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Teaching Integer Programming

Formulations Using the

Traveling Salesman Problem∗

Gábor Pataki†

Abstract. We designed a simple computational exercise to compare weak and strong integer pro-
gramming formulations of the traveling salesman problem. Using commercial IP software,
and a short (60 line long) MATLAB code, students can optimally solve instances with up
to 70 cities in a few minutes by adding cuts from the stronger formulation to the weaker,
but simpler one.

Key words. integer programming, traveling salesman problem, subtour elimination constraints, cut-
ting planes
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1. Introduction.

1.1. Integer Programs and Their Formulations. An integer program (IP) is an
optimization problem of the form

min cT x
s.t. x ∈ X,

where X = Zn ∩ {x ∈ Rn |Ax ≤ b }, with some matrix A, vector b, and the symbols
Zn and Rn denoting the set of integer and real n-vectors, respectively. The polyhe-
dron { x ∈ Rn |Ax ≤ b } is a formulation of the set X. An IP has many formulations;
for instance, in Figure 1 the solid and dashed lines enclose the same integer points;
i.e., the corresponding polyhedra are both formulations of the same set.

Given two such polyhedra, P and Q (i.e., P ∩ Zn = Q ∩ Zn), we say that P is a
better, or stronger, formulation, if P � Q. (The definitions here are from [9].)

One of the most important skills that a practitioner of integer programming must
acquire is that of designing a strong formulation for a particular problem. The main
component of all commercial IP solvers is a branch-and-bound algorithm that uses
the linear programming (LP) relaxation of an IP (i.e., the problem obtained from an
IP by discarding the integrality constraints). Hence, a stronger formulation usually
can be solved with fewer branch-and-bound nodes; if the tighter LPs are not “much”
more time-consuming, this translates into a smaller overall solution time. Even if the
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http://www.siam.org/journals/sirev/45-1/36855.html
†Department of Operations Research, University of North Carolina at Chapel Hill, 212 Smith

Building, Chapel Hill, NC 27599-3180 (gabor@unc.edu).

116

D
o
w

n
lo

ad
ed

 0
2
/0

5
/2

1
 t

o
 1

3
6
.5

6
.1

4
.1

1
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



TEACHING INTEGER PROGRAMMING USING THE TSP 117

Fig. 1 Two formulations of the same set.

problem cannot be solved to optimality within the available time, a strong formulation
provides a good bound on the optimal value of the problem. Hence it can also serve
as a counterpoint to an effective heuristic, by proving that a solution provided by the
latter is close enough to being optimal.

1.2. Exercises to Compare Formulations in Practice. A classroom lecture on
comparing weak and strong formulations is best accompanied by an assignment asking
students to do a computational comparison. Such a comparison can simply consist
of feeding a strong and a weak formulation of the same problem to an IP solver and
comparing the number of branch-and-bound nodes and times required to solve them
to optimality. A problem is well suited for the purpose of a comparison if

(1) it is relevant in practice, interesting, and easy to understand;
(2) the advantages of the strong formulation are not immediately apparent, for

some of the following reasons:
• the strong formulation uses many more variables and/or constraints;
• the weak one can accommodate more versatile objective functions;

(3) the weak and strong formulations are easy to generate.
Several such problems are (see, e.g., [9])

• facility location problems (with their weak, i.e., the aggregated, and the
strong, i.e., the disaggregated formulation);

• knapsack problems (their usual formulation can easily be strengthened by
cover inequalities);

• lot-sizing problems (their usual formulation can be strengthened by various
inequalities).

For many problems, however, the advances in IP software disguise the advantage of
providing a stronger formulation to solvers. Most IP solvers now incorporate auto-
matic reformulation techniques that can substantially strengthen a weak formulation.
Such techniques include disaggregation (i.e., replacing the constraint

∑m

i=1 xi ≤ my
on the 0–1 variables xi and y with the inequalities xi ≤ y (i = 1, . . . , m)), generating
many of the inequalities that one would add to the knapsack, and lot-sizing problems
(e.g., covers, and flow-covers). Hence, in the case of the models listed above,

• frequently there is no significant difference in the solution times, when feeding
a weak or a strong formulation to the solver;
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118 GÁBOR PATAKI

• sometimes the solution times are even better for the weaker formulation. The
reason is that IP solvers strengthen the weak formulation quite intelligently.
For instance, when disaggregating, they only add those xi ≤ y inequalities,
which are violated by the current LP solution, thus not enlarging the LP
relaxation unnecessarily;

• or, the strong one must be quite sophisticated and hence not too useful at
the beginning of a course, when the importance of strong formulations should
already “sink in.” Such an example is strengthening the lot-sizing problem
with path-inequalities ([9, p. 223]).

