
IEEE SIGNAL PROCESSING MAGAZINENOVEMBER 2003 43

1053-588/03/$17.00©2003IEEE

mage processing (IP) can be taught very effective-
ly by complementing the basic lectures with com-
puter laboratories where the participants can
actively manipulate and process images. This

offering can be made even more attractive by allowing
the students to develop their own IP code within a rea-
sonable time frame. After a brief review of existing soft-
ware packages that can be used for teaching IP, we
present a system that we have designed to be as “stu-
dent friendly” as possible. The software is built around
ImageJ, a freely available, full-featured, and user-friend-
ly program for image analysis. The computer sessions
are alternated with lectures, typically, a three-hour ses-
sion at the end of every chapter. The sessions are in the
form of assignments that guide the students toward the
solution of simple imaging problems. The starting
point is typically the understanding and testing of some

standard IP algorithm in Java. Next, students are asked
to extend the algorithms progressively. This construc-
tive approach is made possible thanks to a programmer-
friendly environment and an additional software
interface layer that greatly facilitates the developments
of plug-ins for ImageJ. Taking into account the fact
that our students are not experienced programmers
(they typically do not even know Java), we use a “learn
by example” teaching strategy, with good success.

Teaching by Doing
Because of the widespread use of imaging, there is an
ever-pressing need to train engineers who are proficient
with this new technology. This trend is likely to contin-
ue as the cost of imaging devices (digital camera, scan-
ners, etc.) keeps declining and as the power of PCs
keeps increasing, making sophisticated IP algorithms

I

© IMAGESTATE

available to a larger base of users and increasing the
potential number of applications.

Many universities are meeting this demand by
offering a basic course in IP—typically, a two-semester
class—that covers all the standard techniques. While
IP comes in many gradations, it is typically a topic
that is perceived as being rather theoretical. IP is
indeed a subject that lends itself quite naturally to a
rigorous, mathematical treatment. The mathematics
are not difficult but the notation can be intimidating
because of the multiple sums and indices. On the
other hand, IP is also a very practical discipline; it is
extremely motivating for students to see that the for-
mulas are easily translated into algorithms, often with
dramatic visual effects.

Since engineering students are often more interested
in applications than in pure theory, there is a strong
incentive for instructors to complement the basic lec-
tures in IP with computer laboratories. A number of
initiatives in this area have demonstrated that students
gain much in their understanding [1]; they develop in-
depth understanding and have a better retention of
theoretical material [2]. The students become motivat-
ed to study theory if they can experiment with algo-
rithms [3] and visualize the results. Interactive software
is generally perceived as a useful tool for complement-
ing textbooks [4], [5].

The purpose of this article is to discuss some of the
important issues relating to the use of computer ses-
sions in IP and to present some practical and cost-
effective solutions for implementing these ideas in the
classroom. In the first part, we discuss the advantages
of hands-on experimentation with IP and identify the
key points that need to be taken into account to make
such an approach successful. We then briefly review
the software solutions (both commercial and freeware)
that are currently available for teaching IP. In the sec-
ond part, we get more specific and describe a system
(IPLab), which we developed at the Swiss Federal
Institute of Technology in Lausanne (EPFL), that is
made freely available to the academic community.
While our initial motivation was to provide a system
where the participants would actively manipulate and
process images, we took the challenge further so that
we would have the students write their own IP code
down to the pixel level. Of course, we also wanted to
give them the benefit of a user-friendly interface and of
a software platform that they may extend to perform
sophisticated IP tasks. Even though a rudimentary
knowledge of the Java syntax is required (which can be
acquired in a one-hour lesson), we should emphasize
that this knowledge comes at essentially no effort from
the part of the student and that the laboratories
require little programming skills. There is no need to
teach the students how build a complete object-orient-
ed applications [6]. Rather, they are invited to under-
stand some example code, which they then modify to
achieve their goals.

Hands-On IP
Even when the lectures include visual demonstrations of
IP algorithms, students are often passive. Learning the
mathematical concepts can be facilitated with hands-on
experimentation. The first level of involvement is to apply
the algorithms to real images and to see the results. The
second is to take part in the programming itself and to
truly experience how formulas translate into algorithms.

IP by Direct Image Manipulation
The usual way to get the students involved is to pro-
vide a convivial computer environment that allows
them to try out different algorithms and to visualize
the results. The key points here are the following:
▲ basic manipulations to illustrate and reinforce the
theoretical concepts treated in the course; visual experi-
mentation with different sets of parameters
▲ use of practical examples to demonstrate IP applica-
tions; chaining of simple modules
▲ need for a user-friendly interface to facilitate interac-
tion with the computer; production of results that are
visually appealing.

Such experimentation can be achieved easily by
using standard IP software.

Programming IP Algorithms
Once the students are accustomed to manipulating
images, the challenge is to have them program standard
IP algorithms. Our key requirements for this more
ambitious level of involvement are as follows.
▲ The best way to truly understand an algorithm is
obviously to code it and to test it. Students should get
the opportunity to implement the most representative
algorithms.
▲ The exercises should be accessible to inexperienced
programmers (very basic knowledge in one language,
e.g., C). The assignment should concentrate on IP
issues alone. To facilitate programming, we propose a
“learning by example” approach: students receive the
source code of a basic IP task and are asked to extend
and/or complete the algorithm.
▲ The students should not have to worry about data
types. The code should be as generic as possible.
▲ The programming should be simple and robust. The
graphical user interface and input/output task should
be provided to avoid spending time on what is
nonessential to our purpose (i.e., teaching IP).
▲ The edit-compile-execute programming cycle should
be short to see immediate effects on the images when
modifying the code.

