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Abstract—We present a three-level cognitive system in a
Learning by Demonstration (LbD) context. The system allows
for learning and transfer on the sensorimotor level as well as
the planning level. The fundamentally different data structures
associated with these two levels are connected by an efficient
mid-level representation based on so-called ”Semantic Event
Chains”. We describe details of the representations and quantify
the effect of the associated learning procedures for each level
under different amounts of noise. Moreover, we demonstrate the
performance of the overall system by three demonstrations that
have been performed at a project review. The described system
has a Technical Readiness Level (TRL) of 4, which in an ongoing
follow–up project will be raised to TRL 6.

Index Terms—Robotic assembly, Learning by Demonstration,
Vision, Object Recognition

I. INTRODUCTION

There is a significant body of work on learning (or pro-

gramming) by demonstration (LbD) [1], [2], [3], [4]. It is

well known that LbD–approaches face a number of challenges

that grow with the ambition to transfer the taught actions to

new task contexts. Such generalization requires the detection

and characterization of similarities between potentially very

different contexts as well as an appropriate transformation of

parameters. These parameters can be of very different types

depending on the representational level at which transfer is

taking place.

We introduce a system that is taught assembly tasks by

human demonstration, in which learning takes place in a three-

level cognitive architecture with the sensorimotor level as the

lowest level and a probabilistic planner as the highest level.

These two levels are connected by a mid-level vision repre-

sentation, which bridges from the continuous and ambiguous

sensorimotor data to the planning operators defined over a

discrete state space. After learning, the system is then able to

plan, monitor and execute tasks, where both monitoring and

executing is done by within the same representation.

At the sensorimotor level (Fig. 1, yellow area), a first prob-

lem in an LbD–framework is that the demonstrated trajectories
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(see Fig. 1B) as well as the forces and torques observed in the

teaching process can in general not simply be replayed by the

system to arrive at a successful action. These trajectories are

usually suboptimal for the specific robot embodiment, since

the human performed the action in his/her own and hence

different embodiment. Furthermore, the transfer of actions

in general requires a given action to be performed with

significant pose differences compared to the context in which

the action was taught. As a consequence, trajectories might

change fundamentally, and if forces and torques are important

factors of the action (as, e.g., in Peg-in-Hole (PiH) actions),

their optimal choice might also change with the task context.

Hence, learning actions in a LbD context on the sensorimotor

level presupposes a representation that predicts appropriate

parameters in terms of grasp poses (Fig. 1C) and object poses

(Fig. 1A) as well as trajectories (Fig. 1B), possibly with

associated force/torque profiles.

Other kinds of challenges arise at the planning level, (figure

Fig. 1, red area). In a complex assembly process, it is not

only required to adapt trajectories to a new context, but

also to plan action sequences such that they attain a given

assembly goal. To this end, usually pre- and post-conditions

in discrete spaces are required to compute potential outcomes

of action sequences. The transfer of a task to a new context

then involves the synthesis of a new action sequence as a

function of these pre- and post-conditions, as the originally

taught action sequence often does not apply in the new task

context due to, e.g., pose differences of objects in the start

configuration or workspace constraints. Moreover, often the

success of an action can only be predicted with a certain

likelihood, and optimal plans in terms of action sequences

with high overall success likelihood should be performed.

From this it becomes evident that the planning level requires

a fundamentally different representation than the sensorimotor

level as well as that the information that is transferred is of

very different kind than on the sensorimotor level.

The community has realized the huge gap between action

representations at the planning and sensorimotor levels [5],

[6], [7], [8], [9], [10]. In this paper, we suggest a three-level

representation of actions similar to that described in [6] to

close that gap (see again figure (Fig. 1, beige area)). In our

representation, a mid-level stage based on so called ’Semantic

Event Chains’ (SECs) [11] mediates between the continuous

and usually rather ambiguous sensorimotor level and the

planning level which operates in discrete (probabilistic) state

spaces.

It is important to mention that during teaching as well as

during execution, very different aspects are learned at the



Fig. 1. Learning takes place in all 3 levels of the system: level 1) sensori-motor information is used to identify and track object movement as well as to
code the force torque profile of actions. Level 2) Semantic changes in key-frames are used to identify object interaction and grouping of key-frames are used
or recognize actions. level 3) Execution of actions are planned based on current observed state and possible next actions.



different representational levels. While at the sensorimotor

level the relation between grasps, trajectories, force/torque

profiles and object poses are learned, at the mid-level, struc-

tural properties of actions such as relational changes between

objects are acquired. At the planning level, pre- and post-

conditions as well as success likelihoods of individual actions

in a certain context are learned.

The different levels of our action representation can be

used for transfer obeying very different purposes. At the

sensorimotor level, for example, reasonable biases for poten-

tially successful trajectories are provided. At the mid-level

comparisons across potentially rather different actions can be

performed with the aim of action and object substitution. At

the planning level, the outcome of potentially long sequences

of actions can be predicted. Consequently, complete assembly

processes can be planned and executed.

We present a system in which transfer between different task

contexts is taking place at all three levels. As a consequence,

learning can also happen at all three levels in parallel [6].

We demonstrate the application of the three-level action

representation outlined above in an industrial assembly task

for which we specify the transfer at the different levels

as well as outline how this transfer can be exploited for

future industrial assembly systems. We address a complex

assembly task, the so-called Cranfield benchmark (see Fig. 2).

This benchmark contains a number of challenges typical for

industrial assembly processes. First, the objects are of very

different shapes, making it impossible to grasp each of them

with only one simple gripper. Instead we use the Schunk SDH-

2 dexterous hand, which is able to realize a large number of

different grasp types (see Fig. 3). Secondly, insertion tasks of

various kinds need to be performed in a complete assembly

process. Finally, with up to 9 steps (see Fig. 2) required to

perform a complete assembly process, the Cranfield assembly

task exhibits a typical level of complexity for an industrial

assembly setting. By selecting this benchmark, we show that

the proposed system is able to handle both sequential and

parallel tasks in an assembly process, including the most

relevant assembly tasks in industry [12]. We want to stress

that although we used the Cranfield benchmark to test and

evaluate our approach, we did not make any assumptions that

are specific for the Cranfield task and hence our approach can

potentially be used for a wide range of assembly tasks.

This system was primarily developed during the EU-project

IntellAct1 (Intelligent observation and execution of Actions

and manipulations that was running from 2011 to 2014).

II. STATE OF THE ART

In the first sub–section, we discuss related work on the over-

all system level. In the subsequent sub–sections, we discuss

work related to each of the three levels: In sub–section II-B,

we go through related work on the sensorimotor level as well

as on simulation systems. In sub–section II-C, we discuss work

related to the SEC representation. Finally in sub–section II-D,

we discuss related work for the planning level.

1EU project IntellAct (FP7-ICT-269959)

Fig. 3. Basic grasp types of the Schunk SDH-2. Left column: open and
closed form state of the two-finger pinch grasp. Center column: three finger
ball grasp. Right column: three finger pinch grasp.

A. System Level

There are many LbD systems already applied mainly in

an industrial context [13]. It is not possible to compare our

approach with all of those. Instead we have chosen some

examples to make the differences between todays applied LbD

systems and our approach explicit.

In [14], Stopp et al. describes a manufacturing system,

where the human operator and the industrial robot work

together as partners in a joint manufacturing process. In this

system, the operator instructs the system by specifying manip-

ulation sequences. Each action in the sequence is programmed

by means of a hand-held computer. For each action in the

sequence the operator is prompted to specify the location of

the object being manipulated using a laser pointer and likewise

the target position of each object. The system records the

information and repeats the actions as instructed autonomously

to complete the assembly task. The task description and

sequence is given at the start.

In [15], the mobile platform, ”Little Helper”, is described.

In this system the human operator can define tasks using either

a teach- or vision-based interface. Like in the system proposed

by Stopp et al., the task planning and sequencing is given by

the human operator and is fixed at execution time. Lenz et al.

[16] present the design of the JAHIR-demonstrator which is an

assembly demonstrator allowing for joint action collaboration

between human and robot in a shared workspace.

In [17], Mollard et al. presents a system using LbD to learn

assembly tasks. The abstract representation of the task used

for generating the action plan is constrained to interactions

between two objects at a time and are extracted using physical

user demonstrations. When an action plan has been generated

the user can visually inspect the plan using the graphical user

interface and modify it if. The system has no prior knowledge

of the overall assembly goal and hence has no interaction with

the user during demonstration of the assembly task as such.



Fig. 2. One of the possible sequences of steps to assemble the Cranfield benchmark.

Abdo et al. [18] presents a system that handles the whole

process of learning action from user demonstrations at the

symbolic level, and infers planning operators from teacher

demonstrations. The demonstrations are performed by kines-

thetically moving the robot joints. The system is able to learn

actions such as grasping bojects based on pose information,

opening og closing a door, but cannot learn force-based skill

primitives.

