
 Open access  Proceedings Article  DOI:10.1145/3287324.3287406

Teaching Android Mobile Security — Source link 

Jean-François Lalande, Valérie Viet Triem Tong, Pierre Graux, Guillaume Hiet ...+3 more authors

Institutions: University of Rennes, Warsaw University of Technology, Ibn Tofail University,
Intelligence and National Security Alliance

Published on: 22 Feb 2019 - Technical Symposium on Computer Science Education

Topics: Android (operating system), Mobile technology and Linux kernel

Related papers:

 A Process to Design and Implement Service-based Android Applications

 Analysis of the impact of development tools used on the performance of the mobile application

 An empirical investigation of performance overhead in cross-platform mobile development frameworks

 Designing mobile ambient applications

 Cross-Platform Mobile Application Development: A Pattern-Based Approach

Share this paper:    

View more about this paper here: https://typeset.io/papers/teaching-android-mobile-security-
319hvmjait

https://typeset.io/
https://www.doi.org/10.1145/3287324.3287406
https://typeset.io/papers/teaching-android-mobile-security-319hvmjait
https://typeset.io/authors/jean-francois-lalande-cyivjy8vb0
https://typeset.io/authors/valerie-viet-triem-tong-374h5hvqdk
https://typeset.io/authors/pierre-graux-14qucx11rn
https://typeset.io/authors/guillaume-hiet-1z68qp00of
https://typeset.io/institutions/university-of-rennes-2sxbfr7v
https://typeset.io/institutions/warsaw-university-of-technology-3xjobz44
https://typeset.io/institutions/ibn-tofail-university-1qb1yqu7
https://typeset.io/institutions/intelligence-and-national-security-alliance-1gls0929
https://typeset.io/conferences/technical-symposium-on-computer-science-education-1rsbt70m
https://typeset.io/topics/android-operating-system-1s2dcrk5
https://typeset.io/topics/mobile-technology-2b2shpph
https://typeset.io/topics/linux-kernel-27dmiakb
https://typeset.io/papers/a-process-to-design-and-implement-service-based-android-gt55zs2tkt
https://typeset.io/papers/analysis-of-the-impact-of-development-tools-used-on-the-53i4d55n8w
https://typeset.io/papers/an-empirical-investigation-of-performance-overhead-in-cross-3e4yt92kvs
https://typeset.io/papers/designing-mobile-ambient-applications-3skkdezz70
https://typeset.io/papers/cross-platform-mobile-application-development-a-pattern-2f3jv7s7qx
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/teaching-android-mobile-security-319hvmjait
https://twitter.com/intent/tweet?text=Teaching%20Android%20Mobile%20Security&url=https://typeset.io/papers/teaching-android-mobile-security-319hvmjait
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/teaching-android-mobile-security-319hvmjait
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/teaching-android-mobile-security-319hvmjait
https://typeset.io/papers/teaching-android-mobile-security-319hvmjait


HAL Id: hal-01940652
https://hal-centralesupelec.archives-ouvertes.fr/hal-01940652

Submitted on 30 Nov 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Teaching Android Mobile Security
Jean-François Lalande, Valérie Viet Triem Tong, Pierre Graux, Guillaume

Hiet, Wojciech Mazurczyk, Habiba Chaoui, Pascal Berthomé

To cite this version:
Jean-François Lalande, Valérie Viet Triem Tong, Pierre Graux, Guillaume Hiet, Wojciech Mazurczyk,
et al.. Teaching Android Mobile Security. SIGCSE ’19 - 50th ACM Technical Symposium on Computer
Science Education, Feb 2019, Minneapolis, United States. pp.232-238, ฀10.1145/3287324.3287406฀.
฀hal-01940652฀

https://hal-centralesupelec.archives-ouvertes.fr/hal-01940652
https://hal.archives-ouvertes.fr


Teaching Android Mobile Security

Jean-François Lalande
Valérie Viet Triem Tong

Pierre Graux
Guillaume Hiet

jean-francois.lalande@inria.fr
CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA

Rennes, France

Wojciech Mazurczyk
Institute of Telecommunications
Warsaw University of Technology

Warsaw, Poland
wmazurczyk@tele.pw.edu.pl

Habiba Chaoui
National School of Applied Sciences, Ibn Tofail University

Kenitra, Morocco
habiba.chaoui@uit.ac.ma

Pascal Berthomé
INSA Centre Val de Loire, LIFO

Bourges, France
pascal.berthome@insa-cvl.fr

ABSTRACT

At present, computer science studies generally offer courses ad-

dressing mobile development and they use mobile technologies for

illustrating theoretical concepts such as operating system, design

patterns, and compilation because Android and iOS use a large va-

riety of technologies for developing applications. Teaching courses

on security is also becoming an important concern for academics,

and the use of mobile platforms (such as Android) as supporting

material is becoming a reasonable option. In this paper, we intend

to bridge a gap in the literature by reversing this paradigm: Android

is not only an opportunity to learn security concepts but requires

strong pedagogical efforts for covering all the aspects of mobile se-

curity. Thus, we propose teaching Android mobile security through

a two-dimensional approach. The first dimension addresses the cog-

nitive process of the Bloom taxonomy, and the second dimension

addresses the technical layers of the architecture of the Android

operating system. We describe a set of comprehensive security

laboratory courses covering various concepts, ranging from the

application development perspective to a deep investigation of the

Android Open Source Project and its interaction with the Linux

kernel. We evaluated this approach, and our results verify that

the designed security labs impart the required knowledge to the

students.