The two traditional ways to practice IP are through
the use of a low-level language (such as C) or a high-
level language (such as MATLAB). The low-level lan-
guage offers the advantage of computational speed, an
important factor when dealing with images, but stu-
dents waste much time with basic input–output opera-
tions (reading files, data types, memory allocation,
accessing pixels, and displaying images) and rapidly lose

IEEE SIGNAL PROCESSING MAGAZINE44 NOVEMBER 2003

their enthusiasm. A high-level language, on the other
hand, offers a rich functionality with a large palette of
imaging routines, but tends to hide many important
aspects of the algorithm.

Overview of Available Packages
We now give a brief review of the software solutions
available to instructors. There has been a substantial
effort by members of this community to create didactic
tools for teaching IP; a number of systems have been
described in the literature and part of them are avail-
able on the Internet (cf. the links we are providing in
our reference list). Special sessions at conferences and
workshops have been organized on this topic [7], [8];
a recent review on computer vision education is also
available [9].

The choices of the instructor are usually oriented by
the following considerations:
▲ Scope of the course: digital signal and IP, mathematical
imaging, computer vision, multimedia.
▲ Background of the students: electrical engineering or
computer science? How proficient are they with pro-
gramming?
▲ Level of the course: undergraduate or graduate level?
Note that there are even attempts to introduce IP at
the high-school level [10].
▲ Goals of the interactive tools: demos for complement-
ing the lectures, practical experimentation with images,
or/and programming of algorithms.
▲ Commercial or freeware: this is an important considera-
tion both from the ethical and economical point of view.

Most teachers want a plug-and-play system that does
not have a steep initial learning curve; they also want an
immediate visual feedback of the effect of IP operators [6].
An ideal tool should also be able to solve realistic problems
and be relevant for real-world applications [1], [3].

Commercial Packages
Several commercial software packages can be used for
setting up IP computer laboratories. The most promi-
nent one is MATLAB of The MathWork Inc. [11], a
high-level programming language that is ideally suited
for manipulating vectors and matrices. It is widely used
in the scientific community for fast prototyping and has
been adopted by many universities [12], [13]. MAT-
LAB with its accompanying Image Processing Toolbox
is an attractive framework for teaching IP [14]. The
interactive nature of MATLAB also encourages “learn-
ing by discovery” [15].

Khoros Pro 2001 of Khoral Inc. [16] is an integrat-
ed development environment for IP with a special
module for teaching known as the “Digital Image
Processing Course” [17]. Khoros has earned its place
as a pedagogical platform for IP [1], [5] mainly
because it offers a visual programming environment
coupled with an easy way to link C functions. It also
has a large base of users who are willing to exchange
their knowledge [18].

IP laboratories have also been developed with other
commercial software, including Mathematica [19] of
Wolfram Research Inc [20], LabView [21] of National
Instruments Corp. [22], and AVS Express [23] of
Advanced Visual Systems Inc. [24].

The disadvantage of these commercial products is
that they are often expensive and require the sustained
availability of a campus-wide license. In many cases,
students are not authorized to use the software at
home. For these and other reasons, voices have been
raised against the use of commercial software, which
may conflict with the aims of academic institutions
[25]. In addition, many of the packages are platform
dependent and the IP operators are often provided as
black-box (built-in) routines [23]. Hence, the students
do not have access to the core part of the code and
cannot visualize intermediate results; this also implies
that they cannot easily compare different implementa-
tions of an algorithm.

Noncommercial C-Based Solutions
Chronologically, the first group of noncommercial
offerings is based on the C language (later on also
C++) [3], [2]. In [6], the authors argue that the C
language is the closest to being universal—it is the
choice of many IP and numerical-analysis libraries.
Some libraries have been developed in academia specifi-
cally to provide support for IP teaching [26], [27]. The
C language gives fast execution code and the students
really need to worry about the “hard-core” part of the
algorithms. According to [2], students should
absolutely know how to handle pointers, which can
represent a time-consuming and frustrating task. An
interesting class library for IP (CLIP) [6] was devel-
oped to handle memory management tasks—with a
small overhead time—and to do other technical and
common operations through a small user interface
which is easy to learn. Of course, there are also other
proposals based on less common programming lan-
guages such as Python [28], Lisp [29] (which uses an
unfamiliar syntax and is less adapted to teaching), and
Tcl/Tk (the CVIPTools frameworks [30]).