The system described in this paper goes in many aspects

beyond the systems mentioned above and also the systems

currently applied in industry. First, the human operator demon-

strates a possible sequencing of actions by performing the

task using his/her own embodiment. In addition, instead of

providing a manual segmentation in the demonstration pro-

cess, our vision system observes the interaction between the

manipulated objects and, based on this, proposes a possible

sequence to complete the assembly. Compared to [17], the

proposed system in this paper, has an overall assembly goal

and uses this goal to evaluate the user demonstrations and

the proposed system. Our system can inform the user, when

the demonstrations are sufficient to reach the assembly goal.

Moreover, at execution time the system generates a possible

sequencing of actions based on the conditions of availability

and reachability of the objects. After completing each action,

the system re–evaluates the plan and continues with the exe-

cution. In this way the proposed system differs from [14] and

[15] by dynamically changing the execution plan. Furthermore,

the human operator can join the robotic system during the task

execution by performing some of the sequenced actions. The

proposed system will monitor both the robot and the human

during execution and will also update the execution sequencing

according to the completed actions. In the same way, the

proposed system can be used to monitor task performance

by human workers. Most importantly, our system is able to

learn on three levels synchronously: It learns appropriate

trajectories based on force information on the sensory-motor

level, it merges action variants that are semantically equivalent

into abstracted actions on the mid-level.and finally pre- and

postconditions on the planning level.

B. Processing on the sensorimotor level and low-level simu-

lation

Pose estimation and tracking: 3D object recognition and 6D

pose estimation have been active research topics for several

decades. An early work of [19] extracts a combination of

edge and surface features for object detection. The seminal

work [20] presents a recognition system based on the spin

image descriptor. Mian et al. introduced in [21] a full 3D

modeling and recognition system based on local descriptors

called tensors. In a notable work, [22] presented a highly

descriptive point cloud feature descriptor. The same descriptor



was used as a plug-in feature for sophisticated recognition

pipelines in [23], [24]. A recent survey [25] provides an

extensive overview of current available methods for keypoint

detection, feature description, and object recognition in 3D.

Similar to previous works, our vision system uses a local 3D

feature descriptor based pipeline for matching local structures

and recovering the pose of rigid objects. Specifically, we rely

on the pose estimation system [26] for fast recovery of full

6D poses.

Once initial object pose has been established, we then

continuously monitor the state of each of the observed objects

using visual tracking. Multi-target visual tracking (MTVT) is

a well-established field, which goes back over thirty years

[27]. In this work we use the Sequential Monte Carlo method

known as Particle Filtering to track targets, in particular a

point-cloud 6DOF version [28] which subsamples models to

work in real time. Particle filtering was first introduced to the

vision community by Isard and Blake [29] and has been the

subject of much subsequent research extending it [30], [31].

Robot-Control: The execution of a desired assembly task by

a robot has to deal with inaccurate localization of objects in

the workcell by vision and tight-tolerance operations that are

common in the assembly of many products. Consequently, the

robot must be compliant to successfully execute the assembly

task, allowing the modification of the trained movements.

Many assembly operations can be considered as a variant

of a peg-in-hole task (PiH), which has been extensively

investigated in the past and was also in focus of our investiga-

tions. Although many assembly problems can be solved using

passive compliance, only robots with active force feedback

can deal with more difficult assembly problems where larger

localization errors and operations with tighter tolerances occur

[32].

Active force feedback is therefore often used in robot as-

sembly - including in our work - and regardless of whether the

underlying robot is admittance- [33] or impedance-controlled

[34]. However, active force control approaches usually require

high feedback gains in order to adapt to the unexpected

environment changes, which can cause contact instability in

assembly tasks [32]. To speed up the task execution while

avoiding high-gain feedback control, we propose to apply

modern robot learning and adaptation approaches [35]. The

basic idea of our approach is to gradually improve task

execution, starting with slow task performance and increasing

the speed of execution in the follow-up task executions using

iterative learning control.

Exploiting Virtual Reality: Comparisons of real and virtual

data have been carried out before within numerous simula-

tion systems such as V-Rep [36], Gazebo [37] or Microsoft

Robotics Developer Studio [38]. However, our approach ex-

ceeds the standard camera simulation of other simulation

software as it allows for simulating various optical and elec-

tronic effects in real-time, due to utilization of rasterization

techniques that can be implemented in modern shaderdriven

GPUs for hardware accelerated real-time rendering [39].

Simulation is a well-established tool for the development

of automated systems, but we go beyond a purely sensor- and

image-based output and emulate mid- and high-level data as

it is generated by a combination of sensory and processing

components [40]. This allows for bootstrapping the complete

system at a time when its individual components have not been

implemented, yet. Furthermore, we are adding a multi-screen

stereoscopic rear projection and an ultrasonic tracking system

for absolute movement tracking as well as a wireless dataglove

for hand movement detection for dynamic interaction with a

human operator.

C. Mid-level SEC representation

In this work, Semantic Event Chains (SECs) are proposed as

a mid-level action representation for assembly tasks. The main

aim of employing SECs as a mid-level processor is to encode

the continuous low-level signals as a sequence of descriptive

symbolic states that represents the task topology. Such state

sequences are indicative for the monitoring task of actions.

There is a large body of work on topics related to action

monitoring in computer vision and machine learning.

Considering the type of actions performed, the previous

action recognition related works can be categorized in two

major groups. The first group ([41], [42], [43], [44]) focuses on

monitoring of full body motions, such as walking and running

by considering the intrinsic hand or body movement features.

The second group ([45], [46], [47], [48], [49]), on the other

hand, investigates manipulation actions (e.g. pick&place, push-

ing) in which interactions between objects and hands play the

most crucial role in the process of extracting the discriminative

action cues. Industrial assembly tasks, as addressed in this

work, fall into this type of actions.

Along these lines, the work presented in [45] introduces

a method for encoding the whole manipulation sequence in

a single activity graph. The main difficulty here is that very

complex and large activity graphs need to be decomposed for

the further recognition process. In the work of [46], segmented

hand poses and velocities are used to classify manipulation

actions. A histogram of gradients approach with a support

vector machine classifier is used to categorize manipulated

objects. Factorial conditional random fields are then employed

to compute the correlation between objects and manipulations.

However, this work does not consider interactions between

the objects. Different from this, visual semantic graphs were

proposed in [47] to recognize abstract action consequences

(e.g. Assemble, Transfer) only based on changes in the

structure of the main manipulated object. The work in [48]

presented a method for hierarchical estimation of contact rela-

tionships (e.g. on, into) between multiple objects. The previous

work [49] suggested extraction of abstract hand movements,

such as moving, not moving or tool used, to further reason

about more specific action primitives (e.g. Reaching, Holding)

by employing not only hand movements but also the object

information. Although all those works to a certain extent

improve the recognition of manipulations and/or objects, none

of them addresses the problem of deriving key events, i.e.

primitives of manipulation tasks for executing the observed

actions with robots.

On the other hand, high-level grammars with generative

models, e.g. Hidden Markov Models (HMMs) [50], [51] and



also discriminative frameworks based on multi-class Support

Vector Machines (SVM) [52] and semi-Markov models [53]

were proposed to reach to the level of simultaneous action

segmentation and recognition. High-level grammars model the

transitions between single actions in order to monitor action

sequences by computing the minimum cost path through the

network using efficient dynamic programming techniques. The

main drawback here is the requirement of a large amount

of training data to learn a state sequence and transitions for

each action. Generative and also discriminative models are

generally based on bottom-up continuous movement trajecto-

ries that have high variability in appearance and shape due to

differences in demonstrations performed in various scene con-

texts with different objects. In contrast to the aforementioned

monitoring approaches, we propose a method that is based on

the semantics of observed actions without being affected by

the low level data variations in object or trajectory domains.

Recent works such as [54] described a Markov random field

based model for decomposing and labeling the sequences of

human sub-activities together with manipulated object roles.

In the modeling process they employed human skeleton in-

formation, object segments and the observed object tracks.

Likewise, [55] introduced a Bayesian model by using hand

trajectories and hand-object interactions while segmenting and

estimating observed manipulation sequences. In contrast to

generative HMM - based frameworks, the SEC representation

of actions also obeys the Markovian assumption. The main

difference here is that all states, i.e. key frames, in the event

chains represent topological changes in the scene and are fully

observable. Furthermore, since detailed movement variations

are not considered, event chains do not require a large corpus

of training data for learning individual actions [56].

In this work, the SEC concept is employed to capture

the abstract representation of manipulation actions by only

considering the contact information between hands and objects

in the scene. The work in [57] describes a manipulation as

a sequence of rotational and translational primitives, each of

which corresponds to the SEC columns in our framework.

Different from their approach, we intentionally avoid using

relative position between objects since this information can

vastly alter from one demonstration to another. Thus, the

semantic action similarity between two demonstrations can

drop dramatically. Instead, we store the 6D relative pose

information only when objects have a contact relation. We are

however currently working on extending the SEC representa-

tion with two types of spatial relations: static and dynamic.

The static relations, such as inside, on, above, or below [58],

describe how and where objects are touching (or not touching)

each other. Dynamic spatial relations, e.g. getting closer and

moving together [59], are rather describing the continuous

motion information within a certain time period. The SEC

approach enriched with the static and dynamic relations yields

more accurate semantic similarity measure between different

manipulation actions as shown in [58], [59].

