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Ömer Sümer1 Patricia Goldberg1 Kathleen Stürmer1

Tina Seidel3 Peter Gerjets2 Ulrich Trautwein1 Enkelejda Kasneci1

1 University of Tübingen, Germany
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Abstract

The ability for a teacher to engage all students in ac-

tive learning processes in classroom constitutes a crucial

prerequisite for enhancing students achievement. Teachers’

attentional processes provide important insights into teach-

ers’ ability to focus their attention on relevant information

in the complexity of classroom interaction and distribute

their attention across students in order to recognize the rel-

evant needs for learning. In this context, mobile eye track-

ing is an innovative approach within teaching effectiveness

research to capture teachers’ attentional processes while

teaching. However, analyzing mobile eye-tracking data by

hand is time consuming and still limited. In this paper, we

introduce a new approach to enhance the impact of mobile

eye tracking by connecting it with computer vision. In mo-

bile eye tracking videos from an educational study using

a standardized small group situation, we apply a state-of-

the-art face detector, create face tracklets, and introduce a

novel method to cluster faces into the number of identity.

Subsequently, teachers’ attentional focus is calculated per

student during a teaching unit by associating eye tracking

fixations and face tracklets. To the best of our knowledge,

this is the first work to combine computer vision and mobile

eye tracking to model teachers’ attention while instructing.

1. Introduction

How do teachers manage their classroom? This ques-

tion is particularly important for efficient classroom man-

agement and teacher training. To answer it, various class-

room observation techniques are being deployed. Tradition-

ally, approaches to classroom observation, such as teacher

instruction and student motivation, have been from stu-

dent/teacher self-reports and observer reports. However,

video and audio recordings from field cameras as well as

mobile eye tracking have become increasingly popular in

the recent years. Manual annotation of such recorded videos

and eye tracking data is very time-consuming and not scal-

able. In addition, it cannot be easily untangled by crowd-

sourcing due to data privacy and the need of expert knowl-

edge.

Machine learning and computer vision, with the advance

of deep learning, have progressed remarkably and solved

many tasks comparable with or even better than human

performance. For example, literature in person detection

and identification, pose estimation, classification of social

interactions, and facial expressions enables us to under-

stand fine-scale human behaviors by automatically analyz-

ing video and audio data. Human behavior analysis has

been applied to various fields, such as pedestrian analysis

[22], sports [1, 12], or affective computing [46]. However,

the use of automated methods in educational assessment is

not so widespread.

Previous work in automated classroom behavior analysis

concentrate on the activities of students using field cameras

or 3D depth sensors and leveraged students’ motion statis-

tics, head pose, or gaze [2, 34, 48, 55]. Furthermore, the

engagement of students in videos has been studied in edu-

cational settings [49, 3, 28].

Students’ behaviors are very important to understand the

teachers’ success in eliciting students’ attention and keep-

ing them engaged in learning tasks. However, the view of

teachers is an underestimated perspective. How do they

divide their attention among students? Do they direct the

same amount of attention to all students? When a student

raises her or his hands and asks a question, how do they

pay attention? Such questions can be answered using mo-

bile eye trackers and egocentric videos which are collected

while instructing. Even though there are some previous

studies in education sciences, they do not leverage mobile

eye tracking data in depth and depend on manual inspection

of recorded videos.

In this paper, we propose a framework to combine ego-

centric videos and gaze information provided by a mobile

eye tracker to analyze the teachers’ perception in the class-

room. Our approach can enhance previous eye tracking-
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based analysis in education sciences, and also encourages

future studies to work with larger sample size by providing

in-depth analysis without annotation. We detect all faces

in egocentric videos from teachers’ eye glasses and cre-

ate face tracklets from a challenging first person perspec-

tive, and eventually associate tracklets to identity. This pro-

vides us with two important information: one is whether the

teacher is looking at whiteboard/teaching material or stu-

dent area, and the second is which student is at the center

of the teacher’s attention at a specific point in time. In this

way, we create the temporal statistics of a teacher’s percep-

tion per student during instruction. As well as per student

analysis, we integrate a gender estimation model, as an ex-

ample of student characteristics, to investigate the relation

between the teachers’ attentional focus and students’ gender

[9, 8] in large scale data. Additionally, we propose teachers’

movement and view of eye by use of flow information and

number of detected faces.

