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Abstract

We introduce a formal model of teaching in which the teacher is tailored
to a particular learner, yet the teaching protocol is designed so that no collu-
sion is possible. Not surprisingly, such a model remedies the non-intuitive as-
pects of other models in which the teacher must successfully teach any consistent
learner. We prove that any class that can be exactly identified by a determin-
istic polynomial-time algorithm with access to a very rich set of example-based
queries is teachable by a computationally unbounded teacher and a polynomial-
time learner. In addition, we present other general results relating this model of
teaching to various previous results. We also consider the problem of designing
teacher/learner pairs in which both the teacher and learner are polynomial-time
algorithms and describe teacher/learner pairs for the classes of 1-decision lists
and Horn sentences.

1 Introduction

Recently, there has been interest in developing formal models of teaching [5, 10, 11, 16,
27] through which we can develop a better understanding of how a teacher can most
effectively aid a learner in accomplishing a learning task. A weakness of the formal

models of teaching that have been introduced in the learning theory community is that

*This research was supported in part by NSF grant CCR-9110108 and by a GE Foundation Junior
Faculty Grant. An earlier version appears in the Proceedings of the Sizth Annual Workshop on
Computational Learning Theory, pages 67-86, July 1993.



they place stringent restrictions on the learner to ensure that the teacher is not just
providing the learner with an encoding of the target. In particular, previous models
require the teacher to present a set of examples for which only the target function is
consistent. Thus, teaching under these models is made unnecessarily difficult since the
problem reduces to teaching an obstinate learner that tries as hard as possible not to
learn while always outputting a hypothesis consistent with all previous examples. In
fact, if a teacher is required to teach any consistent learner !, there are many examples
for which an exponential length teaching set is required to teach even those classes for
which efficient learning algorithms are known. For many of the classes that can be
taught efficiently, it is necessary in previous models to allow the teacher and learner to
share a small amount of “trusted information”, such as the size of the target function,
since there is no other way to eliminate concepts from the given class that are more
“complicated” than the target. Jackson and Tompkins [16] are able to show that
anything learnable with membership and equivalence queries is teachable with trusted
information. However, their method for preventing collusion still requires that the
teacher successfully teaches any consistent learner.

As a concrete example of a consequence of requiring that the teaching set is suffi-
cient for any consistent learner, consider the class C consisting of all singletons plus the
empty set. While, this class is quite simple and thus should be easy to teach, Goldman
and Kearns show that |C| — 1 examples are required to teach it in their model. Fur-
thermore, this hardness result has been embedded into several other hardness results
such as that for teaching full decision lists [16] and teaching linearly separable Boolean
functions [5]. Thus these hardness results appear to be due to a defect in the model
rather than an intrinsic difficulty in teaching these classes. Similar problems to the
ones discussed above emerge when comparing these teaching models to the self-directed
learning model %. In particular, for many classes the self-directed learning complexity

is asymptotically less than the teaching complexity. Again, because the teacher must

1A learner is consistent if its hypotheses are consistent with all previously seen examples.

2A self-directed learner [12, 13] is & learner that selects the presentation order for the instances.
In this model, the learning complexity is measured according to the number of incorrect predictions
made.



successfully teach all consistent learners, a “smart” self-directed learner can perform
better on its own than with the teacher’s guidance. Yet, if the teacher and learner
could cooperate (which should be the case if the teacher is working with the single
learner), intuitively this phenomenon should not occur.

There are many applications in which it is desirable to have teacher/learner pairs.
For example, such results provide lower bounds on the number of examples required by
a learning algorithm and such bounds could then be used to direct efforts in collecting
data. Another application area is the problem of training a neural network. Cur-
rently, most training algorithms work by adjusting the weights in the network based
on randomly selected labeled examples. By having a teacher carefully select the set of
labeled examples, the training time might be drastically reduced. In addition, there
are potential applications of the research on formal models of teaching to improving
automated manufacturing environments. For example, consider the problem of train-
ing sensor-referenced intelligent robot controllers. In this problem the goal is to map a
general purpose robot to specific application domains. The task of directly program-
ming the robot to perform the given task is extremely difficult for two reasons: (1)
the operator thinks about the robot’s motions in terms of Cartesian space whereas the
robot’s effectors are described in terms of rotations or movements of the joints, and
(2) there are inherent calibration errors in the movement of the robot’s effectors. In
such an application it would be very desirable to design a teacher/learner pair in which
a learning algorithm is selected for the robot, and then a teacher (i.e. the operator)
guides the robot through a “representative” set of actions to enhance the robot’s speed
of learning.

The key contribution of this work is the introduction of a formal teaching model
that allows the teacher and learner to cooperate, yet the teacher cannot simply encode
the target function. We start with a teacher/learner pair as in the model introduced
by Jackson and Tompkins [16]. However, unlike in their work, we only require that if
the teacher is replaced by an adversarial “substitute” that embeds the teaching set of
the true teacher within his teaching set, then the learner will still output a hypothesis

that is logically equivalent to the target function. While the adversarial substitute



has the strength to prevent collusion, it does not require that the teacher successfully
teaches any consistent learner. We show that any class for which there is an efficient
deterministic learning algorithm (even when provided with sophisticated queries) can
be taught (without trusted information) under our model. Also the number of examples
required by the teacher is at most the maximum number of mistakes made by any
self-directed learning algorithm. Furthermore, using our model there is an interesting
relationship between teaching and data compression. Applying the results of Floyd [9]
we obtain that for any mazimum class C there is a teacher/learner pair for which at
most VCD(C) examples are presented. Likewise, from the results of Helmbold, Sloan and
Warmuth [15], it follows that for any intersection-closed class C, the nested difference
of p functions from C can be taught in our model with at most p- veD(C) examples. It
is clear that in this paper we only scratch the surface of such results that follow from
previous work of others.

