no account is taken of track
membership. When track membership is controlled (Model 5), the effect
size for the specific PCK effect is dclass 5 0.328 (SE 5 .10). This effect size
may be underestimated because no account is taken of the confounded
effect component (see above, R2 5 .227). In this case, classes taught by
teachers with PCK scores in the lower or upper quintile of the compe-
tence distribution can be expected to show learning gains of d # .21
and d $ .49, respectively. The true effect size lies somewhere between
the two estimates and is thus substantial.

Moderating Effects of Track

To test the hypothesis that teachers’ PCK is particularly important for the
learning gains of weaker students, we also specified Model 4 (cf. Table 5) as
a two-group model (not reported in the tables) in which model parameters
were estimated separately for classes in the nonacademic tracks (low SES
and low achievement) and for Gymnasium classes (high SES and high achieve-
ment). We tested the moderator effect by comparing the fit indices of the two-
group model when the effect of PCK was freely estimated versus constrained
to be equal. When freely estimated, the standardized regression coefficient of
student achievement on PCK was b 5 .54 in the first group and b 5 .29 in the
second group. These findings indicate that differences in teacher PCK have
a greater impact on students in low SES low-achievement classes. The fit of
the two-group model was excellent, x2 5 57.9, df 5 46, p 5 .11; comparative
fit index 5 .99; root mean square error of approximation 5 .011; standardized
root mean square residualbetween 5 .03 and standardized root mean square re-
sidualwithin 5 .005. However, model fit was only minimally reduced when the
regression coefficients were constrained to be equal. The difference in x2 at 1
degree of freedom was 2.0 and was not significant. The interaction between
track and PCK did not reach the level of statistical significance.

Summary and Conclusions

Learning and instruction are domain specific. As Leinhardt (2001) has
shown with reference to instructional explanations in history and mathe-
matics, the structure and syntax of the subject affect instructional processes
and necessitate specific teacher expertise, which can be acquired through
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formal training and reflected teaching experience (Ball et al., 2001;
Grossman & Schoenfeld, 2005). In our study, we investigated the subject-
specific knowledge of secondary school mathematics teachers, and our re-
sults confirmed the relevance of these forms of specific teacher expertise
for high-quality teaching and student learning. We considered both CK
and PCK as critical professional resources for teachers, each requiring
specific attention during both teacher training and classroom teaching
practice.

In contrast to Hill and colleagues (Hill et al., 2004; Hill et al., 2007), who
conceptualized mathematical knowledge for teaching as an amalgam of the
mathematical everyday knowledge that all educated adults should have,
a purely mathematical understanding of topics typically taught at school,
and mathematical knowledge relating directly to the instructional process
(PCK), the COACTIV group has succeeded in distinguishing the CK and
PCK of secondary mathematics teachers conceptually and empirically. In
line with the findings of qualitative studies on teacher knowledge, the
COACTIV group worked on the theoretical assumption that PCK as a specific
form of mathematical knowledge is inconceivable without sufficient CK but
that CK cannot substitute PCK. Unlike CK, PCK was expected to be mani-
fested in the quality of the instructional process itself. This hypothesis was
tested by means of model comparison, using hierarchical structural equation
models with latent variables.

When selective intake to schools and classes was controlled at the
individual level, PCK explained 39% of the between-class variance in
achievement at the end of Grade 10. The effect sizes were substantial:
If two learning groups comparable at the beginning of Grade 10 were
taught by mathematics teachers whose PCK differed by two standard
deviations, the groups’ mean mathematics achievement would differ by
d 5 0.46 SD across all tracks or d 5 0.33 SD within tracks by the end
of the school year. This effect was fully mediated by the level of cogni-
tive activation provided by the tasks set, instructional alignment with the
Grade 10 curriculum, and individual learning support. In other words,
PCK largely determines the cognitive structure of mathematical learning
opportunities.

The mediation model does not apply to CK, or only to a very limited
extent. Despite its high correlation with PCK, CK has lower predictive power
for student progress. CK has a direct impact only on the alignment of tasks to
the Grade 10 curriculum. No direct effects were found on the two key var-
iables of instructional quality—namely, cognitive activation and individual
learning support.