D. High-level planning system and Execution

On the highest level, we have a planning system that deter-

mines the best sequence of actions that should be executed to

complete the assembly. It requires a set of planning operators,

which may be handcrafted or learned. Below we provide an

overview of techniques that have proven effective to learn

planning operators for robotic tasks.

The main challenge in such context is to reduce the number

of training actions, so that the learning phase can be completed

in a reasonable time. Two techniques that allow a robot to learn

fast are relational reinforcement learning (RL) and teacher

demonstrations.

In relational RL, a relational representation is used to

generalize the acquired knowledge over objects of the same

type, which reduces greatly the number of actions required to

learn [60], [61]. Lang et al. [62] have improved even further

the performance with the REX algorithm, which uses count

functions to apply relational generalization to the exploration-

exploitation dilemma, and thus, it learns domains with very

reduced amounts of exploration.

On the other hand, the ability to request demonstrations

from a teacher can also speed up learning. In some approaches

the teacher has to intervene to improve the robot behavior

whenever it is not sufficiently satisfactory [63], [64], [65].

However, an algorithm that can actively request demonstra-

tions when needed is preferred, as it releases the teacher from

having to monitor the system continuously. Active demonstra-

tion requests have been included in algorithms with confidence

thresholds [66], which request demonstrations for a specific

part of the state space whenever the system is not sure about

the expected behavior. A confidence-based method was also

described in [67], which was combined with supplementary

corrective demonstrations in error cases. Agostini et al.’s

approach [68] requests demonstrations from the teacher when

the planner cannot find a solution with its current set of rules.

In contrast, we use the REX-D algorithm [69], which com-

bines relational RL and active demonstration requests. REX-D

requests demonstrations only when they can save a lot of time,

because teacher’s time is considered to be very valuable, and

uses autonomous exploration otherwise. In addition, it also

applies the relational generalizations of REX [62] to yield a

new algorithm that can learn with fewer action executions and

demonstration requests than previous approaches.

Finally, as robot actions are not expected to be perfect

and our representation of the state may lack information, the

effects of actions executed by the robot will have uncertainties.

A probabilistic model is learned with optimization methods

in [70], but the restrictions for the initial set of candidate rules

need to be manually coded. In the KWIK framework [71], a

method was proposed for learning the probabilities associated

with a given set of action effects using linear regression [72],

as well as an extension for learning the action effects them-

selves [73]. However, a large number of samples are needed

because the problem of learning action effects is NP complete.

In our proposed method, we integrate the rule learner proposed

by Pasula et al. [74] in REX-D, which employs a greedy

algorithm to obtain rule sets that optimize a score function.

Although this does not guarantee finding an optimal solution,

it generates good rule sets based on only a few experiences.

Furthermore, it generates rules with deictic references and

noisy effects, which make models more compact and tractable.



Fig. 4. The robotic MARVIN platform with two manipulators and three
camera pairs.

III. CRANFIELD BENCHMARK AND MARVIN PLATFORM

To test and evaluate the system, we have created the

MARVIN platform, which is a robotic platform designed to

perform industrial assembly tasks (see Fig. 4). The setup

includes both perception and manipulation hardware. The

perception hardware includes three sets of vision sensors, each

set consisting of a Bumblebee22 stereo camera, a Kinect sensor

as well as a projector which on demand projects texture on

the scene to improve stereo processing. The three camera sets

are placed with approx. 120◦ separation, as shown in Fig. 4.

In addition to the cameras, the platform is also equipped

with high-precision trakSTAR magnetic trackers3 capable of

providing 6D poses simultaneously from up to four sensors

which we use for teaching.

The manipulation hardware consist of two 6 degree of

freedom (DOF) robots of the type UR5. At the TCP of one of

the robots, a 6 DOF force-torque sensor of the type IP604 is

mounted. Furthermore one of the robots is equipped with an

SDH-2 dexterous hand.

The MARVIN platform is used to assemble the Cranfield

benchmark. There are 9 steps in the assembly of the Cranfield

benchmark as seen in the Fig. 2. Some of these steps are

interchangeable and hence can be performed in parallel such

as step 1 to 5. However step 6 can only be performed after step

3 and hence these two steps must be performed sequentially.

In the same way, step 4 and 5 must be performed before

step 8. Within these 9 steps there are 6 different assembly

actions. These are PiH actions for round pegs (used in step 1

to 3), PiH actions for square pegs (used in step 4 and 5), the

placement action of the pendulum (step 6), the screwing of

these pendulum head (step 7), the placement of the separator

(step 8) and finally placement of the faceplate (step 9).

IV. VIRTUAL TESTBED SUPPORT FOR SYSTEM

DEVELOPMENT AND OPTIMIZATION

Right from the beginning, the system development was

accompanied by a Virtual Testbed - a 3D simulation envi-

2http://www.ptgrey.com/products/bumblebee2
3http://www.ascension-tech.com/realtime/RTtrakSTAR.php
4http://www.ati-ia.com/products/ft/ft models.aspx?id=Delta

ronment to integrate, test and optimize the individual methods

for learning, monitoring and execution (see Fig. 5. As a central

part of the eRobotics methodology, Virtual Testbeds [VTBs]

previously have been applied in space and field robotics to

support and accelerate the development of complex technical

systems [75]. In a VTB, the target system is modelled and sim-

ulated in a comprehensive 3D simulation environment which

– via plugins – provides components for, e.g., programming

and control of kinematics, rigid-body and sensor simulation,

as well as a variety of means to connect and exchange data

with other systems. The representation of a target system

in a VTB allows for requirements analysis, system design

and design validation based on the simulation of subsystems,

the overall system, and the system in its target environment.

Based on calibrated components, the level of detail of the

simulation allows for the development of data processing

algorithms and control schemes for operating and controlling

the simulated system. The algorithms and schemes developed

in the VTB are then transferred to operate and control the real

system using methods of hardware/software-in-the-loop and

simulation-based control [76].

A major problem which often arises with complex technical

systems is that functionalities of modules are too closely

coupled and high-level modules depend on the availability and

readiness of low-level modules close to the target hardware.

Thus, efficient integration and testing is typically available

only in later phases of system development.

The IntellAct project required the development and de-

ployment of advanced software modules for observation and

planning, while the target hardware and low-level modules

were still in preparation. Thus, a VTB of the hardware as

well as other components such as the Cranfield benchmark

and certain software components was set up as a virtual

substitute for the components for robot execution, sensorial

output and the tracker in order to provide ideal data of objects,

kinematics and sensors in several application scenarios. Only

a few months into the project, the VTB served as a reference

and source for ground truth data for bootstrapping the design,

training and benchmarking of the high-level modules. Ground

truth data was generated by carrying out object manipulations

with data gloves, where object and joint positions, contact

Fig. 5. Learning in a Virtual Testbed.

http://www.ptgrey.com/products/bumblebee2
http://www.ascension-tech.com/realtime/RTtrakSTAR.php
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Delta


events, bounding boxes etc. were directly available from 3D

simulation [77].

Beyond bootstrapping, the detailed camera and sensor sim-

ulation in the VTB allowed for offering benchmark images

and point clouds with controlled levels of quality, reaching

from ”ideal” to ”close to reality”5. The major advantage of

generating sensorial ground truth in 3D simulation is the full

transparency and control of data acquisition and the world

model at each time step, thus providing otherwise unavailable

details of the significant parameters. On the other hand,

image generation from simulation generally faces the problem

that the produced images are too ideal due to a insufficient

modeling of noise and other effects. Based on results from

space robotics [78], the sensor and camera simulation in

the VTB supported the generation of ideal images as well

as images that closely resemble the real characteristics of

specific RGB and RGB-D sensor hardware. In particular, this

allowed for the evaluation and optimization of the modules for

pose estimation, stereo reconstruction and action recognition.

This has been a problem so far, since ground truth for such

algorithms is very hard to define in real setups due to the

problem of estimating object poses with higher certainty than

cameras would allow.

V. RECORDING SINGLE ACTIONS

In the next three subsections, we will describe the three level

representations, that has been sketched in the introduction,

through the process of recording a single action.

A. The Sensorimotor level

At the lowest level of the proposed system, we have the

sensorial and motor information. This information includes the

raw motion data from the robots and grippers. Additionally, it

covers the images and depth data from the vision sensors and

the forces and torques data from the wrist sensor. We record

these data for each assembly action in the Cranfield benchmark

in a special Learning by Demonstration set–up which allows

for the exploitation of the users dexterous competences (see

Fig. 6). In the recording phase at the sensorimotor level, the

main challenge is not of a representational kind, since basic

formats are close to the signal level and hence can be defined

in a straightforward way. Challenges at this level however are

the stable, robust and precise visual extraction of poses and

trajectories as well as an appropriate way of teaching robot

actions. The recording of trajectories with associated force-

torque profiles of the robot is described in subsection V-A1.

Furthermore, we generate object detection and pose estimation

based on the vision information acquired at this level. Pose

information is then fed into a real time tracking system

such that the system is able to monitor multiple objects

synchronously as described in subsection V-A2.