In addition to the more general results, we apply our model to the represen-
tation classes of 1-decision lists and Horn sentences to demonstrate the design of
teacher/learner pairs in which both the teacher and learner require only polynomial
computation time. For both classes, the sample complexity is asymptotically less than

that for the best known learning algorithm.

2 Previous Work

We now briefly review the theoretical work studying the complexity of teaching. Gold-
man, Rivest and Schapire [12] introduced the model of teacher-directed learning, a
variant of the on-line learning model in which a helpful teacher selects the instances,
and applied it to the problem of learning binary relations and total orders. Building
upon this framework, Goldman and Kearns [11] defined a formal model of teaching in
which they measured the complexity of teaching by the minimum number of exam-
ples that must be presented to any consistent learner so that the learner outputs a
hypothesis logically equivalent to the target function. Independently, Shinohara and
Miyano [27] introduced an equivalent notion of teachability in which a class is teachable

by examples if there exists a polynomial size sample under which all consistent learners



will exactly identify the target.

In other related work, Anthony, Brightwell, Cohen, and Shawe-Taylor [5] compute
bounds on the size of the smallest sample with which only the target function is con-
sistent for subclasses of linearly separable Boolean functions. Natarajan {21] defines a
dimension measure for classes of Boolean functions that measures the complexity of a
class C by the length of the shortest example sequence for which the target function
is the unique, most specific function from C consistent with the sample. Salzberg,
Delcher, Heath and Kasif [25] have also considered a model of learning with a helpful
teacher. Their model requires the teacher to present the shortest example sequence so
that any learner using a particular algorithm (namely, the nearest-neighbor algorithm)
learns the target. However, their work does not address the issue of preventing the
teacher and learner from colluding. Romanik and Smith [23, 24] propose a testing
problem that involves specifying, for a given target function, a set of test points that
can be used to determine if a tested object is equivalent to the target. However, their
primary concern is to determine for which classes there exists a finite set of instances
such that any representation in the class that is consistent on the test set is “close” to
the target function in a probabilistic sense.

Within the inductive inference paradigm, Freivalds, Kinber and Wiehagen [10] and
Lange and Wiehagen [17] have examined inference from “good examples”. Good ex-
amples are chosen by a helpful teacher to reduce the number of examples required. In
both, encoding is avoided by requiring that the inference task is accomplished even
when the learner is presented with any superset of the set of teacher-chosen examples.
Neither of these results, however, offer careful proof that this method actually prevents
collusion between the teacher and learner. Lange and Wiehagen [17] examine learning
pattern languages and show that this can be achieved with good examples.

Our new teaching model is most closely related to the model introduced by Jackson
and Tomkins [16]. In their model there are teacher/learner pairs in which the teacher
chooses examples tailored to a particular learner. To avoid collusion between the
teacher and learner, they consider the interaction between the teacher and learner as

a modified prover-verifier session [14] in which the learner and teacher can collude



but no adversarial substitute teacher can cause the learner to output a hypothesis
inconsistent with the sample. While it appears that the teacher’s knowledge of the
learner in this model is powerful, they showed that under their model the teacher
must still produce a teaching set that eliminates all but the target function from the
representation class. They also introduced the notion of a small amount of trusted
information that the teacher can provide the learner. This trusted information is used
by the teacher to provide the learner with the size complexity of the target function or

a stopping condition.

3 Our Model

We now formally define our model. The teacher’s goal is to teach the learner the
target function ® f chosen from some known representation class C, which is a set of
representations of functions mapping some domain & into {0,1}. In addition, C =
Un»1Cn is often parameterized by some natural dimension measure n. Let A, denote
the set of instances to be classified for each problem of size n, and let X = Un>1 A
denote the instance space. For f € C, and z € X,, f(z) denotes the classification
of the function represented by f when evaluated on instance z. Each representation
f € Cy has a size denoted by |f|. Typically, this is the number of symbols needed to
write the representation of f as a member of the representation class C, from which it
is chosen. Finally, a hypothesis h is any polynomially-evaluatable function that, given
any z € A, outputs a prediction for f(z).

A teaching set for f € C is an unordered set of labeled instances where each instance
is selected from &' and labeled according to f. We define the teacher T to be an
algorithm that when given a representation f € C outputs a teaching set T'(f) for f.
Similarly, we define the learner L to be an algorithm that takes as an argument any
teaching set .5 and outputs a representation f’ from C. We use L(S) to denote the
representation output by L. (Observe that this definition can easily be extended to

allow the learner to output a representation from some class ¢! O C.) If the learner

3Technically, the teacher is given a representation f € C. However, we shall equate f with the
logical function it represents.
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Figure 1: An overview of a teaching session. The adversary chooses the target function,
f giving it to the teacher. The teacher then generates T'(f). Given T'(f) the adversary
generates S4 2 T'(f) and gives this to the learner. The learner (possibly randomized)
outputs a representation from C thus defining a probability distribution Pr(S4) over

C.

is deterministic then L(S) is well-defined, however, in the case that the learner uses
a randomized algorithm, instead L{S) induces a probability distribution over C. We
shall denote this distribution by Pr(S).

