
Teaching Model Driven Engineering

from a Relational Database Perspective

Don Batory1, Eric Latimer1, Maider Azanza2

1 University of Texas at Austin, Austin, TX 78712 USA

batory@cs.utexas.edu, e@utexas.edu
2 University of the Basque Country (UPV/EHU), San Sebastian, Spain

maider.azanza@ehu.es

Abstract. We reinterpret MDE from the viewpoint of relational databases to

provide an alternative way to teach, understand, and demonstrate MDE using

concepts and technologies that should be familiar to undergraduates. We use (1)

relational databases to express models and metamodels, (2) Prolog to express

constraints and M2M transformations, (3) Java tools to implement M2T and

T2M transformations, and (4) OO shell-scripting languages to compose MDE

transformations. Case studies demonstrate the viability of our approach.

1 Introduction

Model Driven Engineering (MDE) is a standard technology for program specification

and construction. We believe it is essential to expose undergraduates to MDE concepts

(models, metamodels, M2M, M2T, T2M transformations, constraints, and bootstrapping),

so that they will have an appreciation for MDE when they encounter it in industry. Our

motivation was experience: unless students encounter an idea (however immature) in

school, they are less likely to embrace it in the future. Further, teaching MDE is intimately

related, if not inseparable, to the tools and languages that make MDE ideas concrete.

Our initial attempt to do this (Fall 2011) was a failure. We used the Eclipse Modeling

Tools3 and spent quite some time creating videos for students to watch, both for instal-

lation and for tool usage. For whatever reason, installation for students was a problem.

A version of Eclipse was eventually posted that had all the tools installed. The results

were no better when students used the tools. A simple assignment was given to draw

a metamodel for state diagrams (largely something presented in class) using Eclipse,

let Eclipse generate a tool for drawing state diagrams, and to use this generated tool to

draw particular state diagrams. This turned into a very frustrating experience for most

students. 25% of our upper-division undergraduate class got it right; 50% had mediocre

submissions, and the remaining just gave up. Another week was given (with tutorial help)

to allow 80% to “get it right”, but that still left too many behind. The whole experience

left a bitter taste for us, and worse, our students. We do not know if this is a typical

situation or an aberration, but we will not try this again.

3 Specifically EMT, Graphical Modeling Tooling Framework Plug-in, OCL Tools Plug-in, and

Eugenia for Eclipse 3.6.2.

2

In retrospect we found many reasons, but basically Eclipse MDE tools are the

problem. (1) The tools we used were unappealing—they were difficult to use even

for trivial applications. (2) The tools fostered a medieval mentality in students to use

incantations to solve problems. Point here, click that, something happens. From a

student’s perspective, this is gibberish. Although we could tell them what was happening,

this mode of interaction leaves a vacuum where a deep understanding should reside. (3)

With the benefit of years of hindsight, we concluded that the entry cost of using, teaching,

and understanding these tools was too high for our comfort. (Whether students agree

with this or not is the subject of an empirical study targeted for this fall). We sought an

alternative and light-weight way to understand and demonstrate MDE, leveraging tools

and concepts undergraduates should already know.

In this paper, we present an evolutionary rather than revolutionary approach to

understand and teach core MDE concepts (models, metamodels, M2M, M2T, T2M

transformations, constraints, and bootstrapping). We tried this approach with a new class

of undergraduates in Fall 2012 with many fewer problems. (Again, we carefully avoid

words like “better” or “more successful” until the results of our empirical study are in;

the appropriate word to use is “interesting”). This paper concentrates on the technology

we used and the case studies in its evaluation). It is our hope that others in MDE may

benefit from the simplicity of our approach.

node# name type edge# startsAt endsAt

(b)

(a)

node# name type

nStart start start

nReady ready state

nDrink drink state

nEat eat state

nPig pig state

nStop stop stop

edge# StartsAt EndsAt

e1 nStart nReady

e2 nReady nDrink

e3 nReady nEat

e4 nDrink nDrink

e5 nEat nEat

e6 nDrink nEat

e7 nEat nDrink

e8 nDrink nPig

e9 nEat nPig

e10 nPig nStop

(c)

(d)

-name

-type

node
edge

-startsAt

1

-startPoint *

-endsAt

1

-endingPoint *

ready

drink

eat

family yells "pig"

start stop

Fig. 1. A State Machine and its Tables

2 MDE Models and

MetaModels

MDE can be understood as an ap-

plication of relational databases.

Although MDE is usually pre-

sented in terms of graphs (as vi-

sual representations of models or

metamodels), all graphs have sim-

ple encodings as a set of normal-

ized tables.

Consider a metamodel for fi-

nite state machines (FSMs) in Fig-

ure 1a, consisting of nodes and

edges. The schemas of the under-

lying relational tables (using man-

ufactured identifiers, denoted by

node# and edge#) are shown in

Figure 1b.

An instance of a FSM popu-

lates these tables with tuples. The

FSM of the first author’s eating

habits and its tuples are given in

Figure 1c-d.