Noncommercial Java-Based Solutions
Recently, more and more programmers are turning to
Java for writing IP software that is platform independ-
ent. Java has also other advantages that are discussed
in the next section. Below, we give an overview of
available Java packages that can be used for pedagogical
purposes, even though not all of them were developed
with that specific goal in mind. All these packages are
freely available on the Internet.
▲ NeatVision provides an image-analysis and software
development environment [31]. Many of its algorithms
are based on a reference book [32]. It has a nice user
interface. It is strongly oriented towards computer
vision as opposed to signal processing.
▲ Java Vision Toolkit (JVT) is a software library for

IEEE SIGNAL PROCESSING MAGAZINENOVEMBER 2003 45

machine vision and IP applications [33], [34]. Only a
few sessions are available, and the package is rather
rudimentary.
▲ ImageJ, a powerful, full-featured IP program devel-
oped at the National Institutes of Health [35], is used
routinely by biologists worldwide to assist them with
the processing and analysis their images. ImageJ also
has an extensive library of plug-ins developed by users.
▲ Hypertext Image Processing Reference (HIPR) is a
collection of IP resources to illustrate and try-out stan-
dard IP operators using interactive applets [36], [37].
▲ Java Image and Graphics Library (JIGL) is an IP
library, but without a graphical user interface [38].
▲ IPlab with ImageAccess is a collection of document-
ed IP laboratories (downloadable sessions including
handouts for the student and software) that was
designed by us to take advantage of the features of
ImageJ. An important addition is the “ImageAccess”
software layer that greatly facilitates the programming
of plug-ins, making it accessible to students.

Many of these IP frameworks may be used equiva-
lently as a foundation for creating interesting IP labora-
tories. According to us, the availability of a graphical
user interface is an important prerequisite to make the
software attractive and easy to use for the students. In
these packages, especially the most comprehensive ones,
the programming environment offered to the user is
often rather general and technical. This is the reason
why we developed a “student-friendly” intermediate
interface layer, called ImageAccess, to be described in
the section “ImageAccess: The Interface Layer.” Even
though it was originally designed for ImageJ, it can be
ported to other frameworks as well. Presently, in addi-
tion to ImageJ, it supports applets for the Web and can
cooperate with the Java Virtual Machine integrated into
MATLAB. It is thus also possible to call Java IP rou-
tines directly as MATLAB functions.

We believe that making the tools and student ses-
sions available to the community through the Internet
not only assists and inspires others to design and share
their own classes but also provides the authors with
valuable feedback for further enhancements. We will
now give a more detailed description of the system that
we are promoting and comment on our experience in
using these tools for teaching IP.

The IPLAB/ImageJ Combination
Our goal in developing IPLab was to offer
an environment where the students could
implement the algorithms literally as they
are seen in the course [39]. It was also an
attempt to combine the advantages of low-
level and high-level languages by borrowing
the best from both philosophies.

Specifically, we have chosen to base our
system on:
▲ Java as the programming language
▲ ImageJ [35], one of the most compre-
hensive IP freeware available, for a graphical

user interface which provides convivial interaction with
the full functionality of an IP application
▲ ImageAccess, a “student-friendly” software layer that
we have developed to meet the requirements listed
earlier; it simplifies and robustifies the access to pixel
data without having to worry about technicalities and
the interfacing with ImageJ
▲ sample source code to enable students to extend the
algorithm progressively and make them learn by example.

Java
We have chosen to develop our pedagogical tool in
Java. The main arguments in favor of using this lan-
guage are: 1) Java is platform neutral, hence well adapt-
ed to the diversity of the students community; 2) Java
is free; and 3) Java is network ready. This makes it pos-
sible to develop remote teaching and virtual laborato-
ries [40], even though this is not the way we work—we
prefer to maintain contact with our students.

Some authors claim that Java is a natural language
for interactive teaching [41] and that it is ready for sig-
nal and image processing applications [42]. Java is an
object-oriented language which is desirable for IP pro-
gramming [43].

For our part, we add the following arguments:
▲ Java is robust with a good handling of errors and
garbage collection; this eliminates the main source of
bugs and crashes.
▲ Java is syntactically close to C and easy to learn if we
provide examples and templates for the methods.
▲ Java is reasonably fast: applying a 3 × 3 convolution
filter takes only a fraction of a second on a 512 × 512
pixel image; this means that the students get almost
immediate feedback.

Another argument not to be neglected is the “hype”
factor: students are attracted by Java, a modern and fash-
ionable language that plays a major role on the Web.

ImageJ and Plug-Ins
Our IP system is based on a public-domain software:
ImageJ. As a result, it can run on any platform with a
Java Virtual Machine (Mac, Windows, and various flavors
of Unix). The application and its source are freely avail-
able. The author, Wayne Rasband, is with the National
Institutes of Health, Bethesda, Maryland, USA [35].

Computation time

Built-in ImageJ smooth operator (3 × 3 filtering) 35 ms

Built-in ImageJ convolve operator (3 × 3 filtering) 200 ms

Our separable implementation of 3 × 3 filtering 150 ms
with mirror boundary conditions

Our nonseparable implementation of 3 × 3 325 ms
filtering with mirror boundary conditions

Table 1. Comparison of the computation times for a 3 × 3 filter:
built-in ImageJ routines versus ours (ImageAccess).
Experimental conditions: 512 × 512 pixels image

(byte), Java Virtual Machine JRE 1.1.8, Pentium III/500 MHz.