2. Related Works

In this section we address the related works in teacher

attention studies using mobile eye tracking (MET), the eye

tracking in the domain of Computer Vision, attention anal-

ysis in egocentric videos, and face clustering.

Mobile eye tracking for teacher’s attentional focus.

The first study which links MET and high-inference assess-

ment has been done by Cortina et al. [7]. They used fixation

points and manually assigned them to a list of eight stan-

dard area of interests (e.g. black board, instructional mate-

rial, student material, etc.). They investigated the variation

of different skills and variables among expert and novice

teachers.

Wolff et al. [51] used MET to analyze visual percep-

tion of 35 experienced secondary school teachers (experts)

and 32 teachers-in-training (novices) in problematic class-

room scenarios. Their work is based on Area of Inter-

est (AOI) grid analysis, number of revisits/skips, and ver-

bal data (textometry). The same authors investigated in

a follow-up work [50] the differences between expert and

novice teacher in the interpretation of problematic class-

room events by showing them short recorded videos and

asking their thoughts verbally.

McIntyre and Foulsham [27] did the analysis of teach-

ers’ expertise between two cultures, in the UK and Hong

Kong among 40 secondary school teachers (20 experts, 20

novices) using scanpath analysis. Scanpath is “repetitive

sequence of saccades and fixations, idiosyncratic to a par-

ticular subject [person] and to a particular target pattern”.

In [42], on which the paper presented here is based on

their recordings, Stürmer et al. assessed the eye movements

of 7 preservice teachers using fixation frequency and fix-

ation duration in standardized instructional situations (M-

Teach) [38] and real classrooms. They studied preschool

teachers’ focus of attention across pupils and blackboard,

however their analysis also requires to predine AOI’s by

hand in advance.

The common point of previous studies in education

sciences is that they either depend on predefined AOI’s

or manually annotated eye tracking output. Furthermore,

none of these studies addressed the distribution of teachers’

attention among students in an automated fashion. To

our knowledge, none of the previous studies on teacher

perception and classroom management incorporated MET

and CV methodologies in order to interpret attention

automatically and in a finer scale.

Eye tracking in Computer Vision. Looking into the

literature, the most common use of eye tracking in CV is

in the realm of saliency estimation. Saliency maps mimick

our attentional focus when viewing images and are created

from the fixation points of at least 20-30 observers in free-

viewing or task-based/object search paradigm. Whereas ini-

tial bottom-up works in saliency estimation have used local

and global image statistics go back to [45, 23, 16], the first

model which measures the saliency model against human

fixations in free-viewing paradigm was done by Parkhurst

and Neibur [33]. The most recent state-of-the-art methods

are data-driven approaches and borrow learned representa-

tions of object recognition tasks on large image datasets and

adapt for saliency estimation.

Besides saliency estimation, eye tracking has been also

used in order to improve the performance of various CV

tasks such as object classification [30, 36], object segmen-

tation [21], action recognition [40], zero-shot image classi-

fication [20], or image generation [37].

Attention in egocentric vision. The widespread use

of mobile devices presents a valuable big data to analyze

human attention during specific tasks or daily lives. Ego-

centric vision is an active field and there have been many

works [18, 17], however there are only a few studies on

gaze and attention analysis. In the realm of finescale at-

tention analysis, particularly using eye tracking, no related

work is known.

Fathi et al. [10] analyzed types of social interactions (e.g.

dialogue, discussion, monologue) using face detection and

tracking in egocentric videos. However, their work does

not include eye tracking and gaze estimation for a finescale

analysis of human attention. In another work, the same au-

thors [11] used a probabilistic generative model to estimate

gaze points and recognize daily activities without eye track-

ing. Yamada et al. [54] leveraged bottom-up saliency and

egomotion information to predict attention (saliency maps)

and subsequently assesed the performance of their approach

using head-mounted eye trackers. Recently, Steil et al. [41]

proposed a framework to forecast attentional shift in wear-

able cameras. However, they exploited several computer vi-
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Figure 1: Teacher’s attention mapping workflow. Teachers view and gaze points are recorded by a MET while instructing.

