
 Open access Proceedings Article DOI:10.1145/364447.364561

Teaching internet algorithmics — Source link

Michael T. Goodrich, Roberto Tamassia

Institutions: Johns Hopkins University, Brown University

Published on: 01 Feb 2001 - Technical Symposium on Computer Science Education

Topics: The Internet and Algorithmics

Related papers:

 Teaching Abstract Thinking in Introduction to Computer Science for 7th Graders

 A game engine to learn computer science languages

 Computer science for non-technological cyber programs

 The novice programmer's "device to think with"

 Learning theory in Computer Science 1: an experiment supporting the use of multiple languages

Share this paper:

View more about this paper here: https://typeset.io/papers/teaching-internet-algorithmics-
23ung6fg4n

https://typeset.io/
https://www.doi.org/10.1145/364447.364561
https://typeset.io/papers/teaching-internet-algorithmics-23ung6fg4n
https://typeset.io/authors/michael-t-goodrich-1k34b7ih29
https://typeset.io/authors/roberto-tamassia-3q3hj0hg29
https://typeset.io/institutions/johns-hopkins-university-gbw0p3kc
https://typeset.io/institutions/brown-university-1ylslb96
https://typeset.io/conferences/technical-symposium-on-computer-science-education-1rsbt70m
https://typeset.io/topics/the-internet-1hyt0v5h
https://typeset.io/topics/algorithmics-1hyw30je
https://typeset.io/papers/teaching-abstract-thinking-in-introduction-to-computer-4ely589gbg
https://typeset.io/papers/a-game-engine-to-learn-computer-science-languages-3owxkvupuq
https://typeset.io/papers/computer-science-for-non-technological-cyber-programs-3k460dbg3y
https://typeset.io/papers/the-novice-programmer-s-device-to-think-with-41h04m66f0
https://typeset.io/papers/learning-theory-in-computer-science-1-an-experiment-2ri71tskqm
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/teaching-internet-algorithmics-23ung6fg4n
https://twitter.com/intent/tweet?text=Teaching%20internet%20algorithmics&url=https://typeset.io/papers/teaching-internet-algorithmics-23ung6fg4n
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/teaching-internet-algorithmics-23ung6fg4n
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/teaching-internet-algorithmics-23ung6fg4n
https://typeset.io/papers/teaching-internet-algorithmics-23ung6fg4n

Teaching Internet Algorithmics

Michael T. Goodrich∗ Roberto Tamassia†

Dept. of Comp. Sci. Dept. of Comp. Sci.
Brown and Johns Hopkins Universities Brown University

goodrich@cs.jhu.edu rt@cs.brown.edu

Abstract

We describe an Internet-based approach for teaching im-
portant concepts in a Junior-Senior level course on the de-
sign and analysis of data structures and algorithms (tra-
ditionally called CS7 or DS&A). The main idea of this
educational paradigm is twofold. First, it provides fresh
motivation for fundamental algorithms and data struc-
tures that are finding new applications in the context of
the Internet. Second, it provides a source for introduc-
ing new algorithms and data structures that are derived
from specific Internet applications. In this paper we sug-
gest some key pedegogical and curriculum updates that
can be made to the classic CS7/DS&A course to turn it
into a course on Internet Algorithmics. We believe that
such a course will stimulate new interest and excitement
in a course that is perceived by some to be stale, boring,
and purely theoretical. Interestingly, we argue that the
foundational topics from CS7/DS&A should remain even
when it is taught in an Internet-centric manner, which, of
course, should come as no surprise to the seasoned com-
puter scientist, who understands the value of algorithmic
thinking.

1 Introduction

With the ever-increasing influence of the World Wide
Web (WWW) and the Internet, the importance of data
structure and algorithm engineering principles has signifi-
cantly increased. Several new Internet companies, includ-
ing Akamai (www.akamai.com), Yahoo (www.yahoo.com),
Google (www.google.com), Altavista (www.altavista.com),
and Intertrust (www.intertrust.com), have based major
parts of their business models on new algorithmic ideas.
These companies have all hired (sometimes as founders)

∗The work of this author is supported by the U.S. Army Re-

search Office under grant DAAH04–96–1–0013, and by the National

Science Foundation under grant CCR–9625289.
†The work of this author is supported by the U.S. Army Re-

search Office under grant DAAH04–96–1–0013, and by the National

Science Foundation under grant CCR–9423847.

well-known algorithm engineering researchers to support
this effort. Thus, algorithm engineering is having a major
influence on how Internet applications are being imple-
mented. Given the powerful influence that algorithm de-
sign is having on the Internet, we feel that it is appropri-
ate for the way that algorithms are taught to be motivated
and influenced by Internet applications. Such a pedagog-
ical approach serves both to excite students about the
subject matter of algorithm design as well as better pre-
pare students for algorithm implementation at companies
with Internet applications. In this paper, we describe
such an Internet-based approach to teaching the tradi-
tional Junior-Senior algorithms course (CS7/DS&A).