CCS CONCEPTS

·Applied computing→ Education; · Security and privacy→

Mobile platform security; Software security engineering; Soft-

ware reverse engineering.

This work has received a French government support granted to the COMIN Labs
excellence laboratory and managed by the National Research Agency in the "Investing
for the Future" program under reference ANR-10-LABX-07-01.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE ’19, February 27-March 2, 2019, Minneapolis, MN, USA

© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5890-3/19/02. . . $15.00
https://doi.org/10.1145/3287324.3287406

KEYWORDS

teaching, mobile, security

ACM Reference Format:

Jean-François Lalande, Valérie Viet Triem Tong, Pierre Graux, Guillaume

Hiet, Wojciech Mazurczyk, Habiba Chaoui, and Pascal Berthomé. 2019.

Teaching Android Mobile Security. In Proceedings of the 50th ACM Technical

Symposium on Computer Science Education (SIGCSE ’19), February 27-March

2, 2019, Minneapolis, MN, USA. ACM, New York, NY, USA, 7 pages. https:

//doi.org/10.1145/3287324.3287406

1 INTRODUCTION

At present, Android programming is an integral part of most un-

dergraduate studies in computer science. It was introduced as a

complete knowledge area in 2013 (platform-based development) in

the Curriculum Guidelines for Undergraduate Degree Programs in

Computer Science [4]. The same year, security aspects were also in-

troduced as a new knowledge area named łInformation Assurance

and Security.ž The Android platform can be used for a variety of

learning purposes concerning operating system, wireless communi-

cations, advanced design pattern, etc. Skills in mobile programming

are of significance as even web services generally develop a com-

panion application that the user can install on a smartphone.

When addressing the security aspects of mobile computing, it

is challenging to discuss concepts without referring to their imple-

mentation. Security concepts such as access control, authentication,

or cryptography can still be presented as an independent course.

However, the manner in which attackers attempt to bypass the

implemented security countermeasures of modern smartphones

should be presented with complete knowledge of the Android’s

internal aspects.

In this paper, we propose a set of labs intended to teach about

threats and the security internals of Android applications and op-

erating system. The approach is original in that it follows a pro-

gression based on the Bloom taxonomy [12] and works on the

security aspects of the complete software stack of Android. We

propose a variety of activities that enhance students’ skills from

those for developing simple applications to those for more complex

activities such as analyzing vulnerable applications under attack or

reversing packers. Additionally, the labs cover the different internal

components of Android, which aids students to gain knowledge

https://doi.org/10.1145/3287324.3287406
https://doi.org/10.1145/3287324.3287406
https://doi.org/10.1145/3287324.3287406


of the internal classes of the Android runtime, the execution and

compilation of Android applications, and the link with the operat-

ing system. These two dimensionsÐthe student cognitive process

and the coverage of the different levels of the Android software

stackÐaid students to better analyze mobile security problems.

The paper is organized as follows: Section 2 summarizes the

state of the art in the learning of Android development and secu-

rity. Section 3 presents our approach, and Section 4 provides the

technical details of each lab. Section 5 summarizes the feedback we

have collected. Section 6 concludes the paper.

2 RELATED WORK

Application Development and Operating Systems with Android.

It is apparent that a pre-requisite for teaching mobile security is

fluency in the underlying programming language and the main con-

cepts of application development. For example, Tigrek et al. [21]

propose a minimal course for first year engineering students to

discover Android programming. Among the presented principles,

"How Without Why" (program based on tutorials) combined with

"Just Enough Java" (learn the essential Java patterns) are effective

for learning to develop an application, although is not sufficient for

understanding the security impact of a selected implementation [1].

In Bloom’s revised taxonomy of educational objectives [12], these

two pieces of procedural knowledge are used to distinguish be-

tween łknowledge of subject-specific skillsž and łknowledge of

criteria for determining when to use appropriate proceduresž. Addi-

tionally, we consider that in the structure of the cognitive process

(remember, understand, apply, analyze, evaluate, and create) the

three last cognitive processes require a deep understanding of the

internal aspects of mobile application and the underlying operating

system.

The Android framework can also be used as supporting material

to teach more general software engineering [5, 20] or operating

system [2] concepts. Notwithstanding whether these works are

effective for a better understanding of the concepts, most of the

presented material does not describe the Android system with

adequate details to aid the investigation of the security aspects of

mobile devices.

Mobile Security. A few studies use Android as a platform for

experimenting with general security notions, e.g., filtering traffic

in firewalls [23] or countering Denial of Service attacks [22]. How-

ever, they do not address the specificities of mobile systems and

applications.

A few previous works [10, 15, 25] have described the partic-

ularities of teaching security aspects of mobile applications and

platforms. Nevertheless, in most cases, only foundational aspects

that are relevant for Android developers are covered.

The approach of Guo et al. [10] is one of the works closest to our

proposal. They have designed a labware of seven modules, which

illustrates the concepts of mobile security and privacy. The learning

approach is based on two main concepts. First, the course uses an

attack/defense lab, where the students are required to implement

attacks prior to implementing the corresponding protection mech-

anisms. Such an approach aids the students to better comprehend

the security issue and to implement more effective protections. Sec-

ondly, the provided material (slide, tutorials) and the content of the

Table 1: Attacks targeting different Android components

Components Examples of attack CVE

Applications Android ransomware, spyware, adware
AOSP classes OpenSSLX509Certificate vulnerability [17] 2015-3825
DVM & ART DoS via an unspecified Dalvik function 2009-3698
AOSP services Janus: Hiding Payload & Bypass signatures 2017-13156
Kernel Towelroot: Futex Requeue Kernel Exploit 2014-3153

labs can be used directly on real smartphones, enhancing the con-

fidence of the students in their skills. Each lab intends to develop

skills of protection against one type of threat. The fundamentals of

Android security are introduced in different labs, such as those on

the use of permissions or cryptographic API. Advanced threats and

prevention mechanisms, such as buffer overflows or obfuscation,

are discussed in a lab entitled łSecure Mobile App Development,ž

which was under development at the time of the article writing.