We now describe our teaching protocol. The learner L and teacher 7" both have
prior knowledge of the representation class C from which the target function will be
selected. Furthermore, they can cooperate to develop coordinated teaching and learn-
ing strategies that best enable the teacher to teach the learner some unknown function
from the class. In addition to the teacher and learner, there is an adversary A who
has unlimited computing power and complete knowledge of 7' and L. The teaching

session, illustrated in Figure 1, proceeds as follows:
e The adversary selects a target function f € C and gives f to T.
¢ The teacher computes T(f) and gives it to A.

e Next the adversary (with knowledge of C, f,T and L) adds properly labeled
examples to T'(f) with the goal of causing the learner to fail. The teaching set
obtained (54 2 T'(f)) is then given to the learner.

o Finally, the learner outputs the representation given by L{S4).

The goal of the teacher is to teach the learner to perfectly predict whether any
given instance is a positive or negative instance of the target function. Thus, the

learner must achieve exact (logical) identification of the target. Of course, the teacher



would like to help the learner achieve this goal with the fewest number of examples
possible. However, as discussed above, we must preclude unnatural “collusion” between
the teacher and the learner (such as agreed-upon coding schemes to communicate the
representation of the target via the instances selected without regard for the labels)
which could trivialize our model. Informally, we define collusion as the passing of
information, by the teacher to the learner, about the representation of the target rather
than about the function represented.

We define a valid T/L pair for C to consist of a teacher T' and learner L such that:
For any f € C the teaching set T'(f) output has the property that if L is provided with
any teaching set 54 2 T'(f) where all added examples are properly labeled according
to f, then Pr(S4) has the property that for all f' € C, if f has non-zero weight
in the distribution Pr(S4) then f' is logically equivalent to f. In other words, any
representation output by L will be logically equivalent to f.

Given a valid T/L pair, we say that the teacher T' is a polynomial-time teacher
if, given any f € C,, it outputs T'(f) in time polynomial in n and |f|. Likewise, the
learner L is a polynomial-time learner if it runs in time polynomial in n, |f] and |$ Al
for any Sx 2 T(f). We say that a representation class C is T/L-teachable if, for all
[ € Cy, there exists a valid T/L pair for which [T'(f)| is polynomial in |f| and n. We
say that C is polynomially T/L-teachable if it is T/L-teachable by a pair for which T
is a polynomial-time teacher and L is a polynomial-time learner. Finally, we say that
C is semi-poly T/L-teachable if it is T/L-teachable with a polynomial-time learner but
a teacher that may be computationally unbounded.

In the next section we argue that the adversarial substitute is sufficient to prevent
collusion. Again, intuitively one view of collusion is for the teacher to use the teaching
set to pass information about the representation of the target versus the function it
represents. We formalize this notation in the following manner 4. We define a colluding
T/L pair for C to consist of a teacher T' and learner L such that: There exist logically
equivalent fo, fi in C (possibly with fo = f1) such that for all S, 2 T(fs) and all
S1 2 T(f1), Pr(Ss) # Pr(S:). In other words, if the teacher is able to influence

1Clearly there are other ways in which one could formalize the notion of collusion. However,
throughout the remainder of this paper, we shall use the given definition.



the distribution on C returned by L when presented with a teaching set for logically

equivalent representations then there is collusion between 7" and L.

4 General Results

In this section we explore the properties of our new teaching model. We begin by

proving that the adversarial substitute is sufficient to prevent collusion.

Theorem 1 There is no colluding T/L pair.

Proof: We use a proof by contradiction. Suppose there exists a colluding T/L pair.
Since the T/L pair is colluding, by definition there exist logically equivalent fp, fy in
C (possibly with fo = f;) such that for all So 2 T(fo) and all $; 2 T(f1), Pr(Se) #
Pr(51). However, let So = 51 = T'(fo) UT(f1). Then, since So = S; it follows that
Pr,(So) = Pr(51) giving the desired contradiction. 0

It immediately follows from this theorem, that any valid T/L pair must not collude.
Notice that unlike the Jackson and Tompkins model in which the teacher uses “trusted
bits” (in addition to labeled examples) to successfully teach many classes, our teacher
must teach the target function entirely through a careful selection of labeled examples.

While technically not collusion as we have defined it, there is a type of cooperation
between the teacher and learner, allowing the transmission of information about the
target, that merits discussion. Let C be a representation class over the domain X =
{0,1}" with no more than 2°(") representations and let there be a total order on
C. Thus, each representation f can be identified by a constant number of instances
encoding the place of f in the total order. To teach such a class, the teacher simply
places the instances {1,...,;} identifying f, along with their labels according to
f, in its teaching set. Additionally, the teacher must add to the teaching set a set of
examples that uniquely identify the function represented by f (i.e. a teaching sequence
as defined by Goldman and Kearns [11]). The learner chooses an ordered k-tuple of
instances from the teaching set and identifies its associated f € C. If every instance in

the teaching set is labeled according to f then f is the target function and is output



by the learner. Otherwise, the learner continues choosing ordered k-tuples until the
target is identified in this manner.