5Here, ”close to reality” is defined by the similarity of outcomes when
key factors of the real and simulated data are processed by libraries such as
OpenCV and PCL, e.g. color histograms (RGB deviation, RGB saturation),
edge detection, SURF feature detection and RANSAC feature similarity.

1) Recording motor information: There are 6 unique as-

sembly actions in the assembly of the Cranfield benchmark -

see Section III. Each of these actions is encoded in the system

by human demonstration. During these demonstrations the

human performs the action using the same objects as the robot

and hence is able to perform the assembly task as intended

with full sensorial information. At the same time the robot,

in tele–operation mode, copies the movements of the human

demonstrator and thereby performs the action as a copy of that

performed by the human (see Fig. 6).

The trajectory and the force-torque (FT) profile of the

robot movements are recorded while the human demonstrator

performs the action in the teleoperation mode. During this

mode, the forces and torques registered by the FT sensor in the

wrist of the robot are logged along with the robot and object

poses. The magnetic tracker provides 6D poses with a rate

up to 200hz. By embedding the sensors into the objects being

manipulated by the human, the tracking system is able to track

the movements of the object and transfer these to the robot.

Fig. 6 shows a human moving a square bolt with a trackStar

sensor embedded. The robot hand is holding an identical object

and performing the same movements as the human. In this

way, human dexterous competences can be directly transferred

to the human circumventing the use of kinesthetic guidance.

Kinesthetic guidance would force the teacher to work in the

embodiment of the robot which prevents natural movements.

Fig. 6. Control of the robot in teleoperation mode. The robot performs a
one-to-one copy of the human demonstrated path.

During this process, the following information is recorded

and stored in a database: the initial pose of the object before

manipulation begins, forces and torques measured at the robot

wrist and poses of robot and the final pose of the object.

By recording such data for each of the six actions, we can

build up an action library for the assembly of the Cranfield

benchmark. Further description of the usage of the data is

given in section VIII-B. These data is then used during the

action execution to perform the different assembly action

requested by the planner in the top level of the proposed

system (Fig. 1, planning (3)).

2) The vision system: The vision system consists of two

interacting modules. The first one performs object recognition

and pose estimation and the other real–time tracking.

Object Detection and Pose Estimation: Object Detection

determines which of the Cranfield benchmark objects are



Fig. 7. The IntellAct vision system: On the left, the tracking history at an
intermediate stage of the assembly is shown. The coloured threads show the
positions each moved object has gone through during the assembly process.
The picture on the top right shows the poses found. The two pictures on the
bottom right show two images of the cameras.

present in the scene. Where they are located in the workspace

is determined by pose estimation (see figure Fig. 7). To

deal with this task, we represent all objects by point clouds,

which can be easily generated from the available CAD models

of the Cranfield objects. Then, objects are detected using a

recently proposed RANSAC algorithm [26]. The 3D point

cloud representation allows for finding the full 6D pose of

objects, which can be immediately sent to the robot system.

All poses are refined using several iterations of ICP [79] for

achieving high accuracy. For this initial perception problem of

locating objects, correct and accurate detections are crucial,

so we use high-resolution stereo point clouds extracted from

the BumbleBee cameras. This introduces a delay before any

processing starts, but this task only needs to be solved once,

namely at the very beginning of an assembly. Although the

examples given in this paper are constrained by a table, this

information is not used by the pose estimation algorithm,

hence nothing is hindering the system to perform in a full

3D assembly case.

Object Tracking: Once objects and their poses are detected,

the proposed system employs a 3D tracker for keeping track of

all the objects in the scene in real-time. This is achieved by a

novel tracking algorithm based on an octree structure, which

encodes both adjacency and temporal information [80]. As

an additional improvement, this structure allows for occlusion

handling. If any of the objects undergoes partial occlusions

during manipulation, the tracker detects that certain leaves of

the octree have become occluded using a raycasting algorithm.

In such cases, the leaf nodes representing the occluded parts

are “frozen”, and once they reappear, the tracker re-estimates

the most plausible configuration of the object. This greatly

increases stability of the tracker during complex manipula-

tion sequences. The algorithm runs in near-real-time, approx.

10 Hz [81], by taking advantage of a spatially stratified

sampling technique first presented in [28]. Contrary to the

initial detection task, the tracker uses faster, but less accurate

Kinect point cloud streams, allowing for correct tracking of

all the objects at high speed.

B. Associating SECs as mid-level representation

The low level sensory information recorded as described in

section Fig. V-A provides continuous streams of trajectories,

Fig. 8. Sample “Peg in Hole” (PiH) action with extracted SEC. Each SEC
column corresponds to a different key frame. Top row shows key frames with
consistently tracked unique segments and corresponding scene graphs. Rows
describe spatial relations between objects. 1 and 0 given in the event chain
stand for spatial relations touching and not-touching, respectively.

poses, forces and torques. This is inappropriate for comparing

actions at a semantic level, since for example very different

trajectories might lead to the same topological changes in

the scene. A first step required for a reasonable semantic

scene interpretation is a segmentation of the continuous signal

stream into meaningful chunks of discrete events that indicate

unique topological changes in the scene. This segmentation

and semantic condensation is achieved by Semantic Event

Chains that transform the signal stream into a matrix, entries

of which indicate topological changes in the scene.

‘Semantic Event Chains’ (SECs) were introduced in [11] as

an efficient encoding scheme for manipulation actions. SECs

are essentially based on consistently tracked image segments

extracted from the perceived visual input stream. Each con-

sistently segmented image is represented by a graph: nodes

represent segment centers and edges indicate whether two

image segments touch each other in 3D (see figure Fig. 1(A

and D)). By employing an exact graph matching method, the

continuous graph sequence is discretized into decisive main

graphs, i.e. “key frames”, each of which representing a topo-

logical change in the scene. All extracted main graphs form

the core skeleton of the SEC, which is a matrix (see Fig. 8)

where rows are spatial relations (e.g. touching) between object

pairs and columns describe the scene configuration when a

new key frame occurs. SECs consequently store sequences of

changes between the spatial relations of the objects and human

or robot hand in the scene. The descriptive change-patterns in

SECs remain the same for a given manipulation type even

when there are large variations in trajectory, pose, velocity,

and objects. Thus, SECs can be used to invariantly classify

manipulations as well as to categorize manipulated objects, as

shown earlier in [11], [56].

Figure 8 depicts the SEC representation of a sample “Peg

in Hole” (PiH) demonstration, in which a hand is first taking

a peg and then placing it in a face plate hole. For instance, the

first row of the SEC represents the spatial relations between

graph nodes 8 and 4 which are the hand and red peg, respec-

tively. Note that, although the scene involves more object seg-

ments (e.g. segment number 7), the SEC representation only



encodes object pairs that produce at least one relational change

from not-touching to touching or vice versa since all other

pairwise relations (e.g. between the hand and table) are static

and irrelevant. On top of Fig. 8, sample key frames including

tracked segments (coloured regions) and corresponding main

graphs are given to illustrate the topological configurations at

the related SEC columns.

Furthermore, we associate each key frame in SECs with the

trajectory and FT profiles of the manipulator as discussed in

section Fig. V-A, since key frames introduce anchor points at

which the continuous data can be discretized. We also enrich

each graph node in SECs with respective object and pose

information computed only at the decisive time points, i.e.

key frames.

C. Association of planning operators to SECs

At the planning level, we aim to compute goal - oriented

action streams by means of planning operators. Prototypical

patterns of key frame sequences in a SEC can be associated

to predefined planning operators representing actions such as

”performPiH(objectA,objectB)” or ”remove(objectA)”. More-

over, symbolic states, which are extracted from SEC key

frames before and after the actions, indicate pre- and postcon-

ditions of the planning operators that will be used in section

VII for action monitoring and in section VIII-A for full action

sequence planning.

The SEC representation is attached to three high-level

modules via the Predicate Estimator and the Manipulation-

Recognition modules (see Fig. 1(F)), as described in detail in

sections VII-A and VII-B.

The Predicate Estimator takes each SEC keyframe, i.e. col-

umn, enriched with object poses to estimate the current state

predicates as described below. The touching relations between

objects are combined with the object poses to generate the

predicates. SEC keyframes are passed to the Manipulation-

Recognition module, which transforms them into individual

actions. A set of sequential SEC columns defines a unique

action, such as peg in hole. In VTB experiments, actions

are encoded by triplets of keyframes corresponding to object

pick-up, object transit, and object placement. However in

real experiments, the number of SEC columns varies due to

noise in the segmentation and tracking. Therefore actions on

the MARVIN system are encoded by a pair of keyframes

corresponding to object pick-up and object placement. Both,

the state predicates and the actions are required to learn the

planning operators.

A state is represented by a set of predicates that permits

describing the different objects that the robot will work with.

Each predicate defines a relation between two objects or a

specific feature of one object. The state space consists of the

following set of predicates:

• Clear(X): True if object X is graspable, i.e. it is in a gras-

pable position and there are no other objects occluding

it.

• Free(X): True if hole X is free.

• Horizontal(X): True if X is laying down (in a horizontal

position). Pegs are much easier to grasp if they are

standing up (in a vertical position).