This does not imply that CK—defined as a conceptual understanding
of the mathematical knowledge taught—is unimportant. As shown by the
qualitative studies reviewed in our overview of the research literature
above, CK defines the possible scope for the development of PCK and
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for the provision of instruction offering both cognitive activation and indi-
vidual support. This study shows that both CK and PCK are largely depen-
dent on the type of training program attended, with program-specific
differences in CK of more than one standard deviation. The qualitative
findings indicate that deficits in CK are to the detriment of PCK, limiting
the scope for its development. Our findings suggest that it is not possible
to offset this relationship by increasing the specific focus on PCK in teacher
training.

These results provide broad, representative confirmation for findings on
the structure and effects of domain-specific professional knowledge that
have accumulated over the past two decades (Ball et al., 2001). Further,
they extend on the findings reported by Hill et al. (2004) for elementary
school teachers.

Our findings also allow some tentative conclusions to be drawn for the
structure and design of teacher training programs. It seems that programs
that compromise on subject matter training, with the result that teacher can-
didates develop only a limited mathematical understanding of the content
covered at specific levels, have detrimental effects on PCK and consequently
negative effects on instructional quality and student progress. Differences in
CK that emerge during preservice training persist across the entire teaching
career.

This does not imply that it is the best possible solution for mathematics
teacher candidates to attend training programs largely identical to those
provided for students majoring in mathematics, although such programs
do seem to produce better results than the shorter and possibly more
superficial training programs implemented at German schools of educa-
tion. It is probably also possible to achieve sound understanding of the
structure and syntax of the discipline without loss of mathematical rigor
by reference to school-related topics. A challenge for future research on
teacher training will be to examine whether and how this can best be
achieved.

PCK also depends on the type of training program attended. Here again,
deficits in training programs are not offset by practical on-the-job experi-
ence. There is much to suggest that training programs must achieve a balance
between CK and PCK. Determining the nature of this balance is a further
challenge for future research.

The ongoing discussion on the certification of ‘‘highly qualified’’ teach-
ers in the United States focuses on subject matter knowledge (U.S.
Department of Education, 2003, 2006). Critics are very concerned about
this one-sided approach (Grossman, 2008; Liston, Borko, & Whitcomb,
2008; Smith & Gorard, 2007). Our findings show that it is, in principle, justi-
fied to increase the attention paid to teachers’ subject matter knowledge.
However, it is vital to specify from the outset exactly what is meant by sub-
ject matter knowledge—in terms of CK, PCK, and a balance between the
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two. It is clear that these knowledge components do not exhaust the spec-
trum of professional competence. Indeed, the substantial amount of unex-
plained variance in our structural equation model clearly shows that the
choreography of teaching is not only dependent on CK and PCK. Further
research is thus needed into the theoretical conceptualization and operation-
alization of generic pedagogical knowledge (e.g., Blömeke, Felbrich, &
Müller, 2008).

The second conclusion to be drawn from our findings is a sociopolitical
one relating to the equality of opportunities. In Germany, teacher candidates
aspiring to teach at secondary level attend different training programs de-
pending on the school track in which they intend to teach. Teachers gradu-
ating from these programs differ considerably in their mathematical
knowledge. Because the allocation of teachers to school types is relatively
strict, the professional competence of mathematics teachers in the academic
versus nonacademic tracks differ accordingly, with serious implications for
social equality.

Students attending the different tracks differ not only in their ability and
achievement but also in their social and ethnic backgrounds. Consequently,
weaker students from lower SES families and immigrant families tend to be
taught by teachers who are less competent in terms of CK and PCK. This is
one of the factors contributing to the extremely wide distribution in achieve-
ment and the serious social and ethnic disparities found in the United States
and Germany as well at the end of compulsory schooling (Akiba, LeTendre,
& Scribner, 2007; Baumert & Schümer, 2001). The unequal distribution of
well-trained teachers across schools is a matter of great concern in the
United States, where it is primarily the result of differences in the social struc-
ture of school districts (Darling-Hammond, 2006; Hill & Lubienski, 2007;
Zumwalt & Craig, 2005). In Germany, it is caused largely by an interaction
of the institutional structure of the education system and the structure of
teacher training.

Debates on the improvement of teacher quality often prove controver-
sial. In many cases, outside observers call the existing systems of teacher
education into question and suggest that the teaching profession be
opened to subject experts without specific pedagogical training. We
hope that the empirical evidence provided by our study will inform these
discussions. We see the key message of our study as follows: PCK—the
area of knowledge relating specifically to the main activity of teachers,
namely, communicating subject matter to students—makes the greatest
contribution to explaining student progress. This knowledge cannot be
picked up incidentally, but as our finding on different teacher-training
programs show, it can be acquired in structured learning environments.
One of the next great challenges for teacher research will be to determine
how this knowledge can best be conveyed to both preservice and in-
service teachers.
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Appendix

+1

Knowledge 
Category 

(Subscale)
Sample Item Sample Response (Scored as correct)

CK

Is it true that 0.999999 . . . = 1?
Please give detailed reasons for 
your answer.