Of course, one could always ask the students to turn off the preprocessor, or the
cut-generator of the solver; this would hardly make a convincing exercise, though.

A problem that well fits criteria (1) and (2) is the traveling salesman problem
(TSP): given n cities, and pairwise travel costs between them, find the shortest
tour, i.e., a directed cycle containing all cities. (In fact, students invariably find
the TSP more fascinating than the somewhat mundane knapsack, location, or lot-
sizing problems.) The formulation that serves as a benchmark for all others is the
subtour formulation; there are also many weaker ones. Three articles that survey
and analytically compare some of them are [1], [5], and [8]. The weaker formulations
all use extra variables; i.e., the set of tours X is written as X = Zn ∩ P , where
P = { x |Bx + Du ≤ f for some u ∈ Rm }. Now P is the projection of the poly-
hedron { (x, u) |Bx + Du ≤ f }, hence it is also a polyhedron. Thus we can write
P = { x |Gx ≤ h } for some matrix G and vector h. The latter representation, how-
ever, may contain many more and/or more complicated inequalities than the first.

Designing an experiment that allows students to do a computational comparison
is not quite obvious though. This note gives a simple guide to comparing the subtour
formulation to a weak one due to Miller, Tucker, and Zemlin [6] on relatively small, but
far from trivial instances. It utilizes a primitive “cutting plane algorithm” of about
60 lines of MATLAB code that, used with a commercial IP solver, allows students to
do the comparison and solve real world instances with up to 70 nodes to optimality.

2. The Formulations.

2.1. Problem Statement and the Node Constraints. In the complete directed
graph D = (N, A), with arc-costs cij , we seek the tour (a directed cycle that contains
all n cities) of minimal length. Define the variables

xij =

{

1 if arc (i, j) is in the tour,
0 otherwise.

The feasible solutions of the integer program (in fact, there is always an integer
optimal solution to the LP relaxation)

(2.1)

min
∑

i,j cijxij

s.t.
∑

i xij = 1 ∀i,
∑

j xji = 1 ∀i,

0 ≤ xij ≤ 1, xij integer,

may contain several directed cycles, called subtours. The constraints of (2.1) are
called the assignment constraints.
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TEACHING INTEGER PROGRAMMING USING THE TSP 119

2.2. The MTZ Formulation. To exclude subtours, one can use extra variables
ui (i = 1, . . . , n), and the constraints

(2.2)
u1 = 1,

2 ≤ ui ≤ n ∀i 	= 1,
ui − uj + 1 ≤ (n − 1)(1− xij) ∀i 	= 1,∀j 	= 1.

We call the last inequality in (2.2) an arc-constraint. The formulation consisting of
(2.1) and (2.2) is called the Miller–Tucker–Zemlin (MTZ) formulation of the TSP; see
[6]. It indeed excludes subtours, as (1) the arc-constraint for (i, j) forces uj ≥ ui + 1,
when xij = 1; (2) if a feasible solution of (2.1)–(2.2) contained more than one subtour,
then at least one of these would not contain node 1, and along this subtour the ui

values would have to increase to infinity. This argument, with the bounds on the ui

variables, also implies that the only feasible value of ui is the position of node i in the
tour. The advantages of the MTZ formulation are

• its small size (we need only n extra variables and roughly n2/2 extra con-
straints),

• if it is preferable to visit, say, city i early in the tour, one can easily model
this by adding a term −αui with some α > 0 to the objective.

2.3. The Subtour Formulation. The other way to exclude subtours is by adding
to (2.1) the family of subtour (or subtour elimination) constraints

∑

i∈S,j∈S

xij ≤ |S| − 1 (S � V, |S| > 1),(2.3)

to obtain the subtour formulation of the TSP consisting of (2.1) and (2.3). (As the
subtour inequality for N \ S is a linear combination of the inequality for S and of
the assignment constraints, it is enough to use the subtour inequalities with S having
size at most n/2.) It does not have the advantages of the MTZ formulation. The
disadvantage of its exponential size is mitigated by the fact that not all subtour in-
equalities must be put into the formulation from the start. They can be generated
as needed by a separation algorithm: one can start with the formulation (2.1), then
generate subtour inequalities that are violated by the current LP solution. The sep-
aration algorithm for subtour constraints is based on network flow techniques; for
further details, see [4].