PegInHole(peg4,hole3)
Clear(peg4)

PendulumPlaced(pen)
Clear(pen)

PegInHole(peg3,hole4)
Clear(peg3)

Clear(sep)

PegInHole(shaft,hole5)
Clear(shaft)

Free(hole1)

Horizontal(peg1)
Clear(peg1)

Free(hole2) Clear(peg2) Clear(front)

Fig. 9. An example of the state predicates used to describe the Cranfield
benchmark.

Action:

PlacePeg(X,Y)

Preconditions:

peg(X), clear(X), ¬horizontal(X), hole(Y), free(Y)

Effects (Success probability: predicate changes):

0.6: ¬free(Y), PegInHole(X,Y)

0.2: ¬clear(X)

0.2:

Fig. 10. NDR rule example for placing a peg.

• PegInHole(X, Y): True if peg X is inserted in hole Y .

• SeparatorPlaced(X): True if separator X has been placed.

• PendulumPlaced(X): True if pendulum X has been

placed.

• FacePlateFrontPlaced(X): True if front faceplate X has

been placed.

These predicates are also used to define the goal that the

robot is expected to achieve. An example of a state used to

describe the scenario is shown in Fig. 9. Given both the state

and the goal, the planner will select the best planning operators

to solve the task.

Predicates are obtained from the SEC representation en-

riched with object poses [82]. Whenever (see section VII-B) a

new state is required, the latest SEC column is used to obtain

the updated set of predicates representing the scene. Touching

relations as provided by the SECs are used to identify which

objects are related to each other, while poses permit checking

different parts of one object. For example, if a peg is touching

a faceplate, their relative positions will be checked to see if

the peg is positioned in any of the faceplate holes.

Planning operators are represented as Noisy Deictic Rules

(NDR) [74]. Each rule r encodes the expected effects of

executing an action a given a set of preconditions φra . As

robot actions can fail or have unexpected outcomes, rules can

have different effects that represent all the changes that an

action may output and their corresponding probabilities. An



example can be seen in Fig. Fig. 10. Each NDR rule refers to

one action, while each action may be represented by several

rules. All the rules related to the same action have disjoint

preconditions φra,i
∧φra,j

= ∅ | ∀i, j, so that each state-action

pair (s, a) is covered by just one rule r.

Whenever an action is either executed or demonstrated, a

new experience E = [s, a, s′], which includes the states before

and after the action execution and the action itself, is stored

into a library of experiences. Using these experiences, the rules

that represent robot actions can be learned with a relational

learner [74], where a greedy heuristic search is used since the

problem of learning stochastic rule sets is NP-hard [73]. The

algorithm optimizes a score function that encodes a trade-off

between the accuracy and the complexity of the rules,

S(R) =
∑

(s,a,s′)∈E

log P̂ (s′|s, a, rs,a)− α
∑
r∈R

PEN(r), (1)

where rs,a is the rule covering the experience when a is

executed in s, P̂ is the likelihood of the experience, PEN(r)
is a complexity penalty and α is a scaling parameter.

VI. LEARNING ACTION SEQUENCES

In this section, we focus on the problem of learning full

tasks, for which sequences of actions are needed to reach

a goal state. Note that a large part of the training has been

performed in a 3D simulation environment (see Fig. 5). In

that context, action libraries with SEC models and associated

planning operators are created as well as their associated

trajectory and FT information. Learning on the SEC level is

described in section VI-A and learning on the planning level

in section VI-B. Moreover, the Decision Maker at the highest-

level will decide when to request new demonstrations from the

teacher, and when to execute actions on its own to learn and

complete the task as outlined in section VI-B1. Note that the

representation at the sensorimotor level stays unchanged from

what has been described for the recording of single actions.

However, fine-tuning of the actual action execution results in

significant speed - ups and will be described in section VIII-B.

A. Matching and generalization of SECs

An individually extracted SEC is only a sub-optimal repre-

sentation of an action, because context changes and noise can

lead to manifestations of rather different SECs for the same

action. To be able to subsume these different manifestations

into a generalized SEC representation that can also be the basis

of an action library, we apply a matching and merging scheme

for incoming SECs. To give evidence for the robustness of

our representation at the mid-level, we investigate the stability

of the SEC matching under different kinds of noise. These

experiments indicate that the matching technique to compare

SECs are robust to noise, in particular to the appearance of

additional columns and rows in the SEC.

The main aim of the learning is to generate a library of

single manipulations, e.g. peg in hole actions, simulated in

VTB. Such a library can then be employed to monitor the

observed chained actions in the real world set-up as outlined

Fig. 11. Overview of the SEC learning framework.

in section VII or to excute actions on the robot system (see

section VIII).

Figure 11 illustrates the on-line unsupervised learning

framework, introduced in [56], which is triggered whenever a

new manipulation sample is observed. At start, an individual

manipulation is shown in VTB and the first extracted SEC

sample is assumed to be the first “model” and stored in a

“SEC–library”. We then encode the manipulation that follows

again by a SEC and we compare it with all existing SEC

models in the library. For this purpose, the framework mea-

sures semantic similarities δ between the new SEC sample

and the existing models by employing the method described

in [11], which compares rows and columns of two SECs using

sub-string search and counting algorithms. Computed semantic

similarity values between all existing models and the new

sample are stored in a matrix, called the similarity matrix ζsim,

which is then converted into a histogram H representing the

distribution of similarities. We apply the conventional Otsu’s

method [83] to the normalized histogram in order to divide the

similarity distribution into two regions representing low and

high similarities, respectively. We take the average of the high

similarities to estimate a threshold τ to classify the currently

observed SEC sample against the existing models.

If the similarity δ is higher than τ , then the new sample will

be assigned to the best fitting (most similar) model and this

model will be updated with additional rows or columns that

might exist in the new SEC sample [11]. In this way, the model

SECs will only consist of those rows and columns observed

frequently in all type-similar manipulations. If similarity δ is

lower than τ , the novel SEC sample will be used as a new

model in the action library. In addition, we merge learned

SEC models, which have high semantic similarities, as they

are likely representing the same manipulation. The merging

process, in this case, searches for different rows and columns

in both models and appends the novel ones to the respective

model. For every new action in the library, then also a planning

operator is attached as described in section V-C.

In real experiments we observed that SECs can contain

not only noisy indexes (corresponding to individual digits in

the SEC, see Fig. Fig. 12), but also extra noisy rows and/or

columns due to noisy segmentation and tracking. Therefore,

the algorithms used for analyzing SECs have to be robust

against noise. In the following, we will discuss some statistical

results on the robustness of our similarity measure algorithm

introduced in [11].

The step of measuring the similarity between SECs plays

a crucial role for the next action monitoring step. Hence, we

address the question of how the similarity measure behaves

when the degree of noise in SECs increases. Furthermore, we



analyze the effects of such behaviors on the action classifica-

tion.

To produce more data for statistics, we first create a seed

SEC that encodes a manipulation. Figure 12 shows a sample

seed SEC that holds spatial relations between a hand, a

table, and a box. For each element of the seed, we define

a probability value (p) which represents how likely the seed

element will be changed to a dissimilar one in order to

introduce noise. The probability entries for the sample seed

are shown in Fig. 12. Such probability values are also defined

for each row and column to introduce additional noisy rows

and columns as observed in real scenarios. Note that we let

the system add maximally one noisy row/column between each

existing row/column. The p value is then varied from 0 to 1
with a step of 0.1. Fig. 12 depicts how the noisy SECs look

like at different noise levels. As expected, when p equals to

0, the noisy SEC and the seed are identical. However, at the

highest noise level (p = 1) all elements of the seed are flipped

and new noisy rows and columns (shown in red) are added.

At each noise level, 100 SEC samples are produced, each of

which is then compared with the seed by using the similarity

method given in [11].

In Fig. 13, the red curve shows the mean values with

standard error means of all 100 similarity measures, each

between the seed and one noisy sample, for the case when we

both flip the seed indexes and add noisy rows and columns to

the seed given in Fig. 12. It is obvious that the slope of the

curve is changing around p = 0.5 after which the similarity

measure is around 30%. The blue curve in Fig. 13 indicates the

mean similarity values for the case when we add only noisy

rows and columns without flipping the original SEC indexes.

In this case, the mean similarity value is still around 70%
even at noise level 0.8. Such high similarity values can only

be observed when p is 0.2 in the red curve. Those curves

prove that the noisy rows and columns do not affect the

similarity algorithm significantly as long as the original SEC

indexes remain the same. Once the SEC indexes are flipped,

the similarity measure drops significantly. This is an important

feature showing the importance of the original SEC indexes

for the similarity measurement algorithm.

Figure 13 illustrates behaviors of the similarity measures of

a 3×5 seed (see Fig. 12) for two different noisy cases. Now, we

would like to analyze the effects of such behaviors when sizes

of SECs change. For this purpose, we created four different

seeds with different sizes: 4×6, 5×7, 6×8, and 8×8. Fig. 14

shows all those SEC seeds to get an impression of the level

of difference. For each seed, we produced 100 noisy samples

at different noisy levels by following the method illustrated in

Fig. 12.