In egocentric video sequences, face detection is applied, face tracklets in video are created. Then, features are extracted and

aggregated by averaging along the feature dimensions. The aggregated features are clustered. Finally, fixation points are

assigned to each identity and attention maps per student identity and gender are created for whole class instruction.

sion algorithms as feature representation and used very spe-

cialized equipments such as stereo field cameras and head-

worn IMU sensors. This make inapplicable in pervasive sit-

uations such as educational assessment.

Face clustering in videos. Face clustering is a widely

studied topic and applied in still images and video tracklets,

which are extracted from movies or TV series [6, 52, 53].

Many previous studies applied face detection and created

low-level tracklets by merging face detections and track-

ing. In clustering, methods which are based on hand-crafted

features exploited additional cues to create must-link and

must-not-link constraints to improve representation ability

of learned feature space.

The state-of-the-art deep representations are better in

dealing with illumination, pose, age changes and partially

occlusion and do not require external constraints. Jin et al.

[19] used deep features and proposed Erdos-Renyi cluster-

ing which is based on rank-1 counts along the feature di-

mension of two compared images and a fixed gallery set.

Recently, Nagrani and Zisserman [29] leveraged videos and

voices to identify characters in TV series and movies, but

they trained a classifier on cast images from IMDB or fan

sites. Particularly the use of voice, which does not hap-

pen except for question sessions and training on online cast

images, make this approach unsuitable for common educa-

tional data.

Considering previous works in both fields, to the best of

our knowledge this is the first work to combine mobile eye

tracking and computer vision models to analyze first per-

son social interactions for educational assessment. Further-

more, our approach presents a finescale analysis of teach-

ers’ perception in egocentric videos.

3. Method

Our goal is to detect all faces which are recorded from

teacher’s head mounted eye tracking glasses, create face

tracklets, and cluster them by identity. Subsequently, we as-

sign eye tracking fixations to student identities and genders

when they occur in a small neighborhood of correspond-

ing faces and body regions. Figure 1 shows the general

workflow of our proposed method. In this section, we will

describe our approach to low-level tracklets linking, face

representation, features aggregation, clustering, and finally,

creation of teachers’ attention maps while instructing.

3.1. Low-level Tracklets Linking

Students mostly sit in the same place during a classroom

session, however teachers’ attention is shared among white-

board, teaching material, or a part of the student area. Fur-

thermore, they may also walk around the classroom. Our

method first start with face detection and tracklets linking.

Consider there are T video frames. We first apply Sin-

gle Shot Scale-invariant Face Detector [56] in all frames

and detect faces (xi
t)

T
t=1, where i is varying number of de-

tected faces. Then, following [15], we created face tracklets

XK = {xi1
1 , xi2

2 , ..., xit
t } are created using a two-threshold

strategy. Between the detections of consecutive frames,

affinities are defined as follows:

P(i,j) = Aloc.(xi, xj)Asize(xi, xj)Aapp.(xi, xj) (1)

where A(.) is affinities based on bounding box location,

size and appearance. Detected faces between consecutive

frames or shots will be associated if their affinity is above a

threshold.
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We adopt a low-level association, because clustering

based on face tracklets instead of individial detections make

subsequent face clustering more robust to outliers. Instead

of a two-threshold strategy, which merges safe and reliable

short tracklets, a better tracking approach can be consid-

ered. However, we observed that egocentric transition be-

tween the focuses of attention introduce motion blur and

generally faces cannot be detected in succession. A signifi-

cant proportion of instruction between teachers and students

are in the form of dialogue or monologue. Benefiting from

this situation, we can mine reliable tracklets, which contain

many variations such as pose, facial expression or hand oc-

clusion using position, size, and appearance affinities.

3.2. Face Representation for Tracklets

Convolutional Neural Networks [24, 39, 13, 14] have be-

come very efficient feature representation for general CV

tasks and also performed well in large-scale face verifica-

tion and identification tasks [44, 26]. We use and compare

these methods as a face descriptor. Patricularly VGG Deep

Faces [32], SphereFace [26] and VGGFace2 [4] are among

the state-of-the-art methods in face recognition.