Internet Algorithmics focuses on topics of algorithm
and data structure design and engineering for combinato-
rial problems whose primary motivation comes from the
Internet and Internet applications [7]. A course on Inter-
net Algorithmics uses the paradigms of asymptotic anal-
ysis and algorithm engineering to the design and analysis
of solutions to Internet-related problems, which find ap-
plications in the following domains:

• Internet infrastructure management
• Internet routing and multicasting
• Web caching
• Internet searching and information retrieval
• Information and network security
• Electronic commerce
• Web auctions
• Web-based application service providers

While these topics are clearly novel, they nevertheless in-
volve applications of traditional algorithmic topics from
the CS7/DS&A curriculum. Thus, with a slight rework-
ing, the CS7/DS&A course can be cast in a new Internet
light. While we have not performed a careful study to
measure how well this approach improves student interest
in the CS7/DS&A course, we have found experientially
that such a motivation significantly increases student in-
terest in algorithms topics. Indeed, in a recent introduc-
tion of this type of Internet Algorithmics course at Johns
Hopkins University, enrollment limits had to be imposed
on non-CS majors in an attempt to keep the class size
at a reasonable level. Even then, enrollment ultimately
exceeded the target by 44%. Based on this experience,
in this paper we discuss some specific ways of teaching
CS7/DS&A from an Internet perspective, so as to change

the perception that some students have that algorithms
are boring and have no immediate benefits.

In the remainder of this paper we describe how many
traditional algorithms topics can be cast in an Internet
light, as well as show in some detail how graph and text
processing algorithms specifically benefit from this ap-
proach.

2 Traditional Topics Taught in an

Internet Light

In this section we briefly highlight how to cast in an In-
ternet light some traditional topics from CS7/DS&A, ex-
cluding graph and text processing algorithms, which are
specifically treated in subsequent sections.

• Priority queues and dictionaries. The key-
based containers known as priority queues and dic-
tionaries arise naturally in the context of Web auc-
tions. The software administrating a Web auction
must be able to map userid’s to passwords and auc-
tioning history, which is exactly the dictionary prob-
lem. Likewise, keeping track of the top bid (or top
k bids) requires the use of a priority queue. Indeed,
most web auctions allow a user to update his or her
bid, which makes use of the increaseKey operation,
which is optimized by such data structures as the
binomial and Fibonacci heaps (e.g., see [2]).
• Hashing. Hashing is used extensively on the In-

ternet. Perhaps the most natural place where it
arises is in domain and URL caching. Every domain
name server (DNS) maintains a collections of re-
cently requested domains (such as www.yahoo.com
or cs.caltech.edu) mapped to their IP addresses (such
as 216.32.74.50 or 131.215.131.131). When a new
domain name request arrives at a DNS, it first does
a lookup in its cache to see if the domain can be im-
mediately mapped to its IP address. This lookup
is usually done using a hash table. Likewise, most
web browsers keep a cache that maps URLs to files
stored in a local directory on disk and the lookup
process is typically done via hashing.
• Sorting. The need for fast sorting is naturally mo-

tivated from search engines. The best search en-
gines on the Internet, including www.google.com,
advertise that they return only the most pertinent
reponses to a set of query words. Doing so online re-
quires quickly sorting by some rank or relevance key
the collection of all web pages that are determined
to contain the query words. Incidentally, sorting
is also used in the building of the data structure,
called an inverted file (discussed below in Section 4),
which is used to create this collection of Web pages.
• Dynamic programming. The algorithm engi-

neering paradigm known as dynamic programming

arises naturally in the context of Web crawling for
information retrieval. In order to keep from revis-
iting what are essentially the same Web pages at
different locations (from either plagarism or mirror-
ing), a good Web crawler must be able to determine
when a Web page is similar to one it has already
explored. One of the most accurate ways of doing
this is by solving the longest common subsequence
(LCS) problem on the text of the two web pages.
The LCS problem is in turn solved most efficiently
by a simple dynamic program. This problem also
arises in the Unix command diff and in the com-
parison of DNA sequences.
• Divide-and-conquer. Besides being the primary