In our opinion, these works lack progression in the Bloom taxon-

omy and do not cover the different levels of the Android software

stack. The next section develops this concept before the description

of the labs in Section 4.

3 LEARNING MOBILE SECURITY

A deeper understanding of all the security components of Android

requires comprehension of the whole stack of technologies that is

used by the Android Open Source Project (AOSP) [6, 9]. Describing

security APIs from the developer’s perspective can be a starting

point for discovering features such as account management, per-

missions, and cryptographic primitives. Nevertheless, most of the

security features are provided by the operating system, and ex-

plaining them requires sufficient knowledge of operating systems,

runtime environments, and networks. Examples of such features

are the installation process of applications, storage of credentials,

role of SELinux, and update process of the operating system.

Additionally, students should comprehend the heterogeneous

nature of the attacks likely to target Android devices. We have

presented a few examples of vulnerabilities in Table 1 that illustrate

the diversity of the likely threats. The kernel is the most challeng-

ing component to attack, and a representative vulnerability is the

Futex vulnerability1, which enables, under certain conditions, the

execution of arbitrary code in the kernel mode and to root the

phone. On top of the kernel, the Android services can be exploited,

e.g., the process that installs or updates applications. An example

of such a threat is the Janus exploit that abuses a vulnerable signa-

ture verification implementation. Similar attacks target the direct

environment of the malicious application, i.e., the Dalvik virtual

machine or the ART library that implements security verifications

for the running application. Moreover, the attacker can attempt

to abuse the SDK itself by identifying vulnerable classes [17] with

controllable side-effects. Finally, and this constitutes a significant

part of the attacks, the attacker does not exploit any vulnerability

but performs malicious activities using the requested permissions.

Examples of such applications are ransomware, cryptominers, and

remote administration tools.

Taking these remarks into consideration, we describe the struc-

ture of the proposed labs and detail their content, in the next section.

1https://tinyhack.com/2014/07/07/exploiting-the-futex-bug-and-uncovering-towelroot

https://tinyhack.com/2014/07/07/exploiting-the-futex-bug-and-uncovering-towelroot


Table 2: Proposed security activities in Bloom taxonomy of cognitive process structure [12]

❛
❛
❛
❛
❛
❛
❛

Soft.
components

Cognitive
process Remember Understand Apply Analyze Eval. Create

Applications
DEV

app development

MAL
malware reverse

PROJ

AOSP classes
BANK

banking app reverse COV
covert channels

CLASS
vulnerable class loader

DVM & ART
PACK

reverse packers
AOSP internals

INST
compile, flash MEM

memory forensic
KERN

ROP programming
Kernel

Table 3: Knowledge chap-

ters for the DEV lab

Chapter 1
Application’s architecture [13, 26]
Designing graphical interfaces

Messaging components

Chapter 2
Concurrency and synchronization

Connectivity and sensors

Chapter 3
Security [6, 9]
Wear OS [8]

Firebase Cloud Messaging

4 ANDROID SECURITY LABS

4.1 Security Labs Design

We have developed several labs2 which cover different Android

components involved in the understanding of mobile security. We

present these labs in Table 2, following Bloom’s revised taxonomy of

educational objectives [12]. Students should follow these labs from

left to right in the table, eventually completing the sequence with a

security project (PROJ) that corresponds to the deepest cognitive

process of the taxonomy (Create).

The number of hours depends of the level of knowledge teachers

intend to obtain. We distinguish three levels: level 1 (~2h) provides

fundamental knowledge or focuses on a particular aspect; level 2

(~5h-8h) enables the student to cover more notions and practice

with real devices; level 3 (~20h) aids the student to cover a large

variety of notions or to work on a particular one with important

software development. Most of the labs use level 1 or 2 (e.g., INST

and MAL); however, a few of them (e.g., DEV and COV) can use

level 3 or can be adapted as a security project (PROJ).

The first two labs (Remember process) train the students to de-

velop Android applications (DEV) and to flash a custom Android

image on a smartphone (INST). Such labs are typically observed in

other available approaches [2, 20, 21]. Then, two labs enhance the

students in the understanding of benign (BANK) and malicious ap-

plications (MAL) by reversing their bytecode. This aids the studying

of attacks at the application level and their associated countermea-

sures (debugger detection, obfuscation, etc.) that can be used both

by malicious and legitimate applications.

The subsequent labs correspond to the łApplyž step in the tax-

onomy. Students are encouraged to implement attacks and coun-

termeasures with their previously acquired knowledge. For this

purpose, we propose two use cases. The first one (COV) is proposed

to defeat the Android access control system by implementing a

covert channel between two applications that do not have permis-

sion to interact with each other. The second one (MEM) is proposed

to exploit a dump of the volatile memory to recover certain confi-

dential information. The likely benefit of these labs is to compel the

students to obtain deeper knowledge of the low-level components

of Android, i.e., the leakage induced by the operating system and

its primitives (COV) and the Dalvik (or Art) data structures used to

represent the Java classes of the applications in volatile memory

(MEM).