The similarity measures between SECs can be used for

classifying actions, i.e. to monitor actions. Considering the real

experiments in [11], we chose a threshold at 64% that would

be enough to distinguish action classes. In this regard, for

further statistical analysis we can make an assumption claim

that similarity between type-similar actions should be above

64% for a correct classification.

Figure 15(a) illustrates the mean similarity values with

standard error means between the four seeds defined in Fig. 14

Fig. 13. Mean values of all 100 similarity measures, each for one sample,

at different noise levels. The red curve is for the cases when we both flip the

seed indexes and add noisy rows and columns to the seed given in Fig. 12.

The blue one is for the case when we add only noisy rows and columns to

the same seed. The vertical bars show the standard error mean.

(a) For the case when we both change the original seed indexes and add

noisy rows and columns to the seeds.

(b) For the case when we add only noisy rows and columns without

changing the original seed indexes.

Fig. 15. Similarity behavior of four SEC seeds at different noise rates. The

vertical bars show the standard error mean.



Fig. 12. Producing noisy data for statistical analysis. For each element of the seed a probability value (p)s defined. Such probability values are also used

for introducing additional noisy rows and columns. The p value is then varied from 0 to 1 with the step of 0.1. At each noise level 100 SEC samples are

produced, which are then compared with the seed. 1, 0, 9 and 2 given in the event chain stand for spatial relations touching, not-touching, absence, and

overlapping, respectively. Red elements in the SEC represent the noisy data, whereas those in black are the original seed elements.

Fig. 14. Four different seeds with different sizes: 4 × 6, 5 × 7, 6 × 8, and 8 × 8. For each seed 100 noisy samples are created at each noisy level by

following the method illustrated inFig. 12.

and their noisy samples for the case when we both flip the

seed indexes and add more rows and columns to the seeds.

The first impression the figure conveys is that the similarity

measure is invariant to SEC size, since all four curves are

exhibiting similar behaviors. This figure also demonstrates

that, according to the assumption above, classification above

a noise rate of 0.2 cannot be achieved successfully due to low

similarity values.

Figure 15(b) indicates the mean similarity values between

the same four seeds and their noisy samples, but for the case

when we add only noisy rows and columns without flipping

the original seed indexes. In such a case, classification is still

applicable around noise rate 0.6, which is much better than the

previous case. One reason of such high difference is that any

change in the original SEC elements is interpreted as being

a different action representation, thus, compared to the size,

the original SEC elements are more crucial in the process

of similarity measurement. Another reason is that noisy rows

are eliminated once the correspondences between the shuffled

rows are calculated.

B. Learning on the planning level

While on the mid-level we generalize across similar actions

by merging them as described above, on the planning level

we learn the planning operators. For each single planning

operator we learn its preconditions and effects that can be

computed from the states extracted from SECs as described

in section V-C, as well as associated success probabilities

that are estimated from a large number of input actions.

These planning operators are learned in the VTB system

that provides a faster and safer environment, since until the

correct operators are learned, the robot may try to execute

useless or even dangerous actions. Once the learning phase

has been completed, the planner can be successfully integrated

in the real robot system to obtain action sequences that solve

the tasks and overcome possible contingencies as described

in section VI-B1. As for our mid-level representation based

on SECs, we also investigate the robustness of the planning

operator learning under various degrees of noise in the VTB

system.

We introduced the REX-D algorithm [69] to address the

learning phase, which is an efficient model-based reinforce-



ment learning (RL) method combined with additional human

demonstrations upon request. It can take three alternative

strategies: one is to explore the state space to improve the

model and achieve better rewards in the long term; another

is to exploit the available knowledge by executing the ma-

nipulations that maximize the reward with the current learned

model [84]; and the last one is to request a demonstration

from the teacher [68].

REX-D (Fig. 16) includes the exploration strategy of

REX [62], which applies relational generalizations to minimize

the exploration required. It explores the state space until it

reaches a known state. Once in a known state, it plans using

a Markov Decision Process (MDP) containing the known

parts of the model, and if a plan is found, it executes it

(exploitation). Note that actions may have several effects

with different probabilities, and thus, a state is considered

to be known when all planning operators applicable to that

state have been experienced previously a number of times

larger than a certain threshold. The same library of previous

experiences used to learn single actions (Sec. V-C) is used to

check if a state is known.

However, unlike REX, when no plan is found in a known

state, instead of using planned exploration, REX-D requests a

demonstration from the teacher (see section VI-B1). Actions

executed or demonstrated are learned as described in Sec. V-C,

adding the rule to the model so it can be used by the planner

and the exploration method.

The advantage of this approach is that additional actions

may be added as needed, so actions do not have to be defined

at the outset. When no solution exists with the set of actions

available, a teacher demonstration is requested and new ma-

nipulations can be taught. Moreover the learning time is also

improved by adding just a small number of demonstrations. As

the state space is usually very large, a lot of exploration may be

needed, specially when there is uncertainty in the action effects

as the branching becomes exponential [73], but the teacher

demonstrates optimal manipulations which already lead the

system to those parts of the state space that will produce high

rewards.

Finally, in contrast to systems with no exploration [68],

REX-D maintains the number of teacher demonstrations low

by adding autonomous exploration. It is preferable that the

robot requests demonstrations only if they are really valuable,

and explore autonomously to learn the easier parts of the

domain. For example, if an action has been executed just once,

there is still a lot of uncertainty about that action and executing

it in different states would be very profitable to complete the

model. However, when no solution can be found and all actions

are already considered as known since they have been executed

several times, the robot has no clues about what it should do to

reach the goal, and a demonstration may save a huge amount

of exploration.

1) Teacher Interaction during learning: When a demonstra-

tion is requested, several actions can be required to complete

the task, and just one of them may be unknown to the system.

If no guidance is provided, the teacher may demonstrate ac-

tions that the system already knows before he demonstrates the

IsKnown(state)

Observations

State

GoalPlannerExplorer

Teacher interactionExecution

Request state

Robot

Learner

Unknown Known

Plan No plan

Fig. 16. Overview of the REX-D algorithm.

action that is actually needed. To obtain good demonstrations,

the Decision Maker should inform the teacher about the reason

for failure.

There are several possible reasons for a planning failure:

preconditions may have been wrongly added, action effects

may be missing, or a dead-end may have been reached. To

determine the right explanation, we look for minimal changes

in the state that would allow the planner to find a solution,

which we will call excuses [85]. The following guidance is

given to the teacher when requesting a demonstration:

• For all possible missing effects, the teacher is warned

that the system does not know how to obtain the required

predicates.

• For all possible wrong preconditions, the teacher is

warned that an important action to reach the goal requires

an unreachable precondition.

Moreover, excuses are also used to generate subgoals to

complete all possible subtasks before requesting demonstra-

tions. In this case, excuses permit identifying the problematic

parts of the task and avoid them.

Finally, if a dead-end is reached (e.g., a piece has been

broken or has fallen out of the range of the robot), the excuse

will point at its cause. From that point on, whenever the

planned actions may lead to a dead-end, all possible effects

will be checked to ensure that the robot won’t fall again into

the dead-end, and request help from the teacher otherwise [86].

2) Probabilistic learning under increasing noise: The be-

havior of the planning system varies greatly depending on the

amount of noise. As it is a common problem in robotics,

actions are usually stochastic and have a chance of failure

or producing unexpected effects. Therefore, in this section we

analyze the performance of the decision maker with varying

levels of noise in the robot actions. The REX-D algorithm is

used to learn the Cranfield task in a simulated environment.

Different levels of noise were introduced in the action effects

to analyze the adaptability of the REX-D algorithm to uncer-

tainty.

The results are shown in Fig. 17. In the deterministic

case, only the initial demonstrations required to learn the

actions are requested, and the number of exploration actions
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Fig. 17. The REX-D algorithm with different action success probabilities.
The robot started with no knowledge of the actions in the first episode.
The results shown are the means and standard deviations obtained from 100

runs. Top: Total number of action executions per episode. Middle: Number of
teacher demonstration requests per episode. Bottom: Number of exploration
actions per episode.

executed is low. After two episodes (∼ 37 actions and ∼ 9
demonstrations), the DM can complete efficiently the task.

However, as the uncertainty in the action effects increases, the

complexity to learn the scenario also increases. In particular, as

noise increases, extra demonstrations are requested to improve

the model in uncertain cases. These few extra demonstrations

allow REX-D to keep the number of exploration actions

relatively low even with high levels of noise, as otherwise

a huge number of exploration actions would be required until

the actual model could be figured out. Moreover, note that as

different action sequences can reach the goal, new unexplored

states may appear in later episodes, and thus new exploration

actions are triggered. Finally, the results show that the REX-D

algorithm adapts very well to complex scenarios with very

high levels of noise, as even in the case of 0.4 success ratio the

REX-D can successfully learn good policies within 4 episodes,

i.e. ∼ 95 actions and ∼ 13 demonstrations.

VII. MONITORING

So far we have described the information flow from a

bottom up approach where actions are learned. In this sec-

tion, we describe how the same representations are used for

monitoring during action execution by a human or the robot.