We now demonstrate that the above method is not collusion according the the
definition we have given. Let fi,fa € C such that for all z € X, fi(z) = fao(z).
Without loss of generality, if the teacher attempts to teach f; then the adversarial
substitute can simply add the k-tuple for f;, with their labels, to the teaching set.
Then both f; and f; are consistent with the entire teaching set and either may be
output by the learner. Thus, no collusion is occurring. Intuitively, we do not feel that
collusion is occurring since the teaching set contains examples to uniquely identify the
function represented by the target representation. However, the learner may have to
solve a hard consistency problem to identify the target without using the above scheme.
So, this T/L pair relies on the power of the teacher’s knowledge of the learner to solve
a hard problem.

We now show that any representation class learnable in deterministic polynomial
time from “example-based” queries (including equivalence, membership, subset, super-
set, disjointness, exhaustiveness, justifying assignments, partial equivalence) is teach-
able in our model by a computationally unbounded teacher and a polynomial-time

learner. We define an ezample-based query to be any query of the form:
V (21,22, ..,21) € XF |, does p(21,20,...,25) = 17

where k is constant, and @y(zy, 2, ..., 2) is any poly-time computable predicate with
membership-query access to the target f. Observe that the predicate ¢ may use the
z;’s to compute other instances on which to perform membership queries. The answer
provided to the example-based query is either “yes” or a counterexample consisting
of (21,22,...,z) € XF (with their labels) for which ¢;(z1,2,,...,2%) = 0 and the
examples (and their labels) for which membership queries were made to evaluate the
predicate. In Figure 2 we give the definition for the predicate ¢ corresponding to
queries in standard use. Observe that all reasonable, and some fairly bizarre, queries

can be formulated in this manner.

Theorem 2 Any representation class C learnable in deterministic polynomial-time us-

ing example-based queries is semi-poly T/L-teachable.

10



Type of Query k wr(z1y. .., Th)
equivalence(h) 1| h(z1) = flz)
membership(z) 0 | f(=)
subset(h) 1 | h(e)=1= flz) =1
superset (h) 1 | fla)=1= h(zy) =1
disjointness(h) 1 | (flm)=1= h(a1) = 0) A (h(z1) = 1 = f(z1) = 0))
exhaustiveness(h) 1 (fle) = 0= k() = 1) A (h(z) = 0= f(z1) = 1))
justifying-assign(v; ) 1 foimo(21) = foem (1)
partial-equivalence(R) | 1 | (h(e1) = f(&1)) V (A(z1) # %)

Figure 2: We show how to represent various queries as example-based queries. Equiva-

lence, membership, subset, superset, disjointness and exhaustiveness queries are defined

by Angluin [2]. A justifying assignment for an input variable is an instance whose clas-

sification changes if the value of the variable is changed. Thus, for Boolean domains, a

justifying assignment query on v; returns “yes” if there is no justifying assignment, or
g g J ymg g

as a counterexample it returns two instances that provide a justifying assignment for

v;. (The notation f,,_.o denotes the function obtained from f by fixing v; = 0.) Finally,

in a partial equivalence query (as defined by Maass and Turdn {19]) the learner can

present a hypothesis & : & — {0,1,+}, and is either told that all specified instances

are correct or is given an z € & such that 2(z) € {0,1} and =z is misclassified by A.

11




Proof: We prove this result by demonstrating a valid T/L pair for any representation
class C learnable in deterministic polynomial-time by an algorithm A that uses only
example-based queries. We assume there is some total ordering # on X (such as a
lexicographical order) upon which the learner and teacher have agreed. Given any
two sets of k instances from X we define the following ordering among them. Let
z = (Z1,...,2;) for z; < z; < --- < @} be one set and let y = (y1,...,yx) for
¥1 < Y2 < --- < yr be the other set. Then we say that ¢ < y (according to 7) if there
exists a 1 < j < k such that z; < y; and for all i < j,z; = ;.

The teacher T' constructs its teaching set T'(f) for f as follows. Initially, let T(f) =
B. Now T simulates A’s execution until the point at which the first example-based
query q is performed. Let k be the number of instances over which ¢ is quantified. The
teacher now goes through all (21, 2,...,2%) € X* from smallest to largest, evaluating
¢(21,...,21). If there are no counterexamples to ¢ then the teacher replies “yes” to A’s
query. Otherwise, let (21, zs,...,2:) be the smallest counterexample and let ¢4,.. ., ¢
be the instances on which membership queries were made to evaluate ¢(z,...,z).
Note that the number of membership queries made by ¢ (and thus £) is polynomial
since py s poly-time computable. The teacher lets S = {1, f(z()}U---U{zs, flzz)}U
{01, fl@)} U--- U {gs, f(qe)}, replies to A with S, and updates T(f) to be T(f) U S.
The teacher continues in this manner until A halts.