Most of these face representations require facial align-

ment before used in face identification. However, facial

keypoint estimation is not very promising in egocentric

videos. Furthermore, the image quality, even in the best sce-

nario, is not as good as the datasets where these representa-

tions are trained. Additionally by addressing viewpoint and

pose variations, we prefer ResNet-50 representation which

is trained in VGGFace2 [4].

Using pre-trained networks, we extracted the feature

maps of the last fully connected layers before the classifier

layer. Then, feature maps are L2 normalized.

Low-level tracklets {X1, ..., XK} are not of equal

length. Thus, we applied element-wise mean aggregation

along the feature dimension. Aggregated features are the fi-

nal descriptor of tracklets and will be further used for clus-

tering.

3.3. Face Clustering and Attention Maps

Having video face tracklets, the next step is clustering.

In a general image clustering problem, number of clusters

and feature representation are first needed to be decided.

The number of students is given and we do not need any as-

sumption about number of clusters (identities). When clus-

tering, we do not leverage any must-link or must-not-link

constraints, because deep feature representations are robust

against various challenges such as pose, viewpoint, occlu-

sion and illumination.

In teaching videos, we observed that the detections

which cannot be associated with others in small temporal

neighborhoods either belong to motion blurry frames or oc-

cluded. These samples are not representative of their identi-

ties and easily be misclassified even by human observers.

On the contrary, the temporal tubes which are mined by

tracklet linking have dynamics of facial features and more

discriminative. For this reason, we applied clustering on

only low-level tracklets detected as described in Section 3.1.

We used agglomerative hierarchical clustering using

Ward’s method. First, distance matrix between aggregated

features of each tracklets dij = d(f(Xi), f(Xj)). Every

point starts in its own cluster and greedily finds and merges

closest points until there is only one cluster. Ward’s link-

age is based on sum-of-squares between clusters, merging

cost and in each step, it keeps the merging cost as small as

possible.

We train an SVM with radial basis function [5] using

aggregated tracklet features and their corresponding clus-

tering labels. Subsequently, we predict the category of all

non-tracklet detections using this model.

Having clustered tracklets and all detected faces by stu-

dent identity, we can correspond teacher’s focus of atten-

tion to students. MET devices deliver egocentric field video

and eye tracking data. When acquiring, fixating and track-

ing visual stimuli, human eyes have voluntary or involun-

tary movements. Fixations are relatively stable moments

between two saccades, fast and simultaneous movements

when eye maintained gaze on a location. In attention anal-

ysis, only fixation points are used as a significant proximity

of visual attention and also work load.

Eye tracking cameras are generally faster than field cam-

eras. We use a dispersion-based fixation detection method

[35] and subsequently map fixations to video frames. Then,

we assign fixations to the students in case they appear in

face region or body of a student. Such attention statistics

enable us to better analyze and compare different teachers

(i.e. expert and novice) in the same teaching situations.

Figure 2: Examples of egocentric vision in M-Teach.

2431



4. Experiments

To validate our approach with real teaching scenarios,

we used in a first step the videos excerpts from the study

of Stürmer et al. [42] in which preservice teachers’ taught

in standardized teaching settings (M-Teach) with a lim-

ited amount of students while wearing mobile eye tracking

glasses.

7 M-Teach situations were acquired by mobile eye track-

ing devices (SMI - SensoMotoric Instruments). Preser-

vice teachers were given a topic (e.g. tactical game, trans-

portation system) with the corresponding teaching material.

Based on this material, they made preparation for instruc-

tions during 40 minutes, and then taught to a group of four

students. In 20-minutes of instruction time, teachers’ ego-

centric videos and gaze points were recorded [38].

The recorded videos are in the resolution of 1280×960

and they contain fast camera motion due to first person view.

Figure 2 depicts typical example of an egocentric sequence.

In this section, our experiments will be done on this rep-

resentative M-teach video about 15-minute length recorded

through the eyes of a preservice teacher.

4.1. Feature Representation

Before analysis of eye tracking data, we need to identify

faces of each student detected during the instruction time.

To approach this, we used ResNet-50 features.

Figure 3: t-SNE distribution of face tracklets using

ResNet50/VGG2 features.