algorithm engineering design pattern used by the
sorting algorithms merge-sort and quick-sort (e.g.,
see [6]), divide-and-conquer also arises in fast meth-
ods for performing the multiplication of large in-
tegers. Such computations arise on the Internet
from information security contexts where large in-
tegers are used as cryptographic keys to digitally
sign documemts and to keep sensitive personal and
electronic commerce information private.
• NP-completeness. The concept that some prob-

lems are inherantly difficult to solve efficiently is
no stranger to the Internet. For example, suppose
we are given a set of web pages with known ac-
cess statistics and we would like to balance perfectly
the load of serving these pages between two servers.
This problem is actually an instance of the PARTI-
TION problem, which is known to be NP-complete
(e.g., see [5]). Other such NP-complete problems
are also easy to define from an Internet perspective.

Having briefly outlined how some traditional topics
from CS7/DS&A can be cast in an Internet light, let us
now study more in depth from an Internet perspective
how we might teach graph and text processing algorithms,
which are particularly relevant to the Internet.

3 Graph Algorithms

Graph algorithms topics can be clearly motivated from
the networking infrastructure of the Internet itself, that
is, the way that packets are routed around on the Internet.
Good routing algorithms should route packets so as to
arrive at their destinations quickly and reliably, while also
being fair to other packets in the network (e.g., see [9]).

3.1 Flooding

In a flooding protocol, a message is sent to every other
computer in a network as a broadcast. This computation
can be performed as either a breadth-first or depth-first
traversal; hence, graph traversal algorithms are immedi-
ately motivated by flooding communications.

The flooding algorithm for routing a message in a net-
work is very simple and requires virtually no setup. A
router x wishing to send a message M to a router y sim-
ply sends this message to all the routers that x is con-
nected to. If y is one of these routers, then it receives the
message. If a router z 6= y receives a flooding message M

from an adjacent router x, then z simply rebroadcasts M

to all of the routers that z is connected to, except for x it-
self. Of course, left unmodified, this algorithm will cause
an “infinite loop” of packet messages on any network that
contains a cycle.

To avoid the infinite looping problem, we must asso-
ciate some memory, or state, with the main actors in this
algorithm. One possibility, which gives rise to a breadth-
first type search of the network graph, is to store a list
at each router x that keeps track of which flooding mes-
sages x has already processed. For example, one way to
do this is to have each router assign a sequence number

to each of the different flooding messages it originates.
In this case, if the network is synchronous, or at least
nearly-synchronous, then the packets exactly mimick the
breadth-first search algorithm traditionally taught in the
CS7 curriculum. (e.g., see [2, 6]).

3.2 The Distance Vector Algorithm

Another popular Internet routing algorithm is a distributed
version of a classic algorithm for finding shortest paths
in a graph due to Bellman and Ford [1, 4]. We model
the problem as a graph problem, where nodes of the
graph represent routers and edges represent connections
between adjacent routers. We further assume that we
have a weight assigned to each edge, which represents the
cost of sending traffic down the corresponding connec-
tion. For the discussion here we will also suppose that
the graph is undirected, indicating that sending a packet
on a connection is equally costly in both directions.

The cost of a routing path is equal to the sum of
the weights of the edges that make up that path. Thus,
weights should be positive and should represent a reason-
able metric for distance. For example, if the metric is
“number of hops,” then each edge has weight 1. Alter-
natively, if the metric is “average latency,” then the cost
of each edge could be the average queuing and sending
latency for the connection represented by that edge, or it
could be half of the average time for a collection of recent
“ping” messages to go and return along this connection.

The main idea of the distance vector algorithm is for
each router x to store a table, called its distance vector,
Dx, which stores the length of the best known path from
x to every other router in the network, and for each entry
Dx[y], the connection, Cx[y], from x to use to begin the
path to y. Initially, for each connection (x, y), we assign
Dx[y] and Dy[x] equal to the weight of the edge (x, y),
which we denote W (x, y). All other Dx entries are set to
“infinity.” We then perform a series of rounds that iter-

atively refine each distance vector to find possibly better
paths until every distance vector stores the true distance
to all routers.