We now create the learner L from A as follows. Let S4 2 T'(f) be the teaching
set that the learner receives. Whenever A makes a query g, the leaner will proceed
as follows. The learner will consider all k-tuples in S4 from smallest to largest. For
each such tuple (z1,...,2;) the learner attempts to evaluate ¢(zy,...,2:). In order to
evaluate ¢, recall that the learner may need to perform some additional membership
queries. If these instances appear in S4 then the learner computes ¢(z1,...,z;). If
w(21,...,2x) = 0, then L gives A the k-tuple (21,...,z;) along with the labeled
examples corresponding to the membership queries made in evaluating ¢ on this k-
tuple. What if the learner is unable to evaluate ¢? Since T'(f) contained the minimum
counterexample for ¢ (including all instances needed to evaluate @) and S4 2 T(f), it

follows that (21,...,z;) must not be a counterexample. Thus, if the learner computes

12



that ¢(z1,...,z¢) = 1 or is unable to evaluate it, then the learner continues with
the next k-tuple in the ordering. If for all k-tuples in S, the predicate @ is true
or unevaluatable (i.e. there is no counterexample to ¢ in S,) then L responds to A
with “yes”. Observe that since ¢ is quantified over a constant number of instances, in
time polynomial in |S4| the learner can consider all k-tuples from S4. Furthermore,
because the teacher evaluated k-tuples of instances from minimum to maximum when
constructing T(f), the membership queries needed to evaluate ¢ will be present for
the minimum counterexample.

We now argue that L will halt in polynomial time and output f. The key ob-
servation here is that the teacher’s and learner’s simulations of 4 always remain the
same. Since A is deterministic its execution is altered only by the responses given to its
queries. While the adversarial substitute may add other counterexamples, the learner
will always find the minimum one, which was included in T(f) by T, and thus 7' and

L both give A exactly the same counterexamples. O

The following corollary follows directly from Theorem 2.

Corollary 3 If representation class C is not semi-poly T/L-teachable then it is not

deterministically learnable in polynomial time using ezample-based gueries.

Thus, negative results obtained for a class in our model give very strong negative
results with regards to the learnability of the class. It is possible that this corre-
spondence will provide new techniques to prove hardness results for learning. As an
immediate consequence of this result we know that many classes (namely, all of those
for which exact-identification is efficiently achieved with queries) are T/L-teachable
with an efficient learner. In particular, this contrasts the negative result of Jackson
and Tompkins [16] that the class of 1-decision lists is not teachable without trusted in-
formation, and the negative result of Anthony et. al [5] that linearly separable Boolean
functions are not efficiently teachable. In fact, Bshouty’s [8] result that arbitrary deci-
sion trees are learnable with membership and equivalence queries implies that a much
broader class than 1-decision lists is T/L-teachable with a polynomial-time learner.

Letting A in the proof of Theorem 2 be the halving algorithm [6, 18], we immediately
get the following coroliary.
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Corollary 4 Any representation class C is T/L-teachable (by a computationally un-

bounded teacher and learner) with a teaching set of length at most log |C]|.

Because our model incorporates a very powerful set of queries, classes that may
not be learnable using membership and equivalence queries are T/L-teachable. In par-
ticular, from Angluin’s result [2] that pattern languages can be exactly identified in
polynomial time using only restricted superset queries, we get that pattern languages
are semi-poly T/L-teachable. Lange and Wiehagen independently presented an algo-
rithm to learn pattern languages from good examples [17].

It is also easily shown that the self-directed learning model [13] can be simulated
in our model. Namely, we can build a valid T/L pair by having T simulate the self-
directed learning algorithm .4, and then include in T(f) only those examples that
A misclassifies. Then L can simply simulate A assuming that any example not in

S4 2 T(f) is properly labeled by its hypothesis.

Theorem 5 [f there is a deterministic self-directed learning algorithm for represen-
tation class C that makes polynomially bounded mistakes, then C is T/L-teachable.
Furthermore, the number of ezamples in an optimal teaching setl is at most the number

of mistakes made by the self-directed learning algorithm.

Thus, for example, it follows that the classes of monomials and axis-parallel rectan-
gles in {0,1,...,n —1}? are both T/L-teachable using only 2 examples. Furthermore,
for these classes it is easily shown that both the teacher and learner can be efficiently

implemented.

5 Efficient Teaching Strategies

While we know from Theorem 2 that any representation class learnable by an algorithm
using example-based queries is T/L-teachable, we now demonstrate that often both the
learner and the teacher use polynomial time and that for many classes the number of
examples in T'(f) is asymptotically less than the number of queries made by existing

learning algorithms. While we have currently only designed good teachers for existing
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learning algorithms, in the long run we expect to design new learning algorithms that
may not be good against an adversarial environment, but work very well when paired
with an appropriate teacher.

In this section we give polynomial T/L pairs for the classes of decisions lists and
Horn sentences. Jackson and Tomkins show that the class of 1-decisions lists with no
irrelevant variables is teachable in their model. They prove, however, that 1-decision

lists are not teachable in their model without trusted information.

5.1 Decision Lists

As defined by Rivest [22], a 1-decision list (1-DL) over the set V, = {v1,vg,...,v,} of
n Boolean variables is an ordered list f = ((4,b1),...,(£,b,)) where each ¢; is v; or T;
for v; € V, and each b; € {0,1}. For an instance z € {0,1}", we define f(z) = b; where
1 £ j < r is the least value such that ¢; is 1 in z; f(z) = b, if there is no such j. We
refer to each pair (£;, ;) as a node in f. Rivest also defines the class of k-decision lists
(k-DL) as the generalization of 1-decision lists in which 4; is any conjunction of at most
k literals from V. Rivest presents an algorithm to learn the class of k-decision lists
in the PAC model, and later Nick Littlestone ® constructed an algorithm to exactly
identify k-DLs using only equivalence queries. When applied to the class of 1-DLs,
Littlestone’s algorithm uses O(rn) equivalence gueries and O(rn?) time.