A commonly used face representation, the VGG-Face

[31] network is trained on VGG-Face dataset which con-

tains 2.6 million images. He et al. [13] proposed “deep

residual networks” and it performed the state-of-the-art on

the ImageNet object recognition. Recently, Cao et al. [4]

collected a new face dataset, VGGFace2 whose images have

large variations in pose, lightning, ethnicity, and profession.

We prefered ResNet-50 network, which is pretrained on the

VGGFace2 dataset. Last feature map before classification

layer (2048-dimensional) is l2-normalized and used as fea-

ture representation.

Figure 4: Sample face tracklets which are created low-level

tracklet linking.

Figure 3 shows t-SNE [47] distribution of faces from

a M-teach instruction. Big-sized markers represent face

tracklets whose deep features are aggregated by element-

wise average, whereas small markers are single faces.

Classroom situations are not difficult as general face recog-

nition on unconstrained and web-gathered datasets. How-

ever, pose variation is still an issue, because the viewpoint

where teachers see the students may greatly vary. Thus, we

used ResNet-50 representation which is more discrimina-

tive due to the success of residual networks and also more

varied training data. Feature aggregation eliminates many

outliers and there are only a few misclassified tracklets in

one student identity.

Table 1: Confusion matrix of 4-student face clustering

id1 id2 id3 id4
id1 1897 8 13 0

id2 9 4428 28 0

id3 0 13 4558 5

id4 0 0 92 2958

Figure 4 are the examples of low-level tracklets. It can

be seen that some tracklets are blurry, partially detected due

to egocentric vision or contain difficult lightning conditions.
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Figure 5: Attention maps. The results of face clustering during a 15-minute M-teach situation (above), fixation points are

assigned to the nearest identity (below).

We applied agglomerative hierarchical clustering on

2048-dimensional ResNet-50 features. Subsequently, an

SVM classifier trained on clustered data in order to assign

the detections which cannot be associated with any track-

lets. Table 1 shows the performance of identification in a

15-minute length M-teach video.

As ResNet-50/VGG2 features are very discriminative

even under varied pose, hierarchical clustering without

leveraging any constraints performs well. Furthermore,

SVM decision on detections which could not linked to any

tracklets reduces false classified samples.

4.2. Attention Mapping

After acquiring face tracklets, our final step is to corre-

spond them with eye tracking data. There are four main

types of eye movements: saccades, smooth pursuit move-

ments, vergence movements, and vestibulo-ocular move-

ments. Fixations happen between saccades and their lengths

vary from 100 to 160 miliseconds. It is generally accepted

that the brain processes the visual information during fixa-

tion stops. In attention analysis, therefore, mainly fixation

events are used.

We extracted raw gaze points on image coordinates and

calculated fixations based on a dispersion-based fixation de-

tection algorithm [35]. In our analysis, only fixation events

are used.

Figure 5 depicts a teacher’s attentional focus per student

during a 15-minute M-teach instruction. First, we show the

timeline of frames where each student’s face is detected. In

this way, we can clearly see which student(s) the teacher in-

teracts in teaching setting. There are moments without any

face detection. Teacher either looks at teaching material or

explain something on the board by writing. In the second

attention map of Figure 5 represents the distribution of fix-

ation points according to the nearest face.

After applying our workflow in 7 different M-Teach sit-

uations which were captured by different preservice teach-

ers, we created attention maps per teacher. Then, we cal-

culated the percentage of fixations per students from each

videos separately. Figure 6 shows that fixation frequencies

vary from 40-60% to 10%. These results are consistent with

Sürmer et al.’s results [42] which were based on manually

defined AOI’s.

Figure 6: Ranked scores for total fixation frequencies per

student in 7 M-Teach situations (in descenting order).

4.3. Students’ Attributes and Teacher’s Attention

In automated analysis of teacher perception, another in-

teresting question is the relation between teachers’ attention

and students’ attributes, learning characteristics or behavior.

As an example of these attributes, we exploit gender in-

formation. Gender inequality can possibly affect the moti-

vation and performance of students. Thus, our intuition is to
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Figure 7: In a short video snippet, mean magnitude and orientation of otpical flow are shown. Large optical flow displacement

indicates that teacher’s attentional focus changes. In contrast, long stable areas are indicator of an interaction with a student.

extract distribution of teachers’ attentional focus according

to student gender as well as identity.