2https://gitlab.inria.fr/jlalande/teaching-android-mobile-security

Contrary to the previous labs, wherein students are completely

guided while they practice, the three subsequent labs require the

performance of security analysis (Analyze process). We provide

the symptoms of certain issues to the students, and we expect an

investigation and eventually certain remediation. In the first lab

(CLASS), students are required to analyze an application that uses a

vulnerable class loader. The second lab (PACK) proposes to analyze

a malicious application obfuscated with packing techniques. The

third lab (KERN) focuses on low level vulnerabilities by performing

ROP attacks using gadgets of the kernel.

Note that no lab is classified in the łEvaluatež cognitive process

as the distinction between łAnalyzež and łEvaluatež is marginal. In

particular, in [4], only three levels of mastery is proposed (familiar-

ity, usage, assessment). Thus, we use only four levels of the Bloom

taxonomy for classifying our labs; additionally, we propose various

security projects (PROJ). They are designed to explore a specific

subject with a large number of hours (level 3 or higher) for a group

of students and may be linked to research activities.

4.2 DEV Lab: Android Development

The DEV lab provides the pre-requisite for understanding the fun-

damentals of Android development. We classify this lab in Bloom’s

taxonomy in the łRememberž process as we do not intend to train

software developers and rather intend to teach the fundamentals

for discussing security aspects. The topics covered depend on the

amount of time allocated, and we distinguish three chapters of

knowledge, as presented in Table 3.

Learning outcomes. At the end of the lab, we expect the students

to comprehend the architecture and deployment of an Android

application. The students should be capable of developing an appli-

cation that communicates with a remote server, using REST API.

4.3 INST Lab - Compiling, Modifying, Flashing

Numerous other laboratories presented in this paper are required

to be able to setup a clean image of the smartphone. As indicated

by Guo et al. [10], students appreciate having a real device to ex-

periment with while performing development or hacking activities.

Moreover, it is occasionally more difficult to work with an emu-

lator, for example to play with the different sensors, or to pair an

emulated smartphone with an emulated Wear watch, which may

require the installation of the Google APIs with an active Google

account.

https://gitlab.inria.fr/jlalande/teaching-android-mobile-security


The INST lab (level 1) includes the compilation of a complete

AOSP distribution for a Google Nexus 5 or 5X or Sony Xperia X

smartphone and then the flashing of the compiled images. Addition-

ally, the Nexus models offer the capability to debug the kernel out-

put using serial headphone jack. For that purpose, we constructed a

small serial debugger that aids students involved in advanced labs,

where the kernel is modified and is likely to crash during runtime.

Learning outcomes. Students are able to customize the source of

an operating system and install it on a device.

4.4 MAL Lab - Malware Reverse Engineering

The MAL lab consists in reversing several types of malware using

different open source tools. The pedagogical goal of the lab is to

demonstrate that each type of malware requires a custom reverse

process. The lab consists of multiple exercises. Thus, the required

number of hours can be adapted from level 1 to 3. In Bloom’s

taxonomy, we place this lab in the łUnderstandž process because we

provide the students with the entire set of instructions for reversing

the malware. We present the two most representative ones.

Programming an antidote for a ransomware. The students install

a ransomware on a provided smartphone. They observe that the

image files are encrypted by the malware. Then, the students ex-

plore the code using BytecodeViewer3 or Jadx4 in order to identify

the service that encrypts the images. The code analysis reveals

that the AES ciphering key used by the ransomware is a constant.

Thus, after locating the deciphering code, the students modify the

malicious application using to a bytecode editor so that it calls

the deciphering code. Finally, they use this modified application to

recover the images on the smartphone.

Observing spyware. The students are first required to reverse the

spyware and locate the code that extracts personal data (accounts,

phone number, IMEI) and the code that transmits the data to a

remote server, whose domain name is identified. for the sake of

simplicity. We also propose the observation of the leaked data in

network traces as part of the lab in order to confirm the static

analysis. To achieve this goal, the students setup a local web server,

use the ngrok website5 to create a public URL of the form x.ngrok.io,

and link this URL to the local web server. Then, using a provided tool

based on Soot6, the students substitute the domain name used by the

malware with this URL. Executing this new version of the malware

enables one to capture the first requests that are responsible for

leaking user’s data.

Learning outcomes. Students comprehend the different types of

threat that security analysts confront. They discover the process

of reverse engineering with three approaches. This emphasizes

the fact that security analysts have to adapt their methodology to

the nature of the threat. At this stage, the investigation process

is specified; however, students understand that a custom process

should be designed for each malware.

3https://bytecodeviewer.com
4https://github.com/skylot/jadx
5Ngrog is a tunneling service from a public URL to a local server: https://ngrok.com
6http://sable.github.io/soot/

4.5 BANK Lab - Banking Application Reverse

This lab consists in reversing the authentication activity of a real

banking application. This lab is completely guided, which places

it in the łUnderstandž process of the taxonomy and aids to fit its

duration to level 2.

The students are required to comprehend the protocol that is

used by the application to authenticate the user to a remote server.

The banking application receives a challenge from the server, which

is used to generate a virtual keyboard. This permits the application

to obfuscate the entered password.

First, students unpack the application and uncompile the byte-

code into Java source code using Jadx. This phase aids them to

identify the activities and classes involved in password encoding.