Each round of the distance vector algorithm consists
of a collection of relaxation steps. At the beginning of
a round, each router x sends its distance vector to all of
its immediate neighbors in the network. After a router
x has received the current distance vectors from each of
its neighbors, it performs the following computations (the
test and update represented by the if-statement is called
a “relaxation”):

for each router w connected to x do

for each router y in the network do

if W (x, w) + Dw[y] < Dx[y] then

{We have just found a better route from x to
y, through w.}
Set Dx[y]←W (x, w) + Dw[y].
Set Cx[y]← w.

end if

end for

end for

Thus, the time (and message complexity) for x to com-
plete a round is O(dxn), where dx is the degree of x and n

is the number of routers in the network. We iterate this
algorithm for δ rounds, where δ is the diameter of the
network (if we don’t know the diameter of the network,
then we must choose δ = n− 1).

The correctness of the distance vector algorithm fol-
lows by a simple inductive argument: at the end of round
i, each distance vector stores the shortest path to every
other router restricted to visit at most i other routers
along the way. This fact is true at the beginning of the
algorithm, and the relaxations done in each round ensure
that this will be true after the round as well. Thus, af-
ter we have performed a number of rounds equal to the
diameter of the network, each distance vector stores the
true distance to each router in the network. Therefore,
once we have performed this setup, the routing algorithm
is quite simple: if a router x receives a message intended
for router y, x sends y along the connection Cx[y].

3.3 The Link-State Algorithm

Another imporant routing algorithm is a distributed ver-
sion of a classic shortest path algorithm due to Dijk-
stra [3]. As in the distance vector algorithm description,
we model the network as a weighted graph. Whereas the
distance vector algorithm performed its setup in a series
of rounds that each required only local communication
between adjacent routers, the link-state algorithm com-
putes in a single communication round that requires lots
of global communication throughout the entire network.

The link-state algorithm proceeds as follows: each
router x determines the weight of all its adjacent connec-
tions (either by experimental tests using “ping” messages

or a priori knowledge). It then packs all of these weights
into a single message, Wx, and it broadcasts this mes-
sage to all other routers in the network using a flooding
routing protocol (which requires no prior setup, see Sec-
tion 3.1). The message Wx is a representation of the state
of each link adjacent to x. After a router x has recieved
the link-state message, My, from every other router in the
network, it has recieved a complete description of all the
connections in the entire network, including the weight
of every connection. Given this complete knowledge, the
router x can then perform Dijkstra’s shortest path algo-
rithm on its internal representation of the network, using
x as the starting vertex, to determine the shortest path
from x to every other node in the network. This internal
computation takes O(m log n) time using standard im-
plementations of Dijstra’s algorithm, or O(n log n + m)
using more sophisticated data structures (e.g., see [2]).
Once this algorithm completes, x stores the connection,
Cx[y], for each router y, to use for routing any message
to y.

4 Text Processing Algorithms

Document processing is rapidly becoming one of the dom-
inant functions of computers on the Internet. Comput-
ers are used to edit documents, to search documents, to
transport documents over the Internet, and to display
documents on printers and computer screens. Web “surf-
ing” and Web searching are becoming significant and im-
portant computer applications, and many of the key com-
putations in all of this document processing involve char-
acter strings and string pattern matching. For example,
the Internet document formats HTML and XML are pri-
marily text formats, with added tags for multimedia con-
tent. Making sense of the many terabytes of information
on the Internet requires a considerable amount of text
processing.

In teaching text processing algorithms, therefore, we
believe it is important to motivate the discussions from an
Internet perspective, focusing on the study of the funda-
mental text processing algorithms for quickly performing
important string operations. Of particular importance
are algorithms for string searching and pattern match-
ing, since these can often be computational bottlenecks
in many document-processing applications. We also be-
lieve it possible to introduce some new Internet-based
data structure and algorithmic issues involved in text pro-
cessing, as well.

The progression of text processing topics studied in
an Internet-based algorithms course can follow a simple
and natural schedule. It begins with terminology and no-
tation for the string ADT, followed by methods for string
pattern matching. In addition, it is useful to include a
study of the trie data structure, which is a tree-based
structure that allows for fast searching in a collection of

strings. In addition, some instructors may wish to include
the important text processing problem of compressing a
document of text so that it fits more efficiently in storage
or can be transmitted more efficiently over a network. Fi-
nally, we recommend the study of another text processing
problem, called the longest common subsequence problem
(as discussed above in Section 2), that deals with how we
can measure the similarity between two documents. All
of these problems are topics that arise often in Internet
computations, such as Web crawlers, search engines, doc-
ument distribution, and information retrieval.