Let 0.999 . . . = a 
Then 10a = 9.99 . . . , hence, 
10a – a = 9.99 . . . – 0.999 . . .

9a 9

Therefore a = 1; hence, the statement is 
true.

PCK:
tasks

How does the surface area of a 
square change when the side 
length is tripled? Show your 
reasoning.

Please note down as many 
different ways of solving this 
problem (and different reasonings) 
as possible.

Algebraic response
Area of original square: a2

Area of new square is then (3a)2 = 9a2; 
i.e., 9 times the area of the original 
square.

Geometric response
Nine times the area of the original 
square:

PCK:
students

The area of a parallelogram can 
be calculated by multiplying the 
length of its base by its altitude.

Please sketch an example of a 
parallelogram to which students 
might fail to apply this formula.

Note: The crucial aspect to be covered in 
this teacher response is that students 
might run into problems if the foot of the 
altitude is outside a given parallelogram.

PCK:
instruction

A student says: I don’t understand 
why (–1) × (–1) = 1

Please outline as many different 
ways as possible of explaining this 
mathematical fact to your student.

The “permanence principle,” although it 
does not prove the statement, can be 
used to illustrate the logic behind the 
multiplication of two negative numbers 
and thus foster conceptual 
understanding:

3 × (–1) = –3

2 × (–1) = –2

1 × (–1) = –1

0 × (–1) = 0

(–1) × (–1) = 1

(–2) × (–1) = 2

a 3a

–1

base

al
tit

ud
e

Figure A1. Measures of pedagogical content knowledge and content knowledge

in COACTIV: Sample items and item responses.

Note. CK 5 content knowledge; PCK 5 pedagogical content knowledge.
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Curricular Level of Task Type of Mathematical Task 

Low 
Knowledge of elementary 
mathematics: basic arithmeti-
cal operations and a know-
ledge of the basic geometry 
taught at elementary level or 
known from everyday life. 

High 
Knowledge of advanced 
junior high school mathe-
matics: advanced procedures 
and concepts (e.g., quadratic 
equations, rudiments of 
conformal geometry)  

Technical tasks 
Technical knowledge without 
any contextual anchoring 

Calculate the following sum: 
 
   13.4 liters + 3 dm3 =          dm3

Simplify the following fraction: 
 

 
4b–1c–1f j 2n5

 –––––––––  = 
 2b–1c–2f j 2n5

Conceptual modeling tasks 
Inner- and extramathe-
matical tasks that require 
modeling, and that empha-
size conceptual reasoning 
in the procedural phase  

Continue the following 
sequence: 
 
      1  4  9  16  25   
 
      ___________ 

A sum of 4,000 is invested 
in an account that pays 4.5% 
interest per year. 
 
Express the relationship as a 
function. 

Figure A2. Examples of tasks of differing cognitive demands and curricular

levels.

Table A1

Dimensions of Instructional Quality: Sample Items and Reliabilities of Indicators

Latent Constructs

and Indicators Items (n) Sample Items ICC1 ICC2
a

Individual learning support Our mathematics teacher . . .

Adaptive explanations 4 Gives good examples

that make math problems

easy to understand.

.34 .86

Constructive response to errors 3 Doesn’t mind if someone

makes a mistake in the lesson.

.32 .85

Patience 3 Stays patient even if he/she

has to explain things

several times.

.37 .86

Adaptive pacing 4 Often doesn’t really discuss

our problems because we

have so much material

to get through.b

.29 .83

(continued)
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Table A2

Measurement Models for the Latent Constructs of Instruction and Achievement

Factor Loadings

Factors and Indicators Individual Level Class Level

Mathematical competence, end of Grade 10

Test Part A (ST) .74 .90

Test Part B (ST) .75 .90

Pedagogical content knowledge

Tasks (TT) — .53

Students (TT) — .67

Instruction (TT) — .78

Content knowledge

Test Part A (TT) — .73

Test Part B (TT) — .83

Cognitive level of tasks

Type of mathematical task (E) — .83

Level of mathematical argumentation (E) — .47

Innermathematical translation (E) — .70

Curricular level of tasks

(continued)

Table A1 (continued)

Latent Constructs

and Indicators Items (n) Sample Items ICC1 ICC2
a

Respectful treatment of students 3 Sometimes treats students

in a hurtful way.b
.31 .85

Caring ethos 3 Takes time to listen whenever

a student wants to talk

to him/her.