3

Manufactured tuple identifiers eliminate virtually all of the complexities of relational

table design (c.f. [8,12]). There are only five simple rules to map metamodels to table

definitions and one rule for tuple instantiation:

1. Every metaclass maps to a distinct table. If a metaclass has k attributes, the table

will contain at least 1+k columns: one for the identifier and one for each attribute.

2. n : m associations are valid in metamodels [17], but not in ours. Every association

must have an end with a 0..1 or 1 cardinality. Figure 2 shows how n : m associations

are transformed into a pair of 1 : n and 1 : m associations with an explicit association

class. The reason for this is the next rule.

1

n

1
n

student activities

activityRecord

m

student activities

activityRecord

n nm

remove

n:m assocs

Fig. 2. Transformation That Removes n : m Associations.

3. Each association is represented by a single attribute on the “0 : 1” or “1” side of the

association. Usually an association adds an attribute to both tables that it relates. The

“n” side would have a set-valued attribute which is disallowed in normalized tables.

The “1” side has a unary-valued attribute (a tuple identifier) which is permitted.

As both attributes encode exactly the same information, we simply drop the set-

valued attribute. Figure 3a illustrates the application of the last three rules: the dept

table has two columns (# and name) and the student table has three (#, utid, and

enrolledIn). Column enrolledIn, which contains a dept# value, represents the

student−dept association. The mapping of Figure 1a to 1b is another example.

student# utid enrolledIn dept# name

student table dept table

-utid : String

student

-name : String

dept -enrolledIn

1

-has

*

Fig. 3. Diagram-to-Table Mapping.

4. For classes that are related by inheritance, all attributes of superclasses are propa-

gated into the class tables. The identifier of the root class is shared by all subclasses.

Tables need not be produced for abstract classes. See Figure 4.

member# fname lname

member# fname lname rank

member# fname lname position

faculty

table

staff

table

member

table -fname

-lname

member

-rank

faculty

-position

staff

Fig. 4. Inheritance Diagram-to-Table Mapping.

5. Only objects of a class that are not instances of subclasses populate the tuples of a

table. This rule is is discussed in more detail in Section 4.

4

6. Tuple identifiers can manufactured (e.g. e1 and e3 in Figure 1d) or they can be

readable single-column keys (e.g. nReady and nDrink). Keys are preferred for

hand-written assignments; manufactured identifiers are preferred in tools.

Note that relational tables have always been able to encode data hierarchies. We see the

elegance of normalized or “flat” tables to be an important conceptual simplicity.

3 Model Constraints

OCL is the standard language for expressing model constraints. Given the connection to

relational databases, we can do better. Prolog is a fundamental language in Computer

Science (CS) for writing declarative database constraints. It is Turing-complete and is

a language that all CS students should have exposure. Figure 5a shows how to express

tuples of a relational table as Prolog facts. The first fact in Figure 5a defines the schema

of the node table of Figure 1b: it has three columns {id, name, type}.

table(node,[id,name,type]).

node(nstart,'start',start).

node(nReady,'ready',state).

node(nDrink,'drink',state).

node(nEat,'eat',state).

node(nPig,'pig',state).

node(nstop,'stop',stop).

(a) (b)
-startsAt

1

-start *

-endsAt

1

-end *

state

-name

normalStatestart

transition

stop

Fig. 5. A Prolog Table and Target MetaModel.

Here are three constraints to enforce on a FSM:

c1 All states have unique names,

c2 All transitions must start and end at a state, and

c3 There must be precisely one start state.

Their expression in SWI-Prolog [19] is given below; error(Msg) is a library call that
reports an error. allConstraints is true if there are no violations of each constraint.

c1 :- node(A,N,_),node(B,N,_),not(A=B),error(’non-unique names’).

c2 :- edge(_,S,E), (not(node(_,S,_)) ; not(node(_,E,_))), error(’bad edge’).

c3a :- not(node(_,_,start)), error(’no start state’).

c3b :- node(A,_,start),node(B,_,start),not(A=B),error(’multiple start states’).

allConstraints :- not(c1),not(c2),not(c3a),not(c3b).

4 Model-to-Model Transformations

Fundamental activities in MDE are model-to-model (M2M) transformations. Instead of

using languages that were specifically invented for MDE, Prolog can be used to write

database-to-database (or M2M) transformations declaratively.

Suppose we want to translate the database of Figure 1d to a database that conforms

to the metamodel of Figure 5b. (We shade abstract classes to make them easier to

recognize.) The Prolog rules to express this transformation are:

5

start(I,A) :- node(I,A,start).

stop(I,A) :- node(I,A,stop).

normalState(I,A) :- node(I,A,state).

transition(A,B,C) :- edge(A,B,C).

Another example: The tuples of the staff and faculty tables of Figure 4 do not

appear in the member table. To propagate tuples from subclass tables into superclass

tables, the following transformations can be used:

newMember(I,F,L) :- member(I,F,L).

newMember(I,F,L) :- staff(I,F,L,_).

newMember(I,F,L) :- faculty(I,F,L,_).

newStaff(I,F,L,R) :- staff(I,F,L,R).

newFaculty(I,F,L,P) :- faculty(I,F,L,P).