The monitoring system performs perception and interpreta-

tion of sensor inputs produced by both stereo and RGB-D

cameras. The stereo cameras provide high-quality and high-

resolution point cloud data as described in section V-A1. In

order to use the system for monitoring, we need to add two

modules to the system we have described so far. These are

the Manipulation- Recognition module described in VII-A

and the Decision Maker module described in VII-B. The

Manipulation-Recognition is based on matching the perceived

actions to the action library on a SEC level as described in

section VI-A. Based on the state information extracted from

the SECs and the associated planning operators, the Decision

Maker estimates which actions can successfully complete the

overall assembly task. In this way, monitoring human actions

(as well as robot actions) is possible based on mid-level

information encoded in SECs and high level information coded

in the planning operators as described in section VII-C.

A. Manipulation recognition

The task of the Manipulation-Recognition module is to

identify actions such as shaft insertion into its hole from

the sequence of SEC keyframes, i.e. columns. It does this

by matching extracted keyframes to a gallery of previously-

trained keyframes that correspond to known actions. Moreover,

it can recognize actions corresponding to the reversal of known

actions, and can signal manipulations that do not correspond

to any known action.

In principle, the Manipulation-Recognition module is capa-

ble of extracting these actions from an unsegmented stream

of keyframes, by keeping track, at all times, of all possible

actions in progress that are compatible with the recent history

of keyframes [40]. An action is then matched and recognized

in VTB by its characteristic triple of keyframes and on

the MARVIN system by its characteristic pair of keyframes

corresponding to object pick-up, object transit (VTB platform

only), and object placement. This allows the manipulation

recognition module to recognize actions by looking at the

tracked state and comparing the current keyframe with the

trained keyframes, considerably simplifying its operation [82].

B. The Decision Maker

The state information, extracted as described in section V-B,

is fed into the Decision Maker via two distinct pathways

(Fig. 1(E)). SEC keyframes are passed to the Manipulation-

Recognition module, which transforms them into a sequence

of individual manipulations. Secondly, object identities and

poses are passed to the Predicate Estimator. Both of these two

modules pass their results to the Decision Maker.

The Predicate Estimator generates the predicates required

by the Decision Maker (Sect. V-C) from scene information

extracted from sensor data (Sect. V-A). Most of the predicates

(Clear, Horizontal, PegInHole, . . . Placed) are computed from

the poses of detected and/or tracked objects. The predicate

Free employs a dedicated sensing action that checks for free

space above the hole in question.

Notably, the Predicate Estimator operates in a stateless

fashion. Rather than computing predicates such as Separa-

torPlaced by remembering already-performed actions, they



are computed by explicit sensing when needed. While this

incurs considerable computational cost, it has the advantage

that the system can detect a variety of failures and disturbances

automatically, and thanks to the stateless planner can react to

them without dedicated error-handling routines.

Based on these inputs and the learned planning operators

(Sect. V-C), the Decision Maker computes the plan with the

expected shortest distance to reach the goal. Every time an

action is executed, this plan is updated to adapt to the latest

changes perceived in the scenario.

C. Monitoring Human Actions

Besides closing the robotic perception-action loop by moni-

toring the success of robot actions, this setup allows the system

to monitor human actions. Say, a human is to perform an

assembly task. The MARVIN system has been trained and

knows about the initial and final conditions and the permissible

intermediate states. While the human performs the task, the

system keeps recognizing and tracking objects and feeding the

decision maker with state predicates and recognized actions

as described above. After each individual action, the decision

maker verifies that a valid plan exists, i.e., an action sequence

from the current state to the goal state. If no such plan exists,

it signals an error. If the shortest such plan is longer than the

shortest plan prior to the latest action, it issues a warning that

the user is deviating from the intended assembly sequence (see

section IX-B for a description of a demo showing this).

VIII. ACTION EXECUTION

In order to automatically complete an assembly task, we first

need to observe the current state of the assembly sequence (as

described in sections V-A and V-B), which allows the system

to derive a plan that specifies which action to perform at the

given state based on the learned planning operators (as de-

scribed in section V-C). This computation of the next execution

step, which is based on planning and mid-level information, is

described in section VIII-A. Furthermore, although the action

to be performed is known at the planning level, the low-level

execution of the action can be improved by learning how

to perform this action in the new context. This is done by

first performing a trajectory transformed to the current object

pose, and then fine-tuning this trajectory iteratively to the new

task context by reinforcement learning. This is done through

optimizing the similarity of the FT–profile observed during

teaching (as described in subsection V-A1) to the FT-profiles

associated to the originally recorded trajectory. This learning

process is described in subsection VIII-B.

A. Query from the planning level utilizing SEC state space

information

The REX-D algorithm includes the use of an on-line prob-

abilistic planner [87] to select the sequences of actions to

complete the tasks. It requires the planning operators learned

in VTB (Sec. VI-B), and the state derived from the SECs (Sec.

V-C). The first action in the planned sequence will be sent to

the execution modules to be performed by the robot. Once

an action has finished, the state is updated and the planner

generates an updated action sequence from this new state.

Therefore, if something unexpected happens after executing

an action, the planner will adapt afterwards and select actions

that overcome the problem.

Using a planner offers a lot of flexibility to the system,

as different goals can be requested without further learning.

The initial state of the robot may be also changed, allowing

the robot to work in other similar tasks. The used planner is

probabilistic and selects the action sequence that maximizes

the probability of reaching the goal. Consequently, it will take

into consideration all possible effects with their associated

probabilities, avoiding possible dead-ends by taking safer

actions. The main limitation of probabilistic planning is that it

uses computationally intensive algorithms, and tasks with large

state spaces and many actions become quickly intractable.

B. Force-based learning and adaptation of sensorimotor skills

As shown in Fig. 18, we addressed both the initial ac-

quisition of assembly skills, which in our system occurs

through programming by demonstration, and later adaptation

through practicing, where the initially rough skill knowledge

is adapted to the kinematic and dynamic characteristics of the

robot and the environment. The adaptation process occurs on

the fly within the execution module, which performs actions

generated by the decision maker. Skills passed to the execution

module are composed of a sequence of the desired positions

and orientations of the robot’s tool center point (TCP) and

desired tool forces and torques, expressed in Cartesian coor-

dinates. These data are obtained as described in Section IV.A

and used to compute Cartesian space Dynamic Movement

Primitives (DMPs) [88]. DMPs are a suitable representation

to control the robot motion. Within a DMP framework, a

trajectory of every robot degree of freedom is defined by

a second order linear dynamical system with an additional

nonlinear term. The nonlinear term contains free parameters

that can be used to adapt the movement generated by the dy-

namic system to the demonstrated trajectory. The desired robot

positions, velocities and accelerations are obtained through

integration of the equations describing the dynamical system.

The major benefits of DMPs are the ability to slow down the

movement via phase modulation without explicitly modifying

trajectory timing and various possibilities to modulate the

encoded motion, both spatially and temporary.

Assembly operations are generally subject to significant

orientation changes. A nonsingular description of orientation

space is provided by a unit quaternion representation. How-

ever, direct integration of unit quaternion DMPs does not

preserve the unit quaternion norm. Therefore, we represented

orientational motion with a specially designed dynamical sys-

tem for unit quaternions, where the integration occurs directly

on a manifold of unit quaternions [89], [90].

One of the major challenges of the action execution level is

the robustness to the unexpected environment changes, uncer-

tainties about the gripping pose, tolerances in the object shape,

and pose estimation errors induced by the vision subsystem.

Assembly skill sequences generated by the Decision Maker



usually involve hard contacts with the environment, which

prevents the robot from simply following the demonstrated

trajectories. Hence robust execution can only be obtained by

applying active force control strategies, which rely on on-

line adaptation to the desired force profiles minimizing the

difference between the desired and the currently measured

contact forces [32]. Since the robots used in the MARVIN

platform do not support torque control, we implemented an

admittance stiffness PI force control law [91]. For one of

the robot’s degrees of freedom, e. g. y, the commanded robot

position is calculated as

ycmd = yDMP+Kpef +Ki

∫
efdt, ef = fdesired−fy, (2)

where ycmd denotes the commanded position used to control

the robot, yDMP the desired position obtained from the DMP

integration, fy is the measured force and fdesired is the

desired force obtained from human demonstration. Kp and

Ki are positive scalars proportional and integral gain factors,

respectively. Tuning of the integral gain Ki permits a trade–

off between tracking error and stability. High gains generally

result in a faster execution, but they also make force control

less reliable. For example, high gains can cause jamming

common in assembly tasks such as peg in hole. For this

reason we used low gains for the integral term and utilized the

DMP phase modulation technique to slow down the assembly

task execution whenever excessive FT errors would arise. This

gives sufficient time to the force controller and the robot can

adapt its motion to the desired FT profile, thereby avoiding

problems such as jamming. For the non-uniform scaling of the

execution velocities, a DMP slowdown technique was used.

More details about the DMP phase modulation approach for

the Cartesian space trajectories can be found in [90].