.35 .86

Effective classroom management

Disciplinary climate

(teacher perception)

8 My lessons in this class are

very often disrupted.b
— —

Prevention of disruption 3 Our mathematics lessons are

very often disrupted.b
.44 .90

Effective use of time 3 A lot of time gets wasted

in mathematics lessons.b
.41 .89

Note. ICC 5 intraclass correlation coefficient. The ICC1 indicates the proportion of total
variance that can be attributed to between-class differences. It is a measure of the reliabil-
ity of an individual student’s judgment. The ICC2 indicates the reliability of a class-mean
judgment and is calculated by applying the Spearman-Brown formula to ICC1. Dashes (—)
indicate that measure was not administered at individual level, thus ICCs cannot be
computed.
aOn average, 12 student ratings per class.
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Notes

The research reported in this article is based on data from the COACTIV study
(COACTIV: Professional Competence of Teachers, Cognitively Activating Instruction,
and the Development of Students’ Mathematical Literacy), which was funded by the
German Research Foundation (DFG; BA 1461/2-2). We thank Oliver Lüdtke for his com-
ments and advice and Susannah Goss for translation and language editing.

1COACTIV: Professional Competence of Teachers, Cognitively Activating Instruction,
and the Development of Students’ Mathematical Literacy.

2Our sample also includes a small number of teachers (n 5 14) who completed a 5-
year training program in the former German Democratic Republic. These teachers were
not included in our analyses of content knowledge and pedagogical content knowledge.

3One question that remains open is whether the self-related cognitions and motivational
orientations of students in different tracks show differential developmental trajectories after
the transition to secondary school, as has been found for systems implementing within-
school tracking (Gamoran, Nystrand, Berends, & LePore, 1995). In this case, the classes in
our sample would differ in achievement-related variables above and beyond those included
in the assignment model. We therefore ran additional analyses for mathematical self-concept
and mathematical interest. Findings showed that students in the academic and nonacademic
tracks did not differ in these characteristics at the end of Grade 9. The schools of the different
tracks evidently constitute separate frames of reference for the social comparisons that reg-
ulate students’ self-concepts and interests (Marsh, Köller, & Baumert, 2001). As such, there
was no need to include motivational variables in the assignment model.

References

Akiba, M., LeTendre, G. K., & Scribner, J. P. (2007). Teacher quality, opportunity gap,
and national achievement in 46 countries. Educational Researcher, 36(7),
369–387.

Table A2 (continued)

Factor Loadings

Factors and Indicators Individual Level Class Level

Alignment to Grade 10 curriculum (E) — 1.0

Individual and respectful learning support

Adaptive explanations (S) .78 .92

Constructive response to errors (S) .77 .95

Patience (S) .78 .96

Adaptive pacing (S) .55 .86

Respectful treatment of students (S) .49 .80

Caring ethos (S) .68 .93

Effective classroom management

Disciplinary climate (T) — .56

Prevention of disruption (S) .79 .98

Effective use of time (S) .80 .98

Note. E 5 tasks implemented in written examinations and tests; S 5 student reports; T 5

teacher reports; ST 5 student test; TT 5 teacher test. Dashes (—) indicate that measure
was not administered at individual level, thus ICCs cannot be computed.

Baumert et al.

172
 at Max Planck Ins on July 27, 2011http://aerj.aera.netDownloaded from 

http://aerj.aera.net


American Council on Education. (1999). To touch the future: Transforming the way
teachers are taught. Washington, DC: Author.

Attewell, P., & Domina, T. (2008). Raising the bar: Curricular intensity and academic
performance. Educational Evaluation and Policy Analysis, 30(1), 51–71.

Ball, D. L. (1990). The mathematical understandings that prospective teachers bring
to teacher education. The Elementary School Journal, 90(4), 449–466.

Ball, D. L. (1991). Research on teaching mathematics: Making subject-matter knowl-
edge part of the equation. In J. Brophy (Ed.), Advances in research on teaching:
Vol. 2. Teachers’ knowledge of subject matter as it relates to their teaching prac-
tice (pp. 1–48). Greenwich: JAI Press.