As Prolog is Turing-complete, database transformations can be arbitrarily complex.

Observations. There is an intimate connection between database design and metamodel

design. Presenting MDE in the above manner reinforces this connection. Further, students

do not have to be familiar with databases to understand the above ideas. Normalized

tables are a fundamental and simple conceptual structure in CS. Undergraduates may

already have been exposed to Prolog in an introductory course on programming lan-

guages. (When one deals with normalized tuples and almost no lists, Prolog is indeed a

simple language). We chose Prolog for its obvious database connection, but suspect that

Datalog, Haskell, Scala, or other functional languages might be just as effective.

5 Model-to-Text Transformations

A key strength of MDE is that it mechanizes the production of boiler-plate code. This is

accomplished by Model-to-Text (M2T) transformations. There are many text template

engines used in industry. Apache Velocity is a particularly easy-to-learn and powerful

example [4]. We made two small modifications to Velocity to cleanly integrate it with

Prolog databases. Our tool is called Velocity Model-2-Text (VM2T).

First, we defined Velocity variables for tables. If the name of a table is “table” then

the table variable is “tableS” (appending an “S” to “table”). This enables a Velocity

foreach statement to iterate over all tuples of a table:

#foreach($tuple in $tableS)

...

#end

Second, a Velocity template directs its output to standard out. We introduced markers

to redirect output to different files during template execution. The value of the MARKER

variable defines the name of the file to which output is directed; reassigning its value

redirects output to another file. An example of MARKER is presented shortly.

Figure 6a shows a metamodel for classes. Two instances of this metamodel, city and

account, are shown in Figure 6b. The database containing both instances is Figure 6c.

6

Figure 7a is a VM2T template. When the non-MARKER statements are executed,

Figure 7b is the output. Perferably, the definition of each class should be in its own file.

When all statements are executed, the desired two files are produced (Figure 7c).

Given VM2T, it is an interesting and straightforward assignment to translate the

FSM database of Figure 1d to the code represented by the class diagram of Figure 8.

-name

class

-name

-type

attribute-ofClass

1 *

(a)

-name : String

-state : String

city

-number : Integer

-balance : Double

account

(b)

table(class,[cid,name]).

class(c1,city).

class(c2,account).

table(attribute,[aid,name,type,ofclass]).

attribute(a1,name,string,c1).

attribute(a2,state,string,c1).

attribute(a3,number,integer,c2).

attribute(a4,balance,double,c2).

data.pl (c)

Fig. 6. A Class Metamodel, a Model, and its Prolog Database.

#set($MARKER="//--")

#foreach($c in $classS)

${MARKER}src/${c.name}.java

class ${c.name} {

#foreach($a in $attributeS)

#if ($c.cid==$a.ofclass)

${a.type} ${a.name};

#end

#end

}

#end gen.vm

(a) class city {

string name;

string state;

}

class account {

integer number;

double balance;

}

stdout

(b) class city {

string name;

string state;

}

src/city.java

class account {

integer number;

double balance;

}

src/account.java

(c)

Fig. 7. A VM2T Template and Two Outputs.

Observations. The benefits of Velocity seem clear: students use an industrial tool

that is not-MDE or Eclipse-specific; it is stable, reasonably bug-free, and has decent

documentation. In our opinion, it is easy to learn and relatively painless to use.

+gotostart()

+gotoready()

+gotoeat()

+gotodrink()

+gotofam()

+gotostop()

+getName() : String

FSM

+gotostart() : state

+gotoready() : state

+gotoeat() : state

+gotodrink() : state

+gotopig() : state

+gotostop() : state

+getName() : String

«interface»

state
FSM() {

state = new Start();

}

gotostart()

{ state = state.gotostart(); }

gotoready()

{ state = state.gotoready(); }

...

-state

1*

+gotostart() : state

+gotoready() : state

+gotoeat() : state

+gotodrink() : state

+gotopig() : state

+gotostop() : state

+getName() : String

start

+gotostart() : state

+gotoready() : state

+gotoeat() : state

+gotodrink() : state

+gotopig() : state

+gotostop() : state

+getName() : String

ready

+gotostart() : state

+gotoready() : state

+gotoeat() : state

+gotodrink() : state

+gotopig() : state

+gotostop() : state

+getName() : String

eat

+gotostart() : state

+gotoready() : state

+gotoeat() : state

+gotodrink() : state

+gotopig() : state

+gotostop() : state

+getName() : String

drink

+gotostart() : state

+gotoready() : state

+gotoeat() : state

+gotodrink() : state

+gotopig() : state

+gotostop() : state

+getName() : String

pig

+gotostart() : state

+gotoready() : state

+gotoeat() : state

+gotodrink() : state

+gotopig() : state

+gotostop() : state

+getName() : String

stopState gotostart()

{ return this; /* ignore */ }

State gotoready()

{ return new Ready(); }

...