Having unique identity tracklets during a video record-

ing of an instruction, one can manually label the gender of

each face identity cluster. However, in large scale of data,

automatic estimation of gender would be a better approach.

Levi and Hassner [25] trained an AlexNet [24] on an un-

constrained Adience benchmark to estimate age and gender

from face images.

Using face clusters acquired as described in 4.1, we esti-

mated gender of all face images using [25] model. For each

identity group, we consider the gender estimation of major-

ity as our prediction and subsequently calculate the amount

of teacher’s eye fixations per student gender while instruct-

ing.

Table 2: Gender Estimation during an M-teach video

ID/Gender #detections (g.t.) #predicted gender(m/f)

ID1 (m) 1918 1906 960/946

ID2 (m) 4465 4449 3321/1128

ID3 (f) 4576 4749 879/3870

ID4 (f) 3050 2963 242/2721

Table 2 provides the ground truth number of detected

faces of four students, the number of predictions from face

clustering and gender estimation of all images. It can be

seen that gender estimation gives accurate estimation in the

majority of predicted clusters. Misclassified proportion is

mainly due to blurriness of detected faces. However, we ob-

served that gender estimation performance would be more

reliable in longer sequences.

4.4. Teachers Egocentric Motion as an Additional
Descriptor

As complementary to attentional focus per student iden-

tity and gender, another useful cue is teacher’s egocentric

motion. Some teachers may instruct without any gaze shift

by looking at a constant point. Alternatively, they can move

very fast among different students, teaching material and

board.

Considering that M-teach situation, motion information

can also give how frequent teachers’ turn between left and

right groups of students. For this purpose, we use mean

magnitude and orientation of optical flow [43]. When us-

ing optical flow, we do not intend a high accuracy displace-

ment between all frames of videos. Instead, we aim to spot

gaze transitions between students or other source of atten-

tion. Figure 7 shows a typical example of these cases. Mean

magnitude of optical flow becomes very large in egocentric

transitions, whereas it has comparatively lower values dur-

ing the dialogue with a student.

Another useful side of optical flow information is to

double-check fixation points. Fixation detection methods

in eye tracking can spot smooth pursuits or invalid detec-

tions as fixation. Optical flow information helps to elimi-
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nate falsely classified gaze points. In this way, we can con-

centrate long and more consistent time intervals in attention

analysis.

5. Conclusion and Future Directions

In this study, we showed a workflow which combines

face detection, tracking and clustering with eye tracking in

egocentric videos during M-teach situations. In previous

works in which mobile eye tracking devices were used, as-

sociation of participant identities and corresponding fixa-

tions points have been done by manual processing (i.e. pre-

defined area of interest or labeling).

We have successfully analyzed teacher’s attentional fo-

cus per student while instructing. Our contribution will fa-

cilitate future works which aim at measuring teachers’ at-

tentional processes. It can also supplement previously cap-

tured mobile eye tracker recordings and provide finer scale

attention maps. Furthermore, we showed that attention can

be related to students’ facial attributes such as gender. Our

another contribution is use of flow information to discover

teacher’s gaze shifts and longer intervals of interaction. It

particularly helps to find qualitatively important parts of

long recordings.

We also aim to address following improvements on top

of our proposed workflow in a future work:

1. We tested our current approach on eight 15-20 minute

length M-teach videos which were recorded from the

egocentric perspectives of different preservice teach-

ers. We are planning to integrate our approach to real

classroom situation which are taught by expert and

novice teachers.

2. Another potential is to leverage students’ levels of at-

tention and engagement from facial images and also

active speaker detection. In this manner, we can under-

stand why teacher gazes at specific student (i.e. student

asks a question or might be engaged/disengaged).

3. Fine-scale face analysis in egocentric cameras is not

straightforward. In order to elude the difficulties of

egocentric vision, a good solution can be to estimate

viewpoint between egocentric and static field camera,

and then map eye trackers gaze points into field cam-

era. Thereby, we can exploit better quality images of

stable field cameras.
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