IEEE SIGNAL PROCESSING MAGAZINE46 NOVEMBER 2003

ImageJ has an open architecture
that allows extensibility by the addi-
tion of Java plug-ins, and we take
advantage of this functionality for
adding our educational modules.
Java also provides a mechanism for
loading the plug-ins dynamically
without having to restart the appli-
cation after each modification of
the code; this functionality offers a
fast and comfortable way to edit-
compile-execute a program.

Since the programming of ImageJ
plug-ins was not originally meant for
novice programmers, we have made
this process much more transparent
and robust for the student. We pro-
vide the function templates and their corresponding
commands under the “plug-ins” menu. The templates
typically take the form of a dialog box, enabling the user
to change the parameters of his algorithm. The other
key component is our “student-friendly” software layer
called ImageAccess (see below), which greatly facilitates
the programming of IP algorithms.

Sample Source Code to Enable
“Learning by Example”
The students who participate in the IP laboratories do
not necessarily know Java. Hence, we always provide
them with an example of a Java method that does an
operation similar to the assignment. In particular, we
make sure that the example uses the same type of syntax
(loops, assignments, mathematical functions) as required
for the solution. In addition, we structure their code by
providing empty templates that need to be filled in. This
means that a good portion of the assignment can usually
be implemented by simple modifications of the example.
A sample two-hour session on morphological filtering
(handout + software listing) can be viewed at
http://bigwww.epfl.ch/teaching/iplabsite/trial.html;
the solution can also be run on the Web.

ImageAccess: The Interface Layer

Simplified Image Data Access
The key component of our system is the Java class,
ImageAccess, that provides a high-level and foolproof
interface that lets students safely manipulate images.
We have designed it by applying two well-known prin-
ciples of software development.
▲ Abstraction. For the user, an image is simply an
instance of the ImageAccess class. The pixel data is
always retrieved and stored in “double” format, inde-
pendently of the underlying ImageJ image type. In this
way, students do not have to worry about rounding,
truncation, or conversion of pixel data. Moreover, pixel
data can be accessed “anywhere” through the use of
consistent mirror symmetric boundary conditions. For

example, when a student wants to retrieve a 3 × 3
block of an image centered on the upper left corner (0,
0), the interface layer provides a full block with “out-
side” pixel values that are correctly extrapolated. This
frees the student from having to worry about what
happens at the boundaries and results in more pleasant
results (no border artifacts in the output). The aim of
applying abstraction is to let the source code express
the original algorithm more clearly. The full documen-
tation of the class is available at: http://bigwww.
epfl.ch/teaching/iplabsite/Docs/index.html.
▲ Encapsulation. The fact of working with
ImageAccess objects prevents the students from having
to worry about implementation details. The typical way
to program is to retrieve an image block by using a
method that begins with get...(). The block is
processed and the result is written in the image using a
put...() method. The block can be a single pixel, a row,
a column, a 3 × 3 or a 5 × 5 neighborhood window.

Conceptually, there is a clear pedagogical advantage
in separating the IP code (algorithm) as much as possi-
ble from the access to the pixels. For our purpose, the
latter is a technical part that depends on the language,
the platform, or the frame grabber. However, this is
not the approach taken in ImageJ because is has a com-
putational cost associated with it. As a result, the typi-
cal IP routines in ImageJ are faster than ours but also
significantly more complicated. Our additional layer
leads to an overhead, as illustrated in Tables 1 and 2.
Note that in the case of a separable algorithm where
rows and columns are processed in succession, the cost
of the access is fixed (e.g., 75 ms), irrespective of the
type of processing. For nonseparable processing, the
access cost is more important: it increases proportional-
ly to the number of pixels in the local neighborhood.
We consider the overhead an acceptable price to pay for
the substantial simplifications in algorithm transcrip-
tion. Thanks to this layer, an algorithm can be translat-
ed into Java almost literally. This is in contrast with
ImageJ’s own operators, which need to be implement-
ed for each data type (e.g., byte, 32 bits).

Table 2. Cost of the overhead of the access (due to ImageAccess) compared
to the cost of the IP algorithm itself for the separable and the nonseparable

implementation of an averaging filter. The access time includes data
conversion, the copy of pixel values, and implementation of the boundary
conditions. Experimental conditions: 512 × 512 pixels image (byte), Java

Virtual Machine JRE 1.1.8, Processor Pentium III/500 MHz.

Separable implementation Nonseparable implementation

Kernel Size Algorithm Access Algorithm Access

3 × 3 averaging 75 ms 75 ms 75 ms 250 ms

5 × 5 averaging 150 ms 75 ms 175 ms 405 ms

7 × 7 averaging 200 ms 75 ms 250 ms 640 ms

9 × 9 averaging 235 ms 75 ms 375 ms 910 ms

11 × 11 averaging 250 ms 75 ms 500 ms 1,280 ms

13 × 13 averaging 295 ms 75 ms 655 ms 1,690 ms

IEEE SIGNAL PROCESSING MAGAZINENOVEMBER 2003 47

Interfacing with the Web
Programming in Java offers the interesting opportunity
to easily port applications to the Web, through the
mechanism of applets. To easily create stand-alone
applets based on the same IP source code, our interface
layer also comes in an “ImageAccess for Applets” fla-
vor, which can be used exactly the same way by the
programmer but does not make use of ImageJ internal-
ly anymore. In this way, we can easily generate and dis-
tribute IP demonstration applets at a very low
development cost. The same IP code can therefore be
reused in a plug-in or in an applet (see Figure 1). Note
that such applets are also used to provide on-line exam-
ples for the students (some on-line examples can be
found at http://bigwww.epfl.ch/demo/).