String getName()

{ return "start"; }

Fig. 8. Class Diagram of FSM Code Output.

7

6 Text-to-Model Transformations

Given the above, it is not difficult for students to understand Figure 9: an application

engineer specifies a FSM using a graphical tool, the tool produces a set of tables, the

tables are transformed, and VM2T produces the source code for the FSM.

draws

FSM

using
Application

Engineer
FSM tool

stores

FSM

graph in

initial

relational

tables

vm2t script

translates

to code application source code

+gotostart()

+gotoready()

+gotoeat()

+gotodrink()

+gotofam()

+gotostop()

+getName() : String

FMS

+gotostart() : State

+gotoready() : State

+gotoeat() : State

+gotodrink() : State

+gotofam() : State

+gotostop() : State

+getName() : String

«interface»

State
FSM() {

 state = new Start();

}

gotostart()

{ state = state.gotostart(); }

gotoready()

{ state = state.gotoready(); }

...

-state

1*

+gotostart() : State

+gotoready() : State

+gotoeat() : State

+gotodrink() : State

+gotofam() : State

+gotostop() : State

+getName() : String

Start

+gotostart() : State

+gotoready() : State

+gotoeat() : State

+gotodrink() : State

+gotofam() : State

+gotostop() : State

+getName() : String

Ready

+gotostart() : State

+gotoready() : State

+gotoeat() : State

+gotodrink() : State

+gotofam() : State

+gotostop() : State

+getName() : String

Eat

+gotostart() : State

+gotoready() : State

+gotoeat() : State

+gotodrink() : State

+gotofam() : State

+gotostop() : State

+getName() : String

Drink

+gotostart() : State

+gotoready() : State

+gotoeat() : State

+gotodrink() : State

+gotofam() : State

+gotostop() : State

+getName() : String

Fam

+gotostart() : State

+gotoready() : State

+gotoeat() : State

+gotodrink() : State

+gotofam() : State

+gotostop() : State

+getName() : String

StopState gotostart()

{ return this; /* ignore */ }

State gotoready()

{ return new Ready(); }

...

String getName()

{ return "start"; }

final

relational

tables

database

to

database

mappings

Fig. 9. FSM Application Engineering in MDE.

What is missing is a Text-to-Model (T2M) transformation (the dashed arrow in

Figure 9) that converts grossly-verbose XML output of a graphics tool into a clean set

of Prolog tables. It is easy to write a simple Java program that reads XML, parses it,

and outputs a single text file containing a Prolog database. Using a more general tool

that parses XML into Prolog may be preferable, but loses the advantage a hands-on

understanding of the inner workings of T2M transformations.

Finding suitable graphical editor GE is a three-fold challenge:

(a) its XML must simple to understand,

(b) its XML is stable, meaning its XML format is unlikely to change anytime soon, and

(c) its palette4 is customizable.

MS Visio is easy to use and its palette is easily customizable, but its XML files are

incomprehensible and MS periodically modifies the format of these files. Simpler GEs,

such as Violet [21], yUML [22], UMLFactory [20], satisfy (a) and (b); it is not difficult

to write T2M tools for them.

We have yet to find a GE that satisfies all three constraints. Violet is typical: all

palettes are hardwired—there is one per UML diagram. One cannot define a set of icons

(with graphic properties) to draw customized graphs. All one can do is to translate XML

documents that were specifically designed for a given UML diagram to Prolog tables.

This isn’t bad; it just isn’t ideal. Until a flexible GE is found, bootstrapping MDELite (to

build customized GEs for target domains, a key idea in MDE) is difficult to demonstrate.

More on this in Section 9.

Observations. MDE tools (such as the FSM tool) could be structure editors. That is, a

tool should immediately label incorrect drawings or prevent users from creating incorrect

drawings. GEs can be stupid—they let you draw anything (such as edges that connect

no nodes). To provide immediate feedback would require saving a design to an XML

document, translating the document into Prolog tables, evaluating Prolog constraints,

and displaying the errors encountered. Modifying existing tools to present this feedback

could be done, but this is not high-priority.

4 The icons/classes that one can drag and drop onto a canvas to create instances.

8

7 MDELite and its Applications

MDELite is a small set of tools (SWI Prolog, VM2T) that are loosely connected by a tiny

Java framework that implements the ideas of the prior section. An MDELite application

uses this framework and is expressed as a category [5,16]. A category is simply a directed

multigraph; nodes are domains and arrows are functions (transformations) drawn from

the function’s domain to its codomain. Many of the interesting ideas about categories,

like functors and natural transformations, are absent in the MDE applications of this

paper, so there is nothing to frighten students. Nonetheless, it is useful to remind students

that categories are a fundamental structure of mathematics, they are a core part of MDE

formalisms (e.g., [9]), and they define the structure of an MDE application.5

As an example of an MDELite application, consider the tool chain that allows users

to draw FSMs and generate their corresponding Java source (Figure 9). This tool chain is

a category with four domains (Figure 10): the domain of XML documents that are output

by the FSM tool, a domain of database instances that a T2M tool creates, another domain

of database instances that results from a restructuring of T2M-produced databases, and a

domain of Java Source Code whose elements are FSM programs.