For a 1-DL, f, let (£, 5;:) and (¢;,b;) be two nodes in f for i < j. If £; = Z; then a
logically equivalent decision list is obtained by replacing node j by the constant b; and
removing all following nodes. Similarly, if £; = £; then node j can just be removed. We
say a reduced 1-DL is one to which these reductions have been applied. Note that the
number of nodes r in a reduced decision list is at most n+1 (this includes the constant

node at the end). We now show that the class of 1-DLs is polynomially T/L-teachable.

Theorem 6 The class of 1-DLs is polynomially T/L-teachable with a teaching set of
length at most 2r where v is the number of nodes in the reduced target decision list.

The teacher requires O(rn) time and the learner requires O(r’n) time.

5This result is unpublished and may have been discovered independently by others.
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T/L pair for 1-DL:

Teacher:
T(f) <0
For each node 7 in the reduced target DL
T(f) = T() U {59 u (X%}

Learner:
All candidate nodes begin at level 1
Repeat
For each example (z, f(z)) in S4
Let % be the highest level for which 4; = 1 in z, for (£;, b;) at level k
For each candidate node 7 at level &
If £ =1in z and b; # f(z) then increment level of node 7
Until no candidate changes level
Output the 1-DL obtained by arbitrarily ordering the nodes within each level,

stopping when reaching a constant node

Figure 3: Algorithms for the teacher and learner for the class of 1-DL.
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Proof: We informally describe the teacher and learner for this class. We assume that
the target decision list f is already reduced. Observe that if it were not then the teacher
could reduce it in O(n?) time. Let X{%) be the example for which literals Ly, 8y
are 0, literal £; is 1 and all remaining variables are assigned b, for b either 0 or 1. For
1 <1 < r, the teacher simply includes Xéz") and ng‘). Thus, the teacher generates
only O(r) examples, each requiring O(n) time to generate.

The ideas in the design of our learner are based the algorithm given by Littlestone
to exactly identify 1-DLs using only equivalence queries. It is convenient to view target
decision list f as “leveled” where each level contains consecutive nodes that have the
same associated bit and level 1 is the top level. Thus the number of levels in f is
exactly one plus the number of times that b; # b;;. The learner initially assumes that
all of the 4n + 2 possible nodes are the first (or top) node in f. Then on example z,
any node that would have caused z to be mislabeled is moved to the set of candidates
for the second level of f. So in general, L maintains a set of candidates for all n + 1
possible levels of f. For a given example z, the learner finds the highest level (least
index) containing some node (£;,b;) for which ¢; = 1 in =. Each node (£;,5;) in this
level such that b; # f(z) is moved down to the next level by L. Finally, when no such
counterexample exists, L outputs a 1-DL by arbitrarily ordering the nodes within each
level, stopping at the earliest level in which the constant 1 or 0 appears. See Figure 3
for a complete description of the teaching and learning algorithms.

We now argue that this is a valid T/L pair and that L runs in O(r?n) time. We use
induction to show that after the kth iteration of the repeat loop all candidates that
belong on level j > k + 1 have been bumped to at least level k + 1. Note that any
literal reaching level r + 1 is irrelevant. The inductive hypothesis holds for & = 0 (i.e.
at the beginning all nodes are af level 1). Given that all nodes belonging at level § >
are at level k or greater after the (k — 1)st iteration of the loop, we must show that
after the kth iteration the nodes that belong at level § > k + 1 will be at level k + 1
or greater. Let (£,5;),...,(4;,b;) be the nodes of f that are at level k and assume,
for ease of exposition, that for s < ¢ < j, b, = 1. Observe that Xéz‘) and Xl(f‘) for
¢ <t < j bump all candidates that do not belong in level k except for those with an
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associated bit of 1 (including the constant 1). For now, assume that k43 < r, and for
s=k+1ork+3,let (£,,0) be any node in f at level s. Of the nodes that still must
be bumped from level k, observe that Xéz"“) and x{6+1) bump all but (€x41,1) and
all nodes of the form (4;,0) for i < ¢t < j. Finally, these remaining nodes are bumped
by X{%+2) and Xb(e"“) for b € {0,1} where (fg12,1) is a node at level +2in f. In the
case that £+ 3 > r it is easily shown that the candidates that do not belong at level
k are bumped by the examples associated with node r. Finally, notice that instances
placed in S4 by the adversary will not affect the correctness of the hypothesis returned

by the learner. a

This result can be generalized to k-DL but to do so the teacher must present
examples for node 7 that turn off all nodes above node 7, turn on nede 7 and individually
turn off nodes below node 7 (rather than en masse as is done for 1-DL). This increases
the number of examples required to O(n*) and increases the running time of the learner
correspondingly. The running time of the teacher is no longer polynomial, assuming
P # NP, since implicit in turning of all nodes above node 7 is a satisflability problem

that the teacher must solve.

5.2 Conjunctions of Horn Clauses

A Horn clause is a disjunction of literals at most one of which is unnegated. A Horn sen-
tence is a conjunction of Horn clauses. Angluin, Frazier and Pitt [4] gave a polynomial-
time algorithm to exactly identify an m-clause Horn sentence using O(mn) equivalence
queries, O(m®n) membership queries and, O(m?n?) 8, where n is the number of vari-
ables in the instance space. Note that each Horn clause can be viewed as a logical
implication in which the consequent contains the, at most one, unnegated variable.