Second, students observe the evolution of the application state. Us-

ing AndBug7, students can put breakpoints on specific bytecode

instructions. In particular, it aids them to identify the code that

transmits the encoded password to the server. They also install a

counterfeit certificate in the smartphone to bypass the verification

of the remote server’s authenticity. This permits them to monitor

the network traffic using the Burp Suite proxy8. Finally, the stu-

dents precisely identify the Java objects that encode the password

and that are transmitted to the server when the user attempts to

authenticate. By capturing both the challenge received from the

server and the encoded password transmitted by the application,

the students can recover the password.

Learning outcomes. Students comprehend the countermeasures

used by applications for critical parts such as the authentication

phase. They train themselves to bypass these countermeasures as a

real attacker would. Working on attack design aids the understand-

ing of the limits of current security implementations.

4.6 COV Lab - Developing Covert Channels

The COV lab (level 2 or 3) consists in developing a covert chan-

nel between two Android applications [14] in order to bypass the

enforced security policy.

We provide two applications App1 and App2 to the students.

App1 collects certain sensitive data of a user but does not have the

permissions to use the network. App2 cannot access confidential

data but has the necessary permissions to use the network. Those

applications cooperate to leak the data. To achieve this, App1 es-

tablishes a local covert channel with App2 which is based on the

remaining free space in the flash memory. This can encode the

secret data bits if the sender (App1) creates and deletes large files.

Snippets of code are provided to the students to aid them to de-

velop the covert channel inside an asynchronous task. Moreover,

countermeasures against such threats are discussed and analyzed.

If time permits, certain countermeasures can be implemented using

papers of the literature [14, 24].

Learning outcomes. By completing this lab, the students become

aware of the threat posed by covert channels and the means by

which an enforced security policy can be bypassed. Students can

also discover advanced detection techniques.

7https://github.com/swdunlop/AndBug
8https://portswigger.net/burp

x.ngrok.io
https://bytecodeviewer.com
https://github.com/skylot/jadx
https://ngrok.com
http://sable.github.io/soot/
https://github.com/swdunlop/AndBug
https://portswigger.net/burp


4.7 MEM Lab - Memory Dump Forensic

This lab (level 2) has been inspired by studies on recovering creden-

tials from volatile memory [3, 19]. It is highly challenging for Java

applications to clean their memory after allocating certain objects

even after rebooting the device [16]. Thus, we have designed a lab

wherein students inspect a dump of the memory obtained with

Lime9. This dump is achieved after displaying a simple applica-

tion with two EditText objects, which simulates an authentication

activity. The goal of the lab is to capture the content of the two

EditText objects from the dump.

Then, students should inspect the memory dump using the

Volatility framework10. After identifying the Linux process cor-

responding to the Dalvik VM, we provide extensions for inspecting

the heap of the virtual machine based on the work of Hilgers et

al. [11]. Using Python scripts, students can manipulate classes and

objects and their implementation at the C programming language

level. Students are invited to write the script that enumerates all

the classes and to identify the ones that extends EditText. This

aids them to retrieve the credential from the memory dump.

Learning outcomes. Students comprehend the likely leaks in-

duced by the memory management of Java-like virtual machines,

Dalvik and Art. They are capable of conducting a simple forensic

of a memory dump, which is of interest to digital investigators.

4.8 CLASS Lab - Vulnerable Class Loader

The CLASS lab (level 2) places the students in a situation wherein

an attacker has compromised the remote server used by the appli-

cation. We ask students to analyze and solve the situation following

Bloom’s taxonomy. This learning approach has already been in-

vestigated for learning web development in a secure manner [18].

In our lab, the vulnerable application loads a few classes from the

remote server that is supposed to have been compromised by the

attacker. The students have access to the source code of the first

activity although not to the sources of the remote classes. They are

required to investigate different attacks and if feasible, implement

countermeasures.

The vulnerable application is composed of a regular activity

that dynamically loads other activities from the remote server. The

vulnerabilities are twofold. First, the application uses a custom class

loader that is ineffectively implemented because it systematically

loads classes from the remote resources rather than first asking

the hierarchy of class loaders. Thus, the classes from the Android

runtime such as Checkbox or LinearLayout can be overwritten

by the downloaded activities. This can be used by the attacker to

take control of the main activity. Secondly, the first activity stores

certain confidential data in a static field. The attacker can access

it later from the loaded activity, which is an unintentional leak of

information. To disable those attacks, the students are required

to patch the class loader and use an instance field rather than the

static field.

Learning outcomes. Students should be capable of conducting a

complete investigation of an application connected to a compro-

mised server. Tthey should understand that an implementation can

9https://github.com/504ensicsLabs/LiME
10https://www.volatilityfoundation.org/

contain vulnerabilities if the developer does not comprehend the

mechanisms induced by the used language or the operating system.

4.9 PACK Lab - Packers

The PACK lab (level 2) consists in reversing the MAL lab ran-

somware that are now obfuscated with different packing techniques.

The packer uses native code to unpack the payload at runtime. The

obfuscated methods are decoded immediately before being called

and are re-encoded when they return. This lab requires a deep

analysis to determine how the obfuscated code can be retrieved.

First, the students execute the applications in order to observe

that they behave as those of the MAL lab. Then, they use Bytecode-

Viewer or Jadx to inspect a specified malware sample and determine

that the code of certain methods is empty. Using IDA Pro11, the

students are required to discover how the native code obfuscates

the Java methods. At this stage of the lab, it is feasible to retrieve

the original code of the malware sample.