FSM

XML

Init

Prolog

Tables

Java

Source

Code

T2M M2T

Final

Prolog

Tables

M2M

Fig. 10. Category of a FSM Tool.

When this category is written in Java, each domain is a class and each arrow is a method

(see Figure 11a). Unlike most UML class diagrams, MDELite designs typically have no

associations, but can have inheritance relationships.

To perform an action of the FSM tool (i.e. a method in Figure 11a), one writes a

straight-line script to invoke the appropriate transformations and checks. Figure 11b

shows the sequence of method calls in an MDELite program to translate an FSMXML

file—an XML file produced by the FSM drawing tool—into a Java program. Any error

encountered during translation or conformance test simply halts the MDELite application

with an explanative message.

+T2M() : InitPrologTables

-xmlFile

FSMXML

+M2M() : FinalPrologTables

+conform() : Boolean

-prologFile

InitPrologTables

+M2T() : JavaSourceCode

+conform() : Boolean

-prologFile

FinalPrologTables

-javaDirectory

JavaSourceCode

JavaSourceCode tool(FSMXML x)

throws RunTimeException {

ipt = x.T2M();

ipt.conform();

fpt = itp.M2M();

fpt.conform();

jsc = ftp.M2T();

return jsc;

}

(a) (b)

Fig. 11. MDELite Encoding of the Category of Figure 10.

5 Also known as megamodels [7] and tool chain diagrams [15].

9

Observations. MDE lifts metamodel design to the level of metaprogramming—programs

that build other programs. The objects of MDE are programs (models) and the methods

of MDE are transformations that yield or manipulate other programs (models). The

elements of each domain are file system entities—an XML file, a Prolog file that encodes

a database, or a directory of Java files—not typical programming language objects [6].

Each MDELite method is literally a distinct executable: a T2M or M2T arrow is a

Java program and an M2M arrow (and conformance test) is a Prolog program. Perhaps

MDELite needs to be written in an OO shell scripting language, such as Python. We

used Java to implement the MDELite framework (and may reconsider this decision—we

figured Prolog is enough for undergraduates to absorb). MDELite is clearly a multi-

lingual application.

8 Evaluation: A Case Study of MDELite
Our first application of MDELite was quite instructive. We found several free UML

tools that we wanted to (i) draw UML class diagrams, (ii) apply the ideas of the previous

sections, and (iii) integrate.

The integration of the Violet, UMLFactory, and yUML tools (as they existed in

June 2012) is expressed by the category of Figure 12a.6 We could draw UML class

diagrams in each of these tools and have them displayed in any other tool. So a script

that translated a Violet class diagram into a yUML class diagram is Figure 12b and vice

versa is Figure 12c. Figure 13 shows the translation of a specific Violet class diagram (an

XML file) into an SDBPL database and then into a yUML class diagram (a yUML file).

(a)

yUML Violet2yUML(VioletXML v){

 vpl = v.toPL();

 vpl.conform();

 sdb = vpl.toSDB();

 sdb.conform();

 ypl = sdb.toYUML();

 ypl.conform();

 return ypl.toYUML();

}

VioletXML yUML2Violet(yUML y){

 ypl = y.toPL();

 ypl.conform();

 sdb = ypl.toSDB();

 sdb.conform();

 d = sdb.toDOT();

 dk = d.kieler();

 sdb1 = dk.toSDB();

 sdb2 = sdb.projectXY();

 sdb3 = sdb2.merge(sdb1);

 upl = sdb3.toUMLF();

 upl.conform();

 return upl.toXML();

}

(b)

(c)

Fig. 12. A Category for an MDELite Application.

The category of Figure 12a is produced by a process that is similar to global schema

design in databases that integrates database schemas of different tools [10]. Each tool

exports and imports a distinct data format (read: database). A global schema (a Prolog

6 The only oddity of Figure 12a is the domain SDBPL×SDBPL, which is the cross-product of

the SDBPL domain with itself. The merge arrow composes two SDBPL databases into a single

SPBPL database (i.e. merge : SDBPL×SDBPL→ SDBPL).

10

table(class,[id,"name","fields","methods",superid]).

class('classnode0','Library','name','getName()',null).

class('classnode1','Book','title','getTitle()',null).

table(association,[cid1,"role1",arrow1,

 cid2,"role2",arrow2]).

association('classnode1','*','agg',

 'classnode0','1','').

table(interface,[id,"name","methods"]).

:- dynamic interface/3.

table(classImplements,[cid,iid]).

:- dynamic classImplements/2.

table(interfaceExtends,[id,idx]).

:- dynamic interfaceExtends/2.

table(position,[id,x,y]).

position('classnode0',333,259).

position('classnode1',599,264).