A clause C of the Horn sentence f is violated by z when all variables in the an-
tecedent (denoted ant(C)) are 1 in = and the variable in the consequent (denoted
cons(C)) is 0 in z. For clause C, let Ny denote the minimum negative example that
violates clause C. Namely, N¢ is the example for which the variables in ant(C) are 1

and all other variables are 0. Likewise, let Po be the minimum positive example for

$The “soft-oh” notation is like the standard “big-oh” except that log factors are also left out.
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which all variables in ant(C') and cons(C) are 1 (each remaining variable is set to 0

unless this causes some clause in f to be violated).

Theorem 7 The class of Horn sentences is polynomially T/L-teachable using 2m ex-

amples where m is the number of clauses in the target Horn sentence. The teacher and

learner each require O(m?®n) time.

Proof: The teacher first modifies the target Horn sentence f so that the clauses can
be individually violated (see Figure 4). The resultant target f' is logically equivalent
to the original target f and has the same number of clauses. Next, the teacher lets
T(f) = {NcUPc | C € f}. The first step of T takes at most O(m?n) time since
there are O(m?) pairs of clauses and each clause can be modified at most O(n) times.
The second step takes at most O(mn) time outputting a teaching set of length 2m.
Finally, the learner runs what is essentially the standard algorithm for learning Horn
sentences [4]. Figure 4 gives details of T and L.

We now show that this learner and teacher are a valid T/L-pair. Each negative
example, N¢, added to T'(f) by the teacher causes the learner to add one of the clauses
of the target to its hypothesis (as well as some clauses that do not belong). However,
it is easily shown that because the target was modified by the teacher, Po will violate
these extra clauses, thus causing the learner to remove them. There are O(n) extra
clauses for each true clause added. Since there are m clauses in the target, a total
of O(mn) clauses are added to the learner’s hypothesis. Thus, L is polynomial and,
using only examples in T'(f), returns a hypothesis equivalent to f/. Finally, since L
selects the minimum negative counterexample at each step, it follows that any negative
example placed in S4 by the adversary will not modify the learner’s course. Likewise,
any positive counterexamples placed in S4 by the adversary are easily shown to cause

no harm. 0

The class of %-quasi Horn sentences is defined similarly to Horn sentences except
that each clause can have at most % unnegated literals (consequents of size at most k).
Angluin, Frazier and Pitt note that learning 2-quasi Horn sentences with membership
queries is as hard as learning CNF formulas with membership queries. With the added

power of a cooperative teacher, however, it is unclear if there exists a valid T/L pair
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T/L pair for Horn sentences:

Teacher:
T(f) <0
Repeat until no clause is changed
For all pairs of clauses in the target
If ant(C;) C ant(C;)
then replace C; by (ant(C;) A cons(C;) = cons(C;))
Fori«—1ltiom

T(f) « T(f) U{Fe;} U {Nc}

h — true
Repeat
While 54 contains a positive counterexample
delete from % all clauses violated
If S4 contains a negative counterexample
then choose one, not previously used, with fewest 1’s
let the 1’s in the counterexample define ant(C;)
b= h A (Al gant(ciy) (ant(Ci) = v;))

Until 54 contains no counterexamples

Figure 4: Algorithms for the teacher and learner for the class of Horn sentences.
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for this class. A straightforward adaptation of the above T/L pair cannot be used
to teach 2-quasi Horn sentences. The problem lies in attempting to alter the target
so that clauses may be violated individually. Because each consequent may have size
two there can be exponential blowup in the number of clauses in the resultant target
function. Attempts at different approaches encountered similar difficulties (such as an
exponential number of examples required to teach a polynomial number of clauses in an
effort to anticipate membership queries). The polynomial T/L-teachability of 2-quasi

Horn sentences remains an interesting open problem:.

6 Relation to Data Compression

In this section we uncover an interesting relationship between teaching in our model
and data compression. A data compression scheme of size k for representation class C
consists of a compression algorithm F and a reconstruction algorithm G. Let Sy, be any
subset of m > k examples from & labeled according to some f € C. The compression
algorithm F takes as input S, and outputs some subset S of S, such that |S]| < k.
The reconstruction algorithm § takes as input any possible subset of at most % labeled
examples and outputs a hypothesis A on X. A walid data compression scheme of size
k for C consists of a pair F and G such that for any f € C and any set Sy, of at least k
examples labeled according to £, the hypothesis output by G(F(S,,)) must be consistent
with all examples in S,. Let Sy be the labeled sample consisting of all instances in
A labeled according to f. Observe that G(F(Sy)) must be logically equivalent to f.
Thus, a computationally unbounded teacher could produce the examples in F (Sy) as
a teaching set. We now give sufficient conditions under which the learner can simply

use G to obtain a hypothesis logically equivalent to f.

Theorem 8 If there is a valid data compression scheme of size k for representation
class C and F(Sy) produces an exzample set for which f is the minimum consistent
hypothesis (for any pre-defined ordering of C), then C is T/L-teachable with at most k
examples.