However, additional ransomware samples using different pack-

ing algorithms are provided to the students. Consequently, new

static analysis of each packing algorithm would be required, and

therefore, we propose to switch to a dynamic approach. The stu-

dents are guided to modify the code of AOSP: The Android VM is

modified to dump the code of each method before executing them.

We provide the most challenging parts of the modifications to the

students to aid them to complete the lab. Based on the INST lab, the

students flash the Sony Xperia X smartphone with the modified

Android system. This permits them to automatically reverse all the

samples.

Learning outcomes. Students comprehend and analyze the work

achieved by a packer using ciphering algorithms. They also com-

prehend the benefit of a solution based on a combination of a static

analysis and a dump that is performed during execution.

4.10 KERN Lab - Kernel ROP Attacks

The KERN lab (level 2 or 3) goes deeper into the security aspects

related to Android’s kernel. In this lab, we provide an emulator with

a kernel containing a vulnerable driver. This driver can be exploited

with a buffer overflow vulnerability that enables the execution of

an arbitrary short payload. Because the kernel implements a W xor X

policy, students are required to perform a ROP attack with gad-

gets available in the kernel. For achieving this step, students use

ROPgadget12 to search for gadgets in the vmlinuz file. The łHello

Worldž example consists in printing a message in the kernel logs.

Students should learn to call the printk kernel function using sev-

eral gadgets. If time permits, more complex attacks can be achieved

to spy the memory of a targeted process.

Learning outcomes. This lab illustrates the importance of the

security of all Android components. It trains students to perform

attacks using multiple vectors including attacking the system itself.

The material associated to these labs can be found online at

https://gitlab.inria.fr/jlalande/teaching-android-mobile-security

11https://www.hex-rays.com/products/ida/
12https://github.com/JonathanSalwan/ROPgadget

https://github.com/504ensicsLabs/LiME
https://www.volatilityfoundation.org/
https://gitlab.inria.fr/jlalande/teaching-android-mobile-security
https://www.hex-rays.com/products/ida/
https://github.com/JonathanSalwan/ROPgadget


Table 4: Evaluation of progress (δ ) and average mark after labs (m) for each type of lab

Attended lab: DEV INST MAL MEM COV CLASS
Nb of students: n = 27 n = 7 n = 28 n = 3 n = 11 n = 11

Questions Scoring δ m δ m δ m δ mark δ m δ m
Are you able to develop an Android application that
interacts with an HTTP server?

DEV +1.74 3.67 +0.14 2.14 +0.75 2.64 +0.00 1.67 +0.18 2.36 +1.36 2.73

Are you able to compile and/or flash an Android
distribution (e.g. AOSP)?

INST +0.93 2.59 +2.57 4.14 +0.82 2.71 +0.00 1.00 +0.18 2.09 +0.55 1.91

Are you able to reverse Android malware? MAL +0.56 1.74 +1.29 2.29 +1.46 2.96 +0.00 1.00 +0.18 1.82 +0.55 1.73
Are you able to perform a forensic analysis of a
dump of volatile Android memory?

MEM +0.56 1.78 +0.86 1.86 +0.86 2.11 +2.00 3.00 +0.00 1.55 +0.18 1.27

Are you able to develop a covert channel to hide
communication between two Android applications?

COV +0.52 1.74 +0.00 1.00 +1.00 2.14 +0.00 1.00 +2.45 3.82 +0.36 1.55

Are you able to comprehend how a vulnerable class
loader can be exploited and propose some patch?

CLASS +0.44 1.59 +0.29 1.43 +0.96 2.21 +0.33 1.33 +0.09 1.64 +0.91 2.27

1 = Unknown ś 2 = Discovering ś 3 = Intermediate ś 4 = Good knowledge ś 5 = Advanced

5 EVALUATION

5.1 Audience

The presented labs have been used in several undergraduate pro-

grams in eight universities and engineering schools of three coun-

tries. We did not have the opportunity to play all the labs for the

same pool of students. Nevertheless, multiple combinations of two

or three labs have been tested. We have also used these labs for

research summer schools and tutorials at international conferences

for illustrating technical aspects of mobile security. Nevertheless,

at the time of writing, the goal of this work is also to introduce

the whole sequence of labs in the master degree curriculum, where

security aspects have an important position.

5.2 Evaluation Design

We designed a survey for asking students to evaluate their capabili-

ties with regard to the labs they attended. The concept was to ask

the students to evaluate themselves regarding only one lab in order

to measure the correlation between the lab they followed and the

skill evaluated. If they followed two labs, we asked them to evalu-

ate themselves with respect to the lab with the highest number of

hours. The survey was sent in spring 2018 to the students we had

taught between 2014 and 2018. From among the approximately 200

students, we obtained responses from 87.61% followed the lab a few

months ago, 19% a year ago, 14% two years ago, and the remaining

6% over two years ago.

Table 4 presents the obtained results. The left column recalls

the asked questions which correspond to the pedagogical goal of

a lab. On the right, student evaluations have been reported in the

column corresponding to the name of the lab they followed. With

such a presentation of the results, the correlation should occur on

the diagonal of the table. For evaluating each question, we used

the following marking system inspired by the work of Campbell

et al. [5]: 1) Unknown (No trace in my memory); 2) Discovering

(I recall some of the content); 3) Intermediate (I understood most

of the content); 4) Good knowledge (I am able to do the lab again,

without a supervisor and with the help of documents); 5) Advanced

(I can reuse my knowledge in another use case).