(a) Violet Class Diagram

(c) Corresponding yUML Class Diagram (b) SDBPL database

Fig. 13. A Violet Diagram mapped to an SDBPL database mapped to a yUML Diagram.

database, SDBPL, to which all tool-specific databases are translated) stores data that is

shared by all tools. The hard part is manufacturing data that is not in the global database

that is needed for tool-specific displays. An example is given shortly.

This application required all kinds of T2M, M2T, and M2M transformations. Fig-

ure 14 shows the size of MDELite framework and this application in lines of Prolog,

Velocity, and Java code. As the tables indicate, the framework is tiny; the application

numbers indicate the volume of “code” that was needed to write this application.

LOC LOC LOC Java

Concern Prolog Velocity Java

MDELite Framework 84 0 581

MDELite Application 506 654 2532

Total 590 654 3093

Fig. 14. Size of MDELite Framework and Application: Lines of Prolog, Velocity, and Java Code

Observations. You can try this for any set of tools that satisfies constraints (a) and (b)

of Section 6. Doing so, you will likely discover that your set of selected tools were

never designed for interoperability. Ideally, interoperability should be transparent to

users. Unfortunately, this is not always achievable. We found UMLFactory to be flakey;

most tools had cases that we simply couldn’t tell if they worked correctly. Hidden

dependencies lurked in XML documents about the order in which elements could appear

and divining these dependencies to produce decent displays was unpleasant (as there was

no documentation). But it is a great lesson about the challenges of tool interoperability,

albeit on a small-scale.
Interesting technical problems also arise. A yUML spec for Figure 13c is:

[Library|name|getName()]

[Book|title|getTitle()]

[Book]<>*-1[Library]

Translating a yUML spec to the XML document of another tool requires graphical (x,y)
positioning information about each class (i.e. where each class is to appear on a canvas).

yUML computes this information, but never returns it. Lacking positioning information,

11

Violet simply draws all the classes on top of each other, yielding an unreadable mess.

We looked for tools to compute node positioning information for a graph and found the

Kieler Web Service [13]. We translated an SDBPL database into a DOT graph, transmited

the DOT file to the Kieler server, and it returned a new DOT graph with the required

positioning information. A simple T2M tool mapped the positioning information to a

Prolog table, and this table was merged with a SDBPL database that lacked positioning

information (as indicated in the Figure 12c script). Only then was a usable Violet file

produced. Figure 15a shows the generated DOT file, Figure 15b the DOT file returned

by the Kieler server, and Figure 15c the T2M extracted position table.

digraph {

 // classes

 c1;

 c0;

 // interfaces

 // class Implements

 // interface Extends

 // class Extends

 // associations

 c1->c0;

}

(a) Generated DOT file

digraph {

 // classes

 c1 [pos="50.0,20.0", width="0.14", height="0.14"];

 c0 [pos="20.0,20.0", width="0.14", height="0.14"];

 c1->c0 [pos="45.0,20.0 25.0,20.0"];

 bb="0,0,70.0,40.0";

}

(b) Kieler-Returned DOT file

table(position,[id,x,y]).

position(c1,50,20).

position(c0,20,20).

(c) Extracted Position Table

Fig. 15. DOT File Transformations.

9 Towards Bootstrapping

Although we have not fully bootstrapped MDELite for reasons discussed earlier, there

are two basic steps to produce the FSM tool or any other domain-specific MDE tool.

-name : String

«oval»State
«Arrow»

Transition

-startsAt 1 -start
*

-endsAt1
-end *

«DoubleCircle»

Stop

«SolidCircle»

Start

Fig. 16. FSM Metamodel with Graphical

Stereotypes

First, we need to specify how meta-

class instances are to be drawn by the

GE . The simplest way is to allow the

GE to set properties of each metaclass

to provide the necessary information.

For example, Figure 16 uses stereotypes

to declare that a State is to be drawn as

an oval, except a Start state is a solid-

circle and a Stop state is a double-circle

(c.f. Figure 1). Other ways to encode this

information are also possible.

Second, look at Figure 17. A FSM

domain architect would (1) draw the

FSM metamodel using a Metamodel

Drawing Tool (MDT), which mechanizes

the rules of Section 2 to produce Prolog table definitions for the input metamodel and a

palette of icon-metaclass pairings to customize the GE , (2) write the Prolog metamodel

constraints, the Prolog M2M transformations, and a Velocity M2T file, and (3) run a

build script that integrates these inputs with a MDE Tool Shell to generate the FSM tool.

12

FSM

Domain

Architect

MetaModel

Drawing Tool

(MDT)

prolog MM

constraints

(2) writes

VM2T file

supplies parts

as parameters

to

MDE Tool Shell

(which includes

the graphical

editor)

(1) draws FSM

metamodel

class diagram

=

FSM Tool

(3) runs

script

ToolBuild.xml

prolog table

schemas +

palette file

M2M

rules

Fig. 17. Generating a MDE FSM Tool.