3. The Comparison.

3.1. The Strength of the Two Formulations. Solving a reasonably large (with
at least, say, 50 cities) problem to optimality is only possible using the subtour for-
mulation; at least, we are not aware of any published computational studies that use
the pure MTZ formulation. There is an analytical explanation of this fact: the LP
relaxation of the MTZ formulation is much weaker. Since it contains the extra ui

variables, for the comparison we need to eliminate them by taking appropriate linear
combinations of the inequalities in (2.1)–(2.2). One way of doing this is by summing
the arc-inequalities along a directed cycle. If the arc set of the cycle is denoted by C,
then the result is

∑

(i,j)∈C

xij ≤

(

1−
1

n − 1

)

|C|.(3.1)

On the other hand, if we denote the node set of the cycle by N(C), then the subtour
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120 GÁBOR PATAKI

formulation contains the obviously stronger inequality
∑

i,j∈N(C)

xij ≤ |C| − 1.(3.2)

The intuitive fact that adding the arc-inequalities along a cycle is the only “essential”
way to eliminate the ui variables can be made precise. Balas [1] and Padberg and
Sung [8] showed that all nondominated inequalities in the projection of the MTZ
formulation onto the space of the x variables are of the form (3.1).

3.2. How to Combine Them?. An efficient implementation of a separation rou-
tine for subtour inequalities is beyond the ability of most practitioners and under-
graduate/MS students. A collection of excellent public-domain routines for the TSP,
called Concorde, is available, with such routines among them; see [3]. However, most
problems encountered in practice are not pure TSPs, only “TSP-like.” One example
is the vehicle routing problem, in which there are k “salesmen” (i.e., trucks), and each
of the cities must be visited by one to make a given amount of delivery, while obeying
capacity restrictions. For TSP-like problems the TSP formulations are usually not
hard to generalize, but the TSP separation routines cannot be used.

One can combine the MTZ and subtour formulations to obtain the ease of use of
the first and some of the strength of the second. Violated subtour inequalities are easy
to identify if a solution satisfies the assignment constraints and is 0–1: one can take
S to be the union of several subtours. Such an approach is likely to work for TSP-like
problems as well. For small problems, one can identify such subtour inequalities even
by inspection: see, for instance, the article [7] for such an approach to a variant of the
TSP arising in aircraft mission planning. We used the following “cutting plane algo-
rithm” to solve several TSP instances to optimality, with maxrounds an integer be-
tween 0 and 2, depending on how much we wanted to strengthen the MTZ formulation.

1. Let the IP formulation consist of the assignment constraints only, and k = 1.
2. while k ≤ maxrounds

2a. Solve the IP over the current formulation. Assume that the optimal
solution consists of r subtours S1, . . . , Sr.

2b. If r = 1, STOP; the solution is optimal to the TSP. Otherwise, add
to the formulation at most 1000 subtour constraints, in which S is the
union of several Si sets and |S| ≤ ⌊n/2⌋. Set k = k + 1.

end while

3. Add the arc constraints to the formulation, and solve the IP to optimality.

We used a simple implementation of step 2b: we output the (i, j) pairs corresponding
to the nonzero xij values into a file, then ran a MATLAB routine to generate the
required constraints. These were then pasted into the formulation. For example,
suppose that the number of cities is 10, and the arcs corresponding to the variables
at 1 are as shown in Figure 2. The nontrivial parts (i.e., excluding input, output, and
obvious initializations) of the MATLAB code are given in Figure 3. The code works
as follows:

• The first part constructs the list of subtours from the list of arcs. In the
example, it will create the list {1, 4, 6}, {2, 3, 8}, {5, 7}, {9, 10}.

• The second part constructs all appropriate subsets of nodes in the variable S,
and the index-pairs corresponding to arcs within S, in the variable arcs in S.

The code works with all IP solvers that have a “reasonable” user interface: all
we need to do is output the index-pairs corresponding to the variables at 1 and paste
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Fig. 2 A solution with four subtours.

%
% arcs is a vector of the index-pairs of the nonzero arcs

%
nsubtours = 0;

while length(arcs)>0,

nsubtours=nsubtours+1; subtours(nsubtours,1) = arcs(1,1);

j = 1;

next = 1;

while 1,

j = j+1; subtours(nsubtours,j) = arcs(next,2);

arcs(next,:) = [];

next = find(arcs(:, 1)==subtours(nsubtours,j));

if arcs(next,2) == subtours(nsubtours,1),

arcs(next,:) = [];

break;

end %if

end %while

end %while

b = zeros(1,nsubtours); % Indicator of which subtours we choose

for i=1:power(2,nsubtours)-1,

for j=1:nsubtours, b(j) = bitget(i,j);

end

S = nonzeros( subtours(logical(b), :) );

if (length(S) <= n/2 ),

arcs in S = [nchoosek(S, 2); fliplr((nchoosek(S, 2))) ]’;

%
% Write the subtour constraint with arcs in S

%
end % if

end % for

Fig. 3 The MATLAB cut-generator.
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122 GÁBOR PATAKI

Table 1 Problem data.