Proof: The teacher will use F(Sy) as the teaching set. The learner will output

the minimum consistent hypothesis consistent with the teaching set. Since, by the
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conditions of the theorem, the target f is the minimum hypothesis consistent with
F(Sy), the hypothesis output by the learner cannot be affected by the additional
examples added to the teaching set by the adversary. )

Many of the space-bounded learning algorithms that Floyd [9] presents satisfy the
conditions of Theorem 8 and thus we immediately obtain results for our teaching model.
To state this results, we must define the Vapnik-Chervonenkis dimension [29]. Let X
be any instance space, and C be a concept class over X. A finite set ¥ C X is shattered
by Cif {cNY | c € C} = 2. Inother words, ¥ C X is shattered by C if for each subset
Y’ C Y, there is a concept ¢ € C which contains all of ¥*, but none of the instances in
Y —Y'. The Vapnik-Chervonenkis dimension of C, denoted veD(C), is defined to be
the smallest d for which no set of d+ 1 points is shattered by C. Blumer et al. [7] have
shown that this combinatorial measure of a concept class characterizes the number of
examples required for learning any concept in the class under the distribution-free or
PAC model of Valiant [28].

Related to the VC-dimension are the notions of mazimal and mazimum concept
classes [9, 30]. A concept class is mazimal if adding any concept to the class increases

the VC dimension of the class. Define

‘(™) form>d
Oy(m) = E“o(,) B
2m for m < d.

If C is a concept class of VC-dimension d on a finite set X with [X]| = m, then the
cardinality of C is at most ®q(m) [26, 29]. A concept class C over X is mazimum if for
every finite subset ¥ C X, the class C, when restricted to be a class over Y, contains
®4(]Y|) concepts.

Floyd [9] shows that if C is a maximum class of VC-dimension d on the set X , then
there is a data compression scheme of size d for C. Furthermore, it is easily shown that
for this compression scheme, F(S5) produces an example set for which f is the only
consistent hypothesis. Thus from Floyd’s results and Theorem 8, we get the following

corollary.

Corollary 9 For any mazimum class C, there is a valid T/L pair such that the optimal

teaching set has length at most the VC-dimension of C.
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We can show the corresponding result for intersection-closed classes by applying
results from Helmbold, Sloan and Warmuth [15]. They define a spanning set of a
representation ¢ € C' with respect to the class C' to be a set I C ¢ having the property
that ¢ is the unique, most specific representation consistent with the instances in I and
show that for intersection closed classes all minimum spanning sets have size at most
vOD(C). They then give an algorithm to learn the nested-difference of a set of size p of
functions from C while saving at most p- veD(C) examples, thus giving the following

result.

Corollary 10 For any intersection-closed representation class C for which there is an
efficient query algorithm, the nested difference of p functions from C is T/L-teachable

using at most p- VvCD(C) ezamples with a polynomial-time learner.

7 Alternate Models

In this section we briefly describe some variations of our model that we feel are worthy
of study. The model we presented here places minimal restrictions on the T/L pair
while ensuring that there is no collusion. For some applications, one may want to limit
the assumptions the teacher may make about the learner without going to the extreme
of only allowing the teacher to assume that the learner is consistent. For example,
one class of learners that would be interesting to study is that of learners that always
select a minimum (in terms of the number of instances classified as positive) consistent
hypothesis. In fact, this type of learner was studied by Natarajan [21] in terms of
one-sided learning. As another example, we could consider the class of learners that
only select a minimal consistent hypothesis. This corresponds to requiring that the
Jearner always selects an element from S in Mitchell’s version space [20].

Another interesting variation is one in which the learner is not required to exactly
identify the target, but rather needs only output an e-good approximation to the target.
(Romanik and Smith [23, 24] consider a PAC-style criterion in their work.)

Finally, another interesting model is one in which there are two distinct stages. The

first stage operates as in our current model except that the teacher is not required to
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provide examples sufficient for exact identification. In the second stage the teacher lists
all instances that are exceptions to the rule taught during the first stage. During the
second stage the learner just appends to its hypothesis the list of “exceptions” given
by the teacher. The motivation behind this model is that it is often easiest to teach by
first oversimplifying the truth and then making the needed corrections. For example,
in teaching a child about spelling, you could first teach the rule that the letter “”
always comes before “e”. Then, you can add the needed exceptions. It is also possible

that the list of exceptions could take the form of another rule. For example, “i” comes

before “e” except after “c”.

8 Concluding Remarks

We now briefly discuss the two directions of future research that we find most inter-
esting. First of all, an interesting open question is to determine whether there exist
teacher/learner pairs in which both the teacher and learner require only polynomial
computation time for such classes as 2-quasi Horn Sentences and read-thrice DNF that
appear difficult to learn from queries [3, 1].

Another interesting research direction opened up by this new model is the follow-
ing. As we did for 1-decision lists and Horn sentences, one can take known learning
algorithms and design teachers that enable the sample and time complexity of the algo-
rithm to be asymptotically reduced. However, the algorithms that have been designed
to work against an adversarial environment are most likely not going to be the best
algorithms when we allow the algorithm to be paired with a teacher. In other words,
for some classes we expect that there should be teacher/learner pairs which work better
than any known algorithm when paired with the best possible teacher, yet the algo-
rithm used by the learner may be very poor against an adversarial environment. Such

a study could lead to general techniques for designing teacher/learner pairs.
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