To bootstrap MDELite requires an MDEGod to build the two tools (MDT and

MDE Tool Shell) and script (ToolBuild.xml) that a Domain Architect (Einstein) in-

vokes (see Figure 17). Specifically, MDEGod writes the ToolBuild.xml script and

purchases or outsources the writing of the MDE Tool|Shell (which includes the GE).

Initially the MDEGod hacks a MetaModel Drawing Tool (MDT). MDEGod then re-

lies on a fundamental MDE constraint that the MDELite meta-meta-model must be an

instance of itself. So, the MDEGod plays the role of a MetaModel Domain Architect,

replacing Einstein in Figure 17 with him/herself. MDEGod (1) draws the metamodel of

all class diagrams, (2) writes its Prolog metamodel constraints, Prolog M2M transforma-

tions, and a VM2T file (which produces Prolog table schemas and a palette for drawing

class diagrams from the Prolog database), (3) runs the build script to produce the MDT to

complete the bootstrap, thereby building an MDT to replace the hacked MDT. Again, all of

this hinges on finding a palette-customizable GE .

10 Personal Experiences, Insights, and a Small Second Case Study

We created MDELite as an alternative to Eclipse MDE tools to understand and teach

MDE concepts. Our work begs for an empirical study to evaluate the benefits of teaching

MDELite; we intend to conduct such a study later this year. MDELite is an interesting

technical contribution in its own regards, and that is what we focus on in this paper.

We used MDELite in a Fall 2012 undergraduate course on “Introduction to Soft-

ware Design”, giving an assignment more ambitious than what we tried in Fall 2011.

Specifically, we asked students to:

1. Given a simple metamodel of class diagrams, manually produce the schemas of the

metamodel’s underlying Prolog tables;

2. Write a T2M transformation in Java using Java reflection to extract information

about classes, methods, and fields from .class files and present this information as

tuples in their tables;

3. Write Prolog constraints to evaluate the correctness of the tables they produced;

13

4. Write a Velocity M2T transformation that maps their tables into stubbed Java source;

5. Write another T2M transformation that converts Java reflection information to

produce a yUML specification, which is then translated into a Violet diagram by

MDELite; and

6. Extend the MDELite category (Figure 12) with the domains and arrows of Figure 18

by implementing the required classes and methods to script their transformations.

We can report many fewer difficulties with this assignment than the simpler assignment of

the previous year that used Eclipse MDE tools. Still, there are some practical difficulties

that we are obliged to alert readers.

CLASS

FILES

CLASS

PL

JAVA

SOURCE
T2M M2TYUML T2M

Fig. 18. Additional Domains and Arrows to Figure 12.

Multi-Paradigm Programming. We are Java programmers and novices to Prolog. Pro-

log and Java have two very different mind-sets, and flipping between paradigms can be

confusing. Trivial things like Prolog rules ending in (Java) semicolons instead of (Prolog)

periods was a mistake we constantly made. Prolog inequalities (=<) are syntactically

reversed in Java (<=). In SWI-Prolog, when something is mistyped, a question-mark

prompt (?) is produced and the usual Windows/Linux character escapes to reset to the

command prompt simply do not work. Problems like these disappear once familiarity

with Prolog sets in—they clearly are not fundamental, but are jolting to students in

a first, quick immersion into Prolog. For this reason, recommend that MDELite be a

pair-programming project: one person concentrating on Prolog, the other on Java, to

minimize cross-world confusion.

Many-Columned Tables. When there are many columns, it can be daunting in Pro-

log to correctly reference a table and account for each of its columns in a predi-

cate. In such cases, one can M2M transform such tables into RDF 3-tuple format of

(tupleid, columnName, value) or a 4-tuple format (tableName, tupleid, column-

Name, value) for easy attribute referencing.

VioletPL SDBPL YUMLPL YUML

M2M M2M M2T

Fig. 19. Debugging Transformation Scripts

Transformation Debugging. MDELite

provides a microcosm of the challenges

of debugging transformations. Even

though a transformation takes an object

(a model) as input and produces an ob-

ject (a model) as output, objects are Pro-

log databases that are not simple values

and can have complex structures. Writing transformations in any language is not sim-

ple—it is easy to forget a case or miss-write a translation. Our hunch is that the simpler

a transformation’s specification, the easier it will be to track down errors. This remains,

however, a conjecture.

A technique that we found useful—perhaps motivated by the “shape” of the category

of Figure 12a—was to define a transformation τ and then its inverse τ
−1, so that we

14

could test whether τ · τ−1 was an identity or an equivalence.7 This helped, but obviously

did not eliminate all bugs.

Nonetheless, the fundamental challenge in debugging transformations becomes

clearly evident: an error is detected in a database (far right of Figure 19). Upon exami-

nation, we discovered that the transformation that produced it was correct, but its input

database was incorrect. This unwinds backwards until we discover a correct database

that was input to a transformation that produced an incorrect database. Surely results

on debugging Prolog programs and debugging database transactions—studied long

ago—might be useful to MDELite. This too remains a conjecture.