Problem Nodes Optimal

name value

br17 17 39

ftv33 34 1286

ftv55 56 1608

ftv70 70 38673

bays29 29 2020

berlin52 52 7542

Table 2 Empirical comparison.

Problem Zero rounds One round Two rounds

name Time B&B nodes Time B&B nodes Time B&B nodes

br17 5980 2315173 1 10 — —

ftv33 300 24075 91 1382 18 64

ftv55 *** *** 10932 88358 555 1687

ft70 *** *** 1654 2257 35 11

bays29 *** *** 214 4182 9 27

berlin52 *** *** *** *** 8743 49659

the file containing the generated constraints into the solver’s input. After every paste
operation the IP must be resolved from scratch. Most of the time is taken up by
solving the final formulation, i.e., the IP with the subtour- and arc-constraints. The
IPs encountered during the cutting phase solve very quickly, and the running time of
the MATLAB program is negligible.

We tested this method on six relatively small but nontrivial TSP instances from
the TSPLIB library [10]. The problem parameters are given in Table 1. The last two
are symmetric instances, in which cij = cji for all i, j pairs. (Symmetric TSPs are
usually formulated on an undirected graph using edge-variables; however, with these
variables the MTZ formulation has no compact size variant; see [8].)

In Table 2 we give the running times in seconds and the number of branch-and-
bound nodes needed to solve the MTZ formulation to optimality, depending on how
much it was strengthened with subtour inequalities. (We do not report the IP solution
times during the cutting phase, nor the time for the constraint generation.) We used
the CPLEX 6.5 IP solver run from within the AMPL modeling language, with default
branching strategy and a memory limit of 150 MB, on a 337 MHz machine running
Sun Solaris. We note that CPLEX was not able to generate any cuts, and that none
of the successful runs used more than 100 MBs of memory.

The symmetric instances tend to be harder to solve, as the IP solutions during
the cutting phase contain many small (mostly size 2) subtours. Therefore, there are
more violated subtour constraints, and due to memory restrictions we cannot add
all of them to the formulation (we add at most 1000). For the symmetric instances,
we can consider the assignment constraints with all the inequalities xij + xji ≤ 1 as
the formulation with 0 rounds (i.e., we can add all subtour constraints where S is
of size 2 at the beginning). This way they can be solved with one fewer round of
cuts, but the solution times will usually be greater than for asymmetric instances of
comparable size.
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TEACHING INTEGER PROGRAMMING USING THE TSP 123

Table 3 Subtours and IP values.

Problem zero rounds one round two rounds

name # subtours IP val. # subtours IP val. # subtours IP val.

br17 8 0 1 39 — —

ftv33 8 1185 7 1252 4 1267

ftv55 9 1435 5 1566 10 1582

ft70 10 37978 4 38649 3 38662

bays29 14 1764 5 1950 3 2017

berlin52 23 6287 14 7056 3 7449

3.3. Discussion. In a class at any level (undergrad./M.S./Ph.D.), developing the
“cutting plane method” can be assigned as homework or part of a project. In a Ph.D.
class, the method of computing the projection following [1] or [8] can also be covered.

There are several lessons to be learned from these experiments:
• the foremost one is the connection between the strength of a formulation and
the required solution time. The dependence of the strength on the number of
rounds is also shown in Table 3, with the number of subtours and the value of
the IP without the arc-constraints (with them, the IP values are obviously the
ones in Table 1). The strength of the formulation almost exclusively comes
from the subtour constraints: the values of the LP optima of a formulation
with and without the arc-constraints are very close.

• a larger problem is not necessarily harder: a small instance, as br17 can be sur-
prisingly hard using the weak formulation; with 1 round of subtour constraints
added, the optimal solution is a tour, even without the arc-constraints. (If
one wants to assign only one problem in a student project, then probably this
should be the one!) On the other hand, instances with randomly generated
arc-costs are easy, even with the weak formulation, and for a hundred nodes.

Acknowledgments. Thanks are due to David Johnson, Mark Hartmann, Scott
Provan, and referee 2 for their comments, and to Olga Raskina for her help in imple-
menting the cutting plane method.
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