Ball, D. L., & Bass, H. (2003). Toward a practice-based theory of mathematical knowl-
edge for teaching. In B. Davis & E. Simmt (Eds.), Proceedings of the 2002 annu-
al meeting of the Canadian Mathematics Education Study Group (pp. 3–14).
Edmonton, Alberta, Canada: Canadian Mathematics Education Study Group/
Groupe Canadien d’étude En Didactique des Mathématiques.
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Lehrerinnen und Lehrer—Wissen, Überzeugungen und Lerngelegenheiten
deutscher Mathematikstudierender und -referendare: Erste Ergebnisse zur
Wirksamkeit der Lehrerausbildung [Professional competence of student
teachers—Knowledge, beliefs, and learning opportunities of mathematics teach-
er candidates: Initial findings on the effectiveness of teacher training]. Münster,
Germany: Waxmann.

Bollen, K. A., & Long, J. S. (1993). Testing structural equation models. Newbury Park,
CA: Sage.

Borko, H., Eisenhart, M., Brown, C., Underhill, R., Jones, D., & Agard, P. (1992). Learning
to teach hard mathematics: Do novice teachers and their instructors give up too eas-
ily? Journal for Research in Mathematics Education, 23(3), 194–222.

Borko, H., & Livingston, C. (1989). Cognition and improvisation: Differences in math-
ematics instruction by expert and novice teachers. American Educational
Research Journal, 26(4), 473–498.

Teachers’ Knowledge and Student Progress

173
 at Max Planck Ins on July 27, 2011http://aerj.aera.netDownloaded from 

http://aerj.aera.net


Bransford, J., Darling-Hammond, L., & LePage, P. (2005). Introduction. In L. Darling-
Hammond & J. Bransford (Eds.), Preparing teachers for a changing world
(pp. 1–39). San Francisco: Jossey-Bass.

Bransford, J. D., Derry, S. J., Berliner, C. D., & Hammerness, K. (2005). Theories of learn-
ing and their roles in teaching. In L. Darling-Hammond & J. Bransford (Eds.),
Preparing teachers for a changing world (pp. 40–87). San Francisco: Jossey-Bass.

Brennan, R. L. (2001). Generalizability theory. New York: Springer-Verlag.
Brophy, J. (2000). Teaching. Brussels, Belgium: International Academy of Education.
Carstensen, C. H., Knoll, S., Rost, J., & Prenzel, M. (2004). Technische Grundlagen

[Technical foundations]. In M. Prenzel, J. Baumert, W. Blum, R. Lehmann,
D. Leutner, M. Neubrand, et al. (Eds.), PISA 2003: Der Bildungsstand der
Jugendlichen in Deutschland—Ergebnisse des zweiten internationalen
Vergleichs (pp. 371–387). Münster, Germany: Waxmann.

Cochran-Smith, M., & Zeichner, K. M. (2005). Studying teacher education: The report
of the AERA Panel on Research and Teacher Education. Mahwah, NJ: Erlbaum.

D’Agostino, J. V., & Powers, S. J. (2009). Predicting teacher performance with test
scores and grade point average: A meta-analysis. American Educational
Research Journal, 46(1), 146–182.

Darling-Hammond, L. (2000). Teacher quality and student achievement: A review of
state policy evidence. Educational Policy Analysis Archives, 8(1), 1–46.

Darling-Hammond, L. (2006). No Child Left Behind and high school reform. Harvard
Educational Review, 76(4), 642–667.

De Corte, E., Greer, B., & Verschaffel, L. (1996). Mathematics teaching and learning.
In D. C. Berliner & R. C. Calfee (Eds.), Handbook of educational psychology
(pp. 491–549). Mahwah, NJ: Erlbaum.

Deng, Z. (2007). Knowing the subject matter of a secondary school science subject.
Journal of Curriculum Studies, 39(5), 503–535.

Ditton, H. (2007). Kompetenzaufbau und Laufbahnen im Schulsystem: Ergebnisse ei-
ner Längsschnittuntersuchung an Grundschulen [Competence building and ca-
reers in the education system: Results of a longitudinal study in elementary
schools]. Münster, Germany: Waxmann.

Dubberke, T., Kunter, M., McElvany, N., Brunner, M., & Baumert, J. (2008).
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