Interfacing with MATLAB
Recent versions of MATLAB integrate a Java Virtual
Machine. Therefore, it becomes possible to run Java IP
routines directly from the MATLAB command window
or from a MATLAB function. The level of integration
is surprisingly high so that Java objects, such as
ImageAccess ones, can be handled in a transparent way.
Listing 1 illustrates the call of IPlab commands (here, a
two-dimensional (2-D) filter followed by an image dis-
play) from MATLAB; the data is transferred through
the object “im,” which contains a copy of the image
array used in MATLAB.

Examples
In this section, we present two examples that illustrate
the ease with which IP algorithms can be programmed
using our interface layer. The code is relatively straight-
forward; it is essentially a literal translation of the text-
book versions of the algorithm.

Digital Filter
We compare two implementations of a digital filter
using a nonseparable (cf. Listing 2) and a separable
algorithm (cf. Listing 3).

The separable implementation offers many advantages
in terms of computation time and modularity. The code
in Listing 3, which is generic for the most of part, clearly
shows the two loops, the first one that scans the rows
and the second one that scans the columns. The only
specific parts are the one-dimensional (1-D) routines dif-
ference3() and average3(), which can be modified easily
to yield other separable filters.

Listing 2. Example of a nonseparable filtering template (vertical edge detector) given to the students.

public ImageAccess filter2D_NonSeparable(ImageAccess input) {

int nx = input.getWidth();

int ny = input.getHeight();

ImageAccess output = new ImageAccess(nx, ny);

double block[][] = new double[3][3];

double value = 0.0;

for (int x=0; x<nx; x++) {

for (int y=0; y<ny; y++) {

input.getNeighborhood(x, y, block);

value = (block[2][0] - block[0][0] + block[2][1] -

block[0][1] + block[2][2] - block[0][2]) / 6.0;

output.putPixel(x, y, value);

}

}

return output;

}

Listing 1. JAVA processing and display of an image from MATLAB.

>> array = 255*rand(100,200); % creates an array of random variables

>> im = ImageAccess(array); % copies the array into an ImageAccess object

>> out = Filter.apply(im); % applies a 2D filtering method

>> out.show(�filtered image�); % displays the ImageAccess object

▲ 1. The same IP routines are used to create a plug-in for ImageJ,

to interface with MATLAB, or to build a demonstration applet.

ImageJ

Plug-Ins

Applets

on the Web

MATLAB

Functions

ImageAccess Class

Image-Processing Routines

IEEE SIGNAL PROCESSING MAGAZINE48 NOVEMBER 2003

In practice, we give these two templates as examples
to the students and ask them to program other digital
filters such as a horizontal edge detector and a 5*5 mov-
ing-average filter (nonseparable and
separable implementation). By master-
ing those examples, they get a rather
complete exposure to the topic of lin-
ear filtering.

Wavelet Transforms

Another interesting example is the
implementation of a separable
wavelet transform in 2-D (c.f. Figure
2). The students have three hours to
program the transform and to apply it
to various IP tasks (simple coding by
zeroing out nonsignificant coeffi-
cients and noise reduction by soft-

thresholding). To simplify their task, we give the tem-
plates of separable routines for the analysis part (Listing
4); we ask them to code the 1-D Haar transform and

to write the synthesis part (both 1-D
and 2-D) from scratch.

As far as the students are con-
cerned, this is perhaps one of the most
impressive sessions they go through.
The great majority of them are capa-
ble of completing the full assignment;
the 1-D routines split_1D and
merge_1D for the Haar transform are
rather easy—two liners—and the
wavelet synthesis is the same as the
analysis, but the other way around.

Classroom
A three-hour laboratory session is

▲ 2. Haar wavelet transform of Lena

(three iterations across scale).

IEEE SIGNAL PROCESSING MAGAZINENOVEMBER 2003 49

Listing 3. Example of a separable filtering template (vertical edge detector) given to the students.

public ImageAccess filter2D_Separable(ImageAccess input) {

int nx = input.getWidth();

int ny = input.getHeight();

ImageAccess output = new ImageAccess(nx, ny);

double rowin[] = new double[nx];

double rowout[] = new double[nx];

for (int y=0; y<ny; y++) {

input.getRow(y, rowin);

difference3(rowin, rowout);

output.putRow(y, rowout);

}

double colin[] = new double[ny];

double colout[] = new double[ny];

for (int x=0; x<nx; x++) {

output.getColumn(x, colin);

average3(colin, colout);

output.putColumn(x, colout);

}

return output;

}

private void average3(double in[], double out[]) {

int n = in.length;

out[0] = (2.0 * in[1] + in[0]) / 3.0;

for (int k=1; k<n-1; k++) {

out[k] = (in[k-1] + in[k] + in[k+1]) / 3.0;

}

out[n-1] = (2.0 * in[n-2] + in[n-1]) / 3.0;