For each question, a student is asked to rate himself/herself

łbeforež and łafterž the lab, which enables the computation of a

differential score corresponding to the difference in the mark before

and after the lab. This provides more information than the rawmark

does with regard to whether the students have previously followed

courses on related topics. It enables the evaluation of the progress

of the students irrespective of their starting point. In Table 4,m

corresponds to the average of the marks łafter the labž (from one

to five) and δ corresponds to the average of the differential marks.

5.3 Evaluation Results

The correlation between the labs and the evaluated skills is evident:

for each lab, the highest scores correspond to the pedagogical goal

of the lab. The improvement in student’s skills on the diagonal is

an average of +1.85, which is encouraging as it is approximately

equivalent to shifting from łDiscoveringž to łGood knowledge.ž

Only the CLASS lab achieves an improvement of +0.91. This can be

explained by the level of difficulty of the lab, which corresponds to

the Analyze phase of the taxonomy and requires substantial effort

of investigation by the students. The CLASS lab also achieves a

progression of +1.36 for the DEV lab. This can be explained by the

fact that the CLASS lab involves HTTP requests.

The self-evaluation of skills by the students yielded an average

mark of 3.31 on the diagonal. The marks of the MAL and MEM

labs are approximately equal to 3, which is a reasonable result

considering the technical challenge associated with them. The COV

labs achieved the highest mark (3.82). We conjecture this to be

a result of the high number of allocated hours for this lab. More

simple activities achieve higher results (DEV, INST) as students feel

comfortable when performing the labs.

The results confirm that the labs are aligned with their pedagogi-

cal goal. The marks reveal that students tend to evaluate their skills

between intermediate and reasonable knowledge levels. Indeed,

only years of practice can provide further knowledge.

6 CONCLUSION

This paper explores several technical aspects with regard to the

learning of Android security. Based on Bloom’s taxonomy, we de-

signed various labs that aid students to learn more deeply about the

internal aspects of Android. By programming attacks and studying

malware or vulnerable applications, students are trained to analyze

complex security problems. This pedagogical design aids them to

improve their skills in mobile security by providing a deeper un-

derstanding of the complexity of the software components used by

Google to design its operating system.



REFERENCES
[1] Yasemin Acar, Michael Backes, Sascha Fahl, Doowon Kim, Michelle L Mazurek,

and Christian Stransky. 2016. You Get Where You’re Looking for: The Impact
of Information Sources on Code Security. In IEEE Symposium on Security and
Privacy. IEEE Computer Society, 289ś305. https://doi.org/10.1109/SP.2016.25

[2] Jeremy Andrus and Jason Nieh. 2012. Teaching operating systems using android.
In 43rd ACM technical symposium on Computer Science Education. ACM Press,
Raleigh, North Carolina, USA, 613ś618. https://doi.org/10.1145/2157136.2157312

[3] Dimitris Apostolopoulos and Giannis Marinakis. 2013. Discovering authen-
tication credentials in volatile memory of Android mobile devices. In 12th
IFIP Conference on e-Business, e-Services, e-Society. Athens, Greece, 178ś185.
https://doi.org/10.1007/978-3-642-37437-1_15

[4] Muhammad Rizwan Asghar and Andrew Luxton-Reilly. 2018. Teaching Cy-
ber Security Using Competitive Software Obfuscation and Reverse Engineering
Activities. In 49th ACM Technical Symposium on Computer Science Education -
SIGCSE ’18. ACM Press, Baltimore, MD, USA, 179ś184. https://doi.org/10.1145/
3159450.3159489

[5] Jennifer Campbell andAnya Tafliovich. 2015. An Experience Report: UsingMobile
Development To Teach Software Design. In 46th ACM Technical Symposium on
Computer Science Education - SIGCSE ’15. ACM Press, Kansas City, MO, USA,
506ś511. https://doi.org/10.1145/2676723.2677307

[6] Nikolay Elenkov. 2014. Android Security Internals: An In-Depth Guide to Android’s
Security Architecture. No Starch Press.

[7] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung,
Patrick McDaniel, and Anmol N. Sheth. 2010. TaintDroid: an information-flow
tracking system for realtime privacy monitoring on smartphones. In 9th USENIX
Symposium on Operating Systems Design and Implementation. USENIX Associa-
tion, Vancouver, BC, Canada, 393ś407.

[8] Andrey Esakia, Shuo Niu, and D. Scott McCrickard. 2015. Augmenting Under-
graduate Computer Science Education With Programmable Smartwatches. In
46th ACM Technical Symposium on Computer Science Education - SIGCSE ’15. ACM
Press, Kansas City, MO, USA, 66ś71. https://doi.org/10.1145/2676723.2677285

[9] Sheran Gunasekera. 2012. Android Apps Security. Apress.
[10] Minzhe Guo, Prabir Bhattacharya, Ming Yang, Kai Qian, and Li Yang. 2013.

Learning mobile security with android security labware. In 44th ACM technical
symposium on Computer science education - SIGCSE ’15. ACM Press, Kansas City,
MO, USA, 675ś680. https://doi.org/10.1145/2445196.2445394

[11] Christian Hilgers, Holger Macht, Tilo Muller, and Michael Spreitzenbarth. 2014.
Post-Mortem Memory Analysis of Cold-Booted Android Devices. In 2014 Eighth
International Conference on IT Security Incident Management & IT Forensics. IEEE
Computer Society, Munster, Germany, 62ś75. https://doi.org/10.1109/IMF.2014.8

[12] David R Krathwohl. 2002. A Revision of Bloom’s Taxonomy: AnOverview. Theory
Into Practice 41, 4 (2002), 212ś218. https://doi.org/10.1207/s15430421tip4104_2

[13] Jonathan Levin. 2015. Android Internals: A Confectioner’s Cookbook.
[14] Claudio Marforio, Hubert Ritzdorf, Aurélien Francillon, and Srdjan Capkun.