With the proposed slowdown technique we succeeded to

increase the robustness of the system, but we also extended

the execution time. This drawback can be eliminated by

iterative learning. Especially in industry, assembly operations

usually need to be executed many times in exactly the same

configuration. In such situations humans can improve their

skill knowledge by repeating the same action over and over

again. The same approach is adopted by our system, where the

feedback control signal from the previous repetition is reused

in the current repetition of the same action. The idea is to

move the force feedback error to the position displacement.

The control law (2) then turns into

ycmd(l) = yDMP + φ(l) +Kpef (l) +Ki

∫
ef (l)dt, (3)

φ(l) = φ(l − 1) +Kpef (l − 1) +Ki

∫
ef (l − 1)dt,

where l denotes the learning cycle and φ(l) is the learned offset

signal. Initially, φ is set to 0. More details about the learning

procedure and how it is integrated into the DMP framework

can be found in [35]. In this way we achieved fast and

reliable execution using low integral gains. Results of learning

assembly operations are shown in Fig. 18. The trajectories

comprising positions and forces were captured from human

demonstration. The object was then moved to a new location,

which was estimated using vision. Due to the small errors in

the estimated position, large force deviations arose and the

algorithm slowed down the execution. After the learning was

finished, the execution speed and the desired forces were close

to the original demonstration time and original demonstrated

forces. The convergence of the proposed learning algorithm

is very fast. In most cases it reaches steady state after 4 to 6

learning cycles, as shown e.g. in Fig. 18.
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Fig. 18. The upper three graphs show the sensed forces during trajectory
execution (solid lines) and the forces recorded during training (dashed lines),
all as a function of phase. The bar graph below shows the execution time in
each learning cycle.

IX. DEMONSTRATIONS OF THE SYSTEM AS A WHOLE

We have given a quantitative evaluation of individual levels

as it has been done in sections V, VI and VIII. However

due to the high degree of complexity, it is much harder

to quantitatively evaluate the system as a whole. Also it is

questionable whether such an evaluation would make sense,

since the system is in its way unique and possible failures

can be caused by many incidents: for example some failure in

the pose estimation occur due to objects being placed outside

the actual workspace. Reduction of failures caused by many

kinds of errors would be a primarily engineering task which

was outside the scope funded in this research.

Therefore, instead of arguing about exact percentages, we

describe here the three demonstrations that have been per-

formed at the final review of the IntellAct project and give

qualitative indications about stability and frequent failures and

their reasons. These demonstrations can be watched on our

website in its full length http://caro.sdu.dk/index.php/videos.

The first two demos show how we teach in new actions using

learning by demonstration (section IX-A) as well as object

http://caro.sdu.dk/index.php/videos


detection and tracking of multiple objects (section IX-B). The

final demonstration (section IX-C) shows the monitoring and

execution of the complete Cranfield task on our robot platform.

A. Teaching in new actions and action fine–tuning using

DMPs

The first demo shows how a single action is recorded at the

sensorimotor level by LbD. The recorded action is executed in

a new and random start position in the workspace. It is shown

how the execution time may decrease in each execution due to

the learning and optimisation of DMP parameters. In general,

we were able to achieve an execution time close to the time

the demonstrator required in the teaching process. Also FT

unwanted peaks could be largely avoided arriving at similar

forces as in the actual demonstration.

Fig. 19. The LbD demo where the user shows the system how to perform a
PiH task (green window). The forces and torques acting on the peg is recorded
(yellow window).

A video of the demo can be found here: https://youtu.be/

c4Yc3 ES2YY and Fig. 19 displays a screenshot of the demo

where the green window shows the demonstration of the task

and the yellow window shows a live plot of the forces acting

on the object being manipulated.

B. Object detection, pose estimation, tracking and monitoring

The second video https://youtu.be/ sRnM1e5CRY shows

how object detection is used to initialize persistent object iden-

tities that are robust against occlusions and tracked throughout

the entire assembly (see Fig. 20). The video shows that the

system is able to track multiple objects while a human com-

pletes a subset of the Cranfield assembly task. Every assembly

action is recognized by the Manipulation Recognition and the

state of the system is updated according to this. The vision

system performed very robustly, however only when using

2 sets of cameras. Also pose estimation for individual pegs

turned out to be not robust enough due to their limited size

and the noise in the point clouds. To solve this problem, the

pegs were positioned in a magazine which provided enough

shape information for stable pose estimation.

C. Monitoring and Robot execution

In the third demonstration, we show the automatic assembly

of the complete Cranfield benchmark (except one screwing

Fig. 20. The object detection and manual manipulation demo.The yellow
area shows the state of the system and the current assembly state and the
green area shows the live tracking of the objects.

action) as described in Sec. III. The flow of the execution is

the following: when the system is activated, all the objects are

in the workspace of the robot. The planner knows about all

the basic assembly actions required to reach the goal state,

and the sensorimotor layer gathers information of the initial

state of the assembly by running object detection and pose

estimation on the combined point-clouds from the 3 Kinect

sensors. When the poses have been generated and the initial

state of the system has been established, the planner generates

a plan to reach the goal state and issues the actions to be

executed.

Fig. 21. The Monitoring and Robot execution video. The yellow area shows
information on the sensorimotor level. The green area shows information from
the mid level and the red area shows information from the top level of the
system.

A video of the demo can be found here: https://youtu.be/

LXhzSckFy9I and Fig. 21 displays the main screen of the

demo video, where the green area shows information from

the mid level and the red area shows information from the top

level of the system.

The execution of the complete assembly process succeeded

in approximately 50% of the cases (and also at the final review

only the second attempt was successful). There are various

sources of failure. The action where most frequently error

occurred was actually the placing of the pendulum, which

usually was executed after the separator had been placed. Due

to the very limited space between the peg and the separator, the

https://youtu.be/c4Yc3_ES2YY
https://youtu.be/c4Yc3_ES2YY
https://youtu.be/_sRnM1e5CRY
https://youtu.be/LXhzSckFy9I
https://youtu.be/LXhzSckFy9I


pose of the pendulum in the hand needed to be very accurately

placed which was not always possible due uncertainties of

the pose estimation but also uncertainties associated to the

grasping with the SDH-2 hand as such.

D. Discussion

Challenges in the proposed system is its dependency on the

initialization step with object detection and pose estimation

of the objects in the workspace at the sensori-motor layer.

Currently, the number of objects in the workspace has to be

fixed at the end of the initialization step. This is a consequence

of the particle filter tracker, which has to be initialized with

the total number of objects to be tracked. Failing to detect all

objects in the initial scene can lead to the system failing to

find a plan at the planning layer. Another issue is related to

the workspace management of the system. One downside of

the layered architecture is that not all information is available

at all layer. In the case of workspace management, in the

current implementation, the planning layer is not aware of

the workspace of the robot in the scene. If one of the objects

happens to be outside of the reach of the robot, but still in

the view of the cameras, the planning layer will plan with

it and at some point issue a command to the robot to move

the object. At this point, the robot will fail to execute the

command and the will not be able to recover without the

intervention of an operator. In this case, the system will not fail

to complete the task, since the operator can move the object

into the workspace of the robot and the planner will continue

the plan from the new state. One way to remove these types

of errors is to reduce the view of the cameras to coincide with

the workspace of the robots. However, this would also reduce

the workspace substantially and removes the possibility to use

the system for a human-robot collaboration setup, where the

human operates on some part of the workspace and the robot

on another part while the proposed system is monitoring and

planning the operations of both.

E. Additional scenarios

To demonstrate the capabilities of the overall system beyond

the scope of assembly, we applied our system in a rather

different scenario, where the operator carries out a number of

scientific experiments in an on-board laboratory of a virtual

model of the International Space Station (ISS). The terminol-

ogy and sample procedures in the scenario resemble equivalent

procedures for the biological experiment laboratory (BIOLAB)

on-board the ISS. Here, our system first learns the sequences of

action and is then ready to monitor the actions of the operator

and comment on next possible actions, upcoming dead ends

and necessary mandatory subsequencs of actions, e.g. closing

doors of temperature controlled units (see Fig. 22).

X. CONCLUSIONS

We have presented a system for teaching assembly actions

to robots based on a three level architecture. The system is

highly flexible and is capable of monitoring both user and

robotic manipulations of the objects. Learning is taking place

Fig. 22. Learning and monitoring of scientific experiments on-board an
experimentable, virtual model of the International Space Station.

at each level using different representations and different kinds

of transfer processes. We demonstrated learning of trajectories

based on force information on the sensory-motor level, match-

ing and merging actions on the Semantic Event Chain level

as well as the learning of pre- and postconditions of planning

operators. All this learning can take place synchronously. We

have made thorough quantifications of the learning at each

level, partly making use of VR where we could introduce

different noise levels.

A significant body of technologies of high complexity

covering vision, planning, motor-control learning needed to

be introduced and integrated to arrive at our system, that had

a Technical Readiness Level (TRL) of four (validation in lab

environment) at the end of the IntellAct project. In the EU

project ReconCell (2015-2018), we aim to extend the system

to TRL six (validation in an industrial environment). By this,

the developed technology in vision, control and planning will

in particular help to reduce set-up times of future robotic

assembly solutions.
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