}

private void difference3(double in[], double out[]) {

int n = in.length;

out[0] = 0.0;

for (int k=1; k<n-1; k++) {

out[k] = (in[k+1] - in[k-1])/2.0;

}

out[n-1] = 0.0;

}

typically devoted to one chapter of the course. The
assignment is given one week in advance. It contains a
programming part and an experimental part, where the
desired results are processed images. As backup, we
usually provide reference versions of the assigned algo-
rithms as executable code (bytecode) to make sure that

all students can undertake the experimental part of the
assignment under equal conditions; of course, they are
greatly encouraged to run their own code and make
sure that they get the same results. The sessions take
place in two computer rooms with 30 Windows 2000
machines in each. There are typically three teaching

IEEE SIGNAL PROCESSING MAGAZINE50 NOVEMBER 2003

Listing 4. Code for the analysis part of the wavelet transform.
The high-level, data-handling routines analysis() and split() are given to the students. Their assignment is to write the code
(also shown here) for split_1D() (Haar decomposition) and to implement the 2-D inverse transform completely.

public ImageAccess analysis(ImageAccess input, int nbScale) {

int nx = input.getWidth();

int ny = input.getHeight();

ImageAccess output = input.duplicate();

ImageAccess buffer;

for (int i=0; i<nbScale; i++) { // From fine to coarse loop

buffer = new ImageAccess(nx, ny); // Create the buffer

ouput.getSubImage(0, 0, buffer); // Get the buffer

buffer = split(buffer); // Split the buffer

output.putSubImage(0, 0, buffer); // Put the buffer

nx = nx / 2;

ny = ny / 2;

}

return output;

}

private ImageAccess split(ImageAccess input) {

int nx = input.getWidth();

int ny = input.getHeight();

ImageAccess output= new ImageAccess(nx, ny);

double rowin[] = new double[nx];

double rowout[] = new double[nx];

for (int y=0; y<ny; y++) {

input.getRow(y, rowin);

split_1D(rowin, rowout);

output.putRow(y,rowout);

}

double colin[] = new double[ny];

double colout[] = new double[ny];

for (int x=0; x<nx; x++) {

output.getColumn(x, colin);

split_1D(colin, colout);

output.putColumn(x,colout);

}

return output;

}

private void split_1D(double in[], double out[]) {

int n = in.length / 2;

double sqrt2 = Math.sqrt(2.0);

int k1;

for (int k=0; k<n; k++) {

k1 = 2 * k;

out[k] = (in[k1] + in[k1+1]) / sqrt2;

out[k+n] = (in[k1] - in[k1+1]) / sqrt2;

}

}

assistants per room for technical assistance. At the end
of the session, the students submit their results (source
code and processed images) on the Web. The images
are checked automatically, and the assistants proofread
the source code. The students get back their corrected
assignments the next week.

The sessions that are currently available are:
▲ Introduction—Understanding of the Fourier trans-

form
▲ Digital filtering and applications
▲ Morphological operators and applications
▲ Edge detection and applications
▲ Wavelet transforms
▲ Geometric transformation and interpolation
▲ Tomography and filtered backprojection
▲ Deconvolution
▲ Texture.

These session assignments are also available on the
Web: http://bigwww.epfl.ch/teaching/iplabsite/.
Some examples of results with user interfaces are shown
in Figure 3.

Before the introduction of the laboratories, our
optional IP course normally attracted 15 to 20 stu-
dents. With the third edition of the laboratories (term
2002/2003), the number of students went up to 45, a
good indication of success. The feedback from the stu-
dents has also been extremely positive.

The combination of “ImageJ” and our interface layer is
also used by the students who choose to complete a practi-
cal semester or diploma project in our laboratory, which is
fully equipped with Macintosh computers. Here, the stu-
dents develop their new IP algorithms using ImageJ and a
user-friendly Java integrated development environment
(IDE); at the end, they can easily produce a demonstration
applet, which is then made available on the Internet.

The students value the fact that the software tools
are all freely available on the Web. After downloading
ImageJ and a Java development kit (JDK), they are
ready to work at home.

Discussion and Conclusion
The proposed computer laboratories are a perfect com-
plement to a theoretical course on IP. Students get
active, hands-on practice in IP that will be valuable to
them later in the workplace. They also learn how to
implement IP algorithms. The computer sessions
increase their interest in the course; students like to
interact with images and become much more involved as
soon as they see some practical relevance. The program-
ming experience raises their curiosity and often stimu-
lates them to do their own experiments. The overall
reaction of our students has always been very positive.

As designers of IPLab, we are still astonished by the
robustness of Java and ImageJ. The system is quite stable
and appears to be robust against the student’s program-
ming errors—much more so than any other language or
system that we have tested before. Up to now, we have
not yet experienced a single crash due to bugs in plug-ins.

The laboratories are entirely based on ImageJ. The
students can walk away from the course with an IP sys-
tem that is operational. Using the ImageAccess interface
layer, they can easily program both ImageJ plug-ins or
Internet applets. The system that we have described
may also appeal to practitioners as it offers a simple, full-
proof way of developing professional level IP software.

Acknowledgments
We would like to thank Dimitri Van De Ville for the edito-
rial advice and Wayne Rasband for his helpful and valuable
remarks and for his generosity in making ImageJ freely
available to the community. We are also thankful to EPFL
students and assistants who have tested the system and
have given us feedback to improve it.