2012. Analysis of the communication between colluding applications on modern
smartphones. In 28th Annual Computer Security Applications Conference. ACM
Press, Orlando, Florida, USA, 51ś60. https://doi.org/10.1145/2420950.2420958

[15] Matthew Neis, Vincent Cefalu, and Ankur Chattopadhyay. 2018. Developing a
Unique Android App-driven Nifty Middle-School Educational Module on Mo-
bile Security for Driving Basic Information Security Awareness and Generat-
ing Interests in Cybersecurity. In 49th ACM Technical Symposium on Computer
Science Education - SIGCSE ’18. ACM Press, Baltimore, MD, USA, 1081ś1081.
https://doi.org/10.1145/3159450.3162243

[16] Christoforos Ntantogian, Dimitris Apostolopoulos, Giannis Marinakis, and
Christos Xenakis. 2014. Evaluating the privacy of Android mobile applica-
tions under forensic analysis. Computers & Security 42 (may 2014), 66ś76.
https://doi.org/10.1016/j.cose.2014.01.004

[17] Or Peles and Roee Hay. 2015. One Class to Rule Them All: 0-Day Deserialization
Vulnerabilities in Android. In 9th USENIX Workshop on Offensive Technologies.
Washington, WA, USA, 1ś12.

[18] Michael Sonntag. 2013. Learning security through insecurity. In 2nd International
Conference on E-Learning and E-Technologies in Education. Lodz, Poland, 143ś148.
https://doi.org/10.1109/ICeLeTE.2013.6644363

[19] Pasquale Stirparo, Igor Nai Fovino, and Ioannis Kounelis. 2013. Data-in-use
leakages from Android memory - Test and analysis. In 9th IEEE International
Conference on Wireless and Mobile Computing, Networking and Communications.
718ś725. https://doi.org/10.1109/WiMOB.2013.6673433

[20] Kelvin Sung and Arjmand Samuel. 2014. Mobile application development classes
for the mobile era. In 2014 conference on Innovation & technology in computer
science education. ACM Press, Uppsala, Sweden, 141ś146. https://doi.org/10.
1145/2591708.2591710

[21] Seyitriza Tigrek and Mohammad Obadat. 2012. Teaching smartphones pro-
gramming using (Android Java): Pedagogy and innovation. In 2012 International
Conference on Information Technology Based Higher Education and Training. IEEE
Computer Society, 1ś7. https://doi.org/10.1109/ITHET.2012.6246039

[22] Zouheir Trabelsi, Mohammed Al Matrooshi, and Saeed Al Bairaq. 2016. A Smart-
phone App for Enhancing Students’ Hands-on Learning on Network and DoS
Attacks Traffic Generation. In 17th Annual Conference on Information Technology
Education. ACM Press, Boston, MS, USA, 48ś53. https://doi.org/10.1145/2978192.
2978229

[23] Zouheir Trabelsi, Mohammed Al Matrooshi, Saeed Al Bairaq, Walid Ibrahim,
and Mohammad M. Masud. 2017. Android based mobile apps for information
security hands-on education. Education and Information Technologies 22, 1 (jan
2017), 125ś144. https://doi.org/10.1007/s10639-015-9439-8

[24] Marcin Urbanski, Wojciech Mazurczyk, Jean-Francois Lalande, and Luca Cav-
iglione. 2017. Detecting Local Covert Channels Using Process Activity Correlation
on Android Smartphones. International Journal of Computer Systems Science and
Engineering 32, 2 (March 2017).

[25] Xiaohong Yuan, KennethWilliams, Scott McCrickard, Charles Hardnett, Litany H.
Lineberry, Kelvin Bryant, Jinsheng Xu, Albert Esterline, Anyi Liu, Selvarajah
Mohanarajah, and Rachel Rutledge. 2016. Teaching mobile computing and mobile
security. In IEEE Frontiers in Education Conference. IEEE Computer Society, Erie,
PA, USA, 1ś6. https://doi.org/10.1109/FIE.2016.7757365

[26] Karim Yaghmour. [n. d.]. Embedded Android: Porting, Extending, and Customizing.
O’Reilly Media, Inc.

https://doi.org/10.1109/SP.2016.25
https://doi.org/10.1145/2157136.2157312
https://doi.org/10.1007/978-3-642-37437-1_15
https://doi.org/10.1145/3159450.3159489
https://doi.org/10.1145/3159450.3159489
https://doi.org/10.1145/2676723.2677307
https://doi.org/10.1145/2676723.2677285
https://doi.org/10.1145/2445196.2445394
https://doi.org/10.1109/IMF.2014.8
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1145/2420950.2420958
https://doi.org/10.1145/3159450.3162243
https://doi.org/10.1016/j.cose.2014.01.004
https://doi.org/10.1109/ICeLeTE.2013.6644363
https://doi.org/10.1109/WiMOB.2013.6673433
https://doi.org/10.1145/2591708.2591710
https://doi.org/10.1145/2591708.2591710
https://doi.org/10.1109/ITHET.2012.6246039
https://doi.org/10.1145/2978192.2978229
https://doi.org/10.1145/2978192.2978229
https://doi.org/10.1007/s10639-015-9439-8
https://doi.org/10.1109/FIE.2016.7757365