In addition to having interesting applications, the top-
ics of Internet-based text processing highlight some im-
portant algorithmic design patterns. In particular, string
pattern matching highlights the brute-force method, which
is often inefficient but has wide applicability. In text com-
pression we can introduce the greedy method, which often
allows us to approximate solutions to hard problems, and
for some problems (such as in text compression) actually
gives rise to optimal algorithms. Finally, as mentioned
earlier, in discussing text similarity, we can introduce the
dynamic programming design pattern, which can be ap-
plied in some special instances to solve a problem in poly-
nomial time that appears at first to require exponential
time to solve.

In addition to the traditional text processing topics,
taught in a new light, as highlighted above, an Internet-
based algorithms course can introduce new topics, such
as we mention briefly in the subsection below.

4.1 Search Engines and Inverted Files

The World Wide Web contains a huge collection of text
documents (Web pages). Information about these pages
are gathered by a program called a Web crawler, which
then stores this information in a special dictionary database.
A Web search engine allows users to retrieve relevant in-
formation from this database, thereby identifying relevant
pages on the Web containing given keywords.

The core information stored by a search engine is a
dictionary, called an inverted index or inverted file, stor-
ing key-value pairs (w, L), where w is a word and L is a
collection of pages containing word w. The keys (words)
in this dictionary are called index terms and should be
a set of vocabulary entries and proper nouns as large as
possible. The elements in this dictionary are called oc-

currence lists and should cover as many Web pages as
possible.

We can efficiently implement an inverted index with
a data structure consisting of:

1. An array storing the occurrence lists of the terms
(in no particular order).

2. A compressed trie for the set of index terms, where
each external node stores the index of the occur-
rence list of the associated term.

The reason for storing the occurrence lists outside the trie
is to keep the size of the trie data structure sufficiently
small to fit in internal memory. Instead, because of their
large total size, the occurrence lists have to be stored
on disk. We note in passing that the construction of an
inverted file provides another Internet-based application
of sorting.

With the inverted file data structure, a query for a sin-
gle keyword is similar to a word matching query in a trie.
Namely, we find the keyword in the trie and we return
the associated occurrence list. When multiple keywords
are given and the desired output are the pages containing
all the given keywords, we retrieve the occurrence list of
each keyword using the trie and return their intersection.
To facilitate the intersection computation, each occur-
rence list should be implemented with a sequence sorted
by address or with a dictionary, which could movitave,
for example, the generic merge computation used in the
well-known merge-sort algorithm.

In addition to the basic task of returning a list of
pages containing given keywords, search engines provide
an important additional service by ranking the pages re-
turned by relevance. Devising fast and accurate ranking
algorithms for search engines is a major challenge for com-
puter researchers and electronic commerce companies.

5 Conclusion

We have presented an approach to the teaching of a Junior-
Senior course on data structures and algorithms, which
is often referred to as CS7/DS&A. We have shown how
the traditional topics from this course can remain in an
Internet-centered teaching of it, but that these topics can
receive fresh motivation from Internet applications. In
addition, we have shown how some new topics, such as
network routing algorithms and inverted files (which are
actually not new topics at all; e.g., see [8, 9]), can be
added to the curriculum of the CS7/DS&A course with-
out much displacement of other more-traditional topics,
such as NP-completeness. Indeed, this Internet-centered
approach is reflected in a recent book by the authors on
Algorithm Engineering [7].

References

[1] R. Bellman. On a routing problem. Quarterly of Applied

Mathematics, 16(1):87–90, 1958.

[2] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Intro-

duction to Algorithms. MIT Press, Cambridge, MA, 1990.

[3] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[4] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks.
Princeton University Press, Princeton, NJ, 1962.

[5] M. R. Garey and D. S. Johnson. Computers and In-

tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, New York, NY, 1979.

[6] M. T. Goodrich and R. Tamassia. Data Structures and

Algorithms in Java. John Wiley and Sons, New York,
1998.

[7] M. T. Goodrich and R. Tamassia. Algorithm Engineering.
John Wiley and Sons, New York, 2001.

[8] D. E. Knuth. Sorting and Searching, volume 3 of The

Art of Computer Programming. Addison-Wesley, Reading,
MA, 1973.

[9] M. Steenstrup. Routing in Communications Networks.
Prentice Hall, Englewood Cliffs, 1995.