Daniel Sage received the master of sciences (DEA) and
Ph.D. degrees in control and signal processing in 1986
and 1989, respectively, from the INPG, Grenoble, France.
From 1989 to 1998, he was a consulting engineer devel-
oping vision systems for quality control. He was head of
the Industrial Vision Department at Attexor S.A. In 1998,
he joined the Biomedical Imaging Group at the Swiss
Federal Institute of Technology Lausanne (EPFL) as the
head of software development. He is also involved in the
development of methods for computer-assisted teaching.

Michael Unser received the M.S. (summa cum laude)
and Ph.D. degrees in electrical engineering in 1981

IEEE SIGNAL PROCESSING MAGAZINENOVEMBER 2003 51

▲ 3. Examples of user interface and results for sessions 3 and 7.

and 1984, respectively, from the Swiss Federal Institute
of Technology (EPFL) in Lausanne, Switzerland. From
1985 to 1997, he was with the Biomedical Engineering
and Instrumentation Program, National Institutes of
Health, Bethesda, Maryland. He is now a professor and
director of the Biomedical Imaging Group at the
EPFL. His main research area is biomedical image pro-
cessing. He has a strong interest in sampling theories,
multiresolution algorithms, wavelets, and the use of
splines for image processing. He is the author of over
100 published journal papers in these areas. He is
involved in various editorial activities; these include
associate editor-in-chief of IEEE Transactions on
Medical Imaging and editor-in-chief of the Wavelet
Digest. He received the 1995 Best Paper Award and
the 2000 Magazine Award from the IEEE Signal
Processing Society. He is a Fellow of the IEEE.

References
[1] M. Sonka, E.L. Dove, and S.M. Collins, “Image systems engineering educa-

tion in an electronic classroom,” IEEE Trans. Educ., vol. 41, no. 4, pp.

263–272, 1998.

[2] E. Fink and M. Heath, “Image-processing projects for an algorithms course,”

Int. J. Pattern Recognition Artificial Intell., vol. 15, no. 5, pp. 859–868,

2001.

[3] A. Sanchez, J.F. Velez, and A.B. Moreno, “Introducing algorithm design tech-

niques in undergraduate digital image processing courses,” Int. J. Pattern

Recognition Artificial Intell., vol. 15, no. 5, pp. 789–803, 2001.

[4] K. Bowyer, G. Stockman, and L. Stark, “Themes for improved teaching of

image computation,” IEEE Trans. Educ., vol. 43, no. 2, pp. 221–223, 2000.

[5] G.W. Donohoe and P.F. Valdez, “Teaching digital image processing with

Khoros,” IEEE Trans. Educ., vol. 39, no. 2, pp. 137–142, 1996.

[6] J.A. Robinson, “A software system for laboratory experiments in image pro-

cessing,” IEEE Trans. Educ., vol. 43, no. 4, pp. 455–459, 2000.

[7] “Curriculum advances in digital imaging systems,” in Proc. IEEE Int. Conf.

Image Processing (ICIP’96), Lausanne, Switzerland, 1996.

[8] “Undergraduate education and image computation,” in Proc. IEEE Computer

Vision and Pattern Recognition (CVPR’00), Hilton Head Island, SC, 2000.

[9] G. Bebis, D. Egbert, and M. Shah, “Review of computer vision education,”

IEEE Trans. Educ., vol. 46, no. 1, pp. 2–21, 2003.

[10] Center for Image Processing in Education (CIPE) [Online}. Available:

http://www.cipe.com/

[11] The MathWorks Inc. (MATLAB), Natwick, MA {Online]. Available:

http://www.mathworks.com/

[12] B.M. Dawant, “MATLAB-supported undergraduate image processing

instruction,” in Proc. SPIE Medical Imaging 1998, vol. 3338, 1998, pp.

276–284.

[13] H.J. Trussell and M.J. Vrhel, “Image display in teaching image processing. I.

Monochrome images,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal

Processing (ICASSP’00), Istanbul, Turkey, 2000, vol. 6, pp. 3518–3521.

[14] C.S. Zuria, J.M. Ramirez, D. Baez-Lopez, and G.E. Flores-Verdad, “MAT-

LAB based image processing lab experiments,” in Proc. IEEE Frontiers in

Education Conf. (FIE’98), Tempe, AZ, 1998, pp. 1255–1258.

[15] S.L. Eddins and M.T. Orchard, “Using MATLAB and C in an image process-

ing lab course,” in Proc. IEEE Int. Conf. Image Processing (ICIP’94), Austin,

TX, 1994, vol. 1, pp. 515–519.

[16] Khoros Pro 2001 Integrated Development Environment, Khoral Inc.,

Albuquerque, NM [Online]. Available: http://www.khoral.com/

[17] R. Jordan and R. Lotufo, Digital Image Processing (DIP) with Khoros Pro

2001, visited in February 2001.

[18] R. Lotufo and R. Jordan, “Hands-on digital image processing,” in IEEE Proc.

Frontiers in Education Conf. (FIE’96), Salt Lake City, UT, 1996, pp.

1199–1202.

[19] M. Jankowski, Digital image processing with Mathematica [Online].

Available: http://www.usm.maine.edu/~mjkcc/docs/dip/

[20] Mathematica, Wolfram Research, Inc, Champaign, IL [Online]. Available:

http://www.wolfram.com/

[21] U. Rajashekar, G.C. Panayi, F.P. Baumgartner, and A.C. Bovik, “The SIVA

demonstration gallery for signal, image, and video processing education,”

IEEE Trans. Educ., vol. 45, pp. 323–335, Nov. 2002.

[22] LabVIEW, National Instruments Corp., Austin, TX [Online]. Available:

http://www.ni.com/

[23] D.S. Sohi and S.S. Devgan, “Application to enhance the teaching and under-

standing of basic image processing techniques,” in Proc. IEEE Southeastcon

2000, Nashville, TN, 2000, pp. 413–416.

[24] Advanced Visual Systems Inc. (AVS/Express), Waltham, MA [Online].

Available: http://www.avs.com/software/soft_t/avsxps.html

[25] M. Jackson, D.I. Laurenson, and B. Mulgrew, “Supporting DSP education

using Java,” in Proc. IEE Symp. Engineering Education: Innovations in

Teaching, Learning and Assessment, London, UK, 2001, pp. 1–6.

[26] A. Jacot-Descombes, M. Rupp, and T. Pun, “LaboImage 4.0: Portable win-

dow based environment for research in image processing and analysis,” in Proc.

SPIE Symp. Electronic Imaging Science and Technology, Image Processing:

Implementation and Systems, San Jose, CA, 1992.

[27] F. DePiero, “SIPTool: The signal and image processing tool—An engaging

learning environment,” in Proc. IEEE Frontiers in Education Conf. (FIE’01),

2001, vol. 3, pp. F4C–1–5.

[28] A. Goncalves Silva, R. De Alencar Lotufo, and R. Campos Machado,

“Toolbox of image processing for numerical Python,” in Proc. IEEE Brazilian

Symp. Computer Graphics and Image Processing, Florianopolis, Brazil, 2001,

pp. 402.

[29] S.L. Tanimoto and J.W. Baer, “Programming at the end of the learning

curve: Lisp scripting for image processing,” in Proc. IEEE Symp. Human-

Centric Computing Languages and Environments, Stresa, Italy, 2001, pp.

238–239.

[30] S.E. Umbaugh, Computer Vision and Image Processing: A Practical Approach

Using CVIPtools. Englewood Cliffs, NJ: Prentice-Hall, 1998.

[31] P.F. Whelan, NeatVision, Vision Systems Group at Dublin City University,

Dublin, Ireland. Available: http://www.neatvision.com/

[32] P.F. Whelan and D. Molloy, Machine Vision Algorithms in Java: Techniques

and Implementation. New York: Springer-Verlag, 2001.

[33] M.W. Powell and D. Goldgof, “Software toolkit for teaching image process-

ing,” Int. J. Pattern Recognition and Artificial Intell., vol. 15, no. 5, pp.

833–844, 2001.

[34] M.W. Powell, Java Vision Toolkit (JVT), Univ. of South Florida, FL.

Available: http://marathon.csee.usf.edu/~mpowell/jvt/

[35] W. Rasband, ImageJ, National Institutes of Health, Bethesda, MD. Available:

http://rsb.info.nih.gov/ij/

[36] R.B. Fisher and K. Koryllos, “Interactive textbooks: Embedding image pro-

cessing operator demonstrations in text,” Int. J. Pattern Recognition and

Artificial Intell., vol. 12, no. 8, pp. 1095–1123, 1998.

[37] R. Fisher, S. Perkins, A. Walker, and E. Wolfart, Hypermedia Image

Processing Reference (HIPR). Available: http://www.dai.ed.ac.uk/HIPR2/

[38] B. Morse, Java Image and Graphics Library (JIGL), Brigham Young

University, Provo, UT. Available: http://rivit.cs.byu.edu/jigl/

[39] D. Sage and M. Unser, “Easy Java programming for teaching image-process-

ing,” in Proc. IEEE Int. Conf. Image Processing (ICIP’01), Thessaloniki,

Greece, 2001, vol. 3, pp. 298–301.

[40] D.Y. Wang, B. Lin, and J. Zhang, “JIP: Java image processing on the

Internet,” Proc. SPIE Color Imaging: Device-Independent Color, Color

Hardcopy, and Graphic Arts, vol. 3648, pp. 354–364, Dec. 1998.

[41] Y. Cheneval, L. Balmelli, P. Prandoni, J. Kovacevic, and M. Vetterli,

“Interactive DSP education using Java,” in Proc. IEEE Int. Conf. Acoustics,

Speech and Signal Processing (ICASSP’98), Seattle, WA, 1998, vol. 3, pp.

1905–1908.

[42] D.A. Lyon, Image Processing in Java. Upper Saddle River, NJ: Prentice-Hall,

1999.

[43] D. Roman, M. Fischer, and J. Cubillo, “Digital image processing—An object-

oriented approach,” IEEE Trans. Educ., vol. 41, no. 4, pp. 331–333, 1998.

IEEE SIGNAL PROCESSING MAGAZINE52 NOVEMBER 2003