Preparatory M2M Transformations. When Velocity templates have many loops and if

statements, it is easy to lose track of loop and if-then-else boundaries, thereby creating

incorrect templates. One reason why loops and if-statements are used is to join tables. For

example, consider the following Class table rows, where class Customer is connected

to class Address via a ∗ →1 association:

class(c1,’Customer’,’’,’’,’’).

class(c2,’Address’,’’,’’,’’).

association(c1,’*’,none,c2,’1’,arrow).

In a M2T transformation, the class table must be joined (twice) with the association
table to convert class identifiers (c1 and c2) into class names (Customer and Address).
Similarly, other computations can arise to convert atoms (like ‘arrow’ above) into
rendering text (in this case, the character ‘>’ to denote an arrow). Such translations
significantly complicate Velocity templates—it would not be so bad if one could indent
Velocity statements to pair up the start and end of loops and if-statements:

#forall($a in $associationS)

#forall($c in $classS)

#if ($a.id = $c.id)

#set($classname=$c.name)

#end

#end

#end

Indenting, however, generates extra spaces, which is not always desirable. The alternative
is to produce a table of association declarations that render Velocity printing trivial:

yumlAssociation(’Customer’,’*’,’’,’Billing Address’,’1’,’>’).

Using M2M transformations can reduce the size (read: complexity) of Velocity files

substantially. Although this is not a hard-and-fast heuristic, our experience is that keeping

Velocity templates as simple as possible is worth the extra stage in Prolog translation.

11 Related Work

A paper by Favre inspired our work [11]. He warned against adding complex technologies

on top of already complex technologies, and advocated a back-to-basics approach,

7 Two documents d1 and d2 can differ in whitespace, ordering of declarations, etc. and still

represent equivalent class diagrams.

15

specifically suggesting that MDE be identified with set theory and the use of Prolog to

express MDE relationships among models and their meta-model counterparts.

In searching the literature, we found many papers advocating Prolog-database inter-

pretations of MDE. For lack of space, we concentrate on the most significant, although

we feel none are quite as compact or as clean as MDELite. Almendros-Jiménez and Irib-

arne advocated Prolog to write model transformations and model constraints [2,3]. The

difference between our work and theirs is orientation: our goal is to find a simple way to

demonstrate and teach MDE to undergraduates. Their goal is to explore the use of logic

programming languages in MDE applications. For example, PTL is a hybrid of the Atlas

Transformation Language and Prolog for writing model transformations [1]. In another

paper, OWL files encode MDE databases and OWL RL specifies constraints in terms

of Description Logics. For teaching undergraduates, the use of OWL and Description

Logic is overkill and obscures the simplicity of MDELite. How M2T transformations

are handled and MDE applications (categories) are encoded are not discussed.

Störrle’s Model Manipulation Toolkit uses unnormalized (set-valued) relational

tables as the basic Prolog data representation and uses Prolog to query these tables [18].

Although M2M transformations seem not to be discussed, the obvious implication is

present. MDELite goes beyond this work also integrating M2T and T2M transformations,

as well as exposing the bigger picture of MDE applications as categories.

Oetsch et. al. advocate Answer-Set Programming (ASP) to express a limited form

of MDE [14]. Entity-Relationship models represent meta-models (drawn using Eclipse

MDE tools); and their tool allows one to enter ASP facts (similar to Prolog facts)

manually that conform to the input meta-models; ASP queries are used to validate meta-

model constraints expressed in the ER model.8 MDELite is more general than this: M2M,

M2T, and T2M mappings need to be defined in addition to model constraints. Further,

how MDE applications are defined (as in MDELite categories) is not considered.

12 Conclusions

MDELite reinterprets MDE from the viewpoint of relational databases. A model is a

database of tables; (meta-)model constraints and M2M transformations are expressed

by Prolog. M2T and T2M transformations rely on simple Java programs. Categories, a

fundamental structure in mathematics, integrates these concepts to define MDE applica-

tions. MDELite leverages (and maybe introduces or refreshes) core undergraduate CS

knowledge to explain, illustrate, and build MDE applications without the overhead and

complexity of Eclipse MDE tools. Our case studies indicate MDELite is feasible; a user

study to evaluate the benefits of MDELite in teaching is a next step in our work.

We believe MDELite is a clarion way to explain MDE to undergraduate students. It

is our hope that others may benefit, and indeed improve, our ideas. MDELite is available

at http://www.cs.utexas.edu/schwartz/MDELite.html

8 The Eclipse OCL tool plugin is similar in that one has to manually enter tuples beforehand

before OCL queries can be executed. This is impractical, even for classroom settings.

http://www.cs.utexas.edu/schwartz/MDELite.html

16

Acknowledgements. We am indebted to Salva Trujillo (Ikerlan), Oscar Diaz (San Se-

bastian), and Perdita Stevens (Edinburgh) for their insightful comments on earlier drafts

of this paper. We also thank Robert Berg, Eric Huneke, Amin Shali, and Joyce Ho for

VM2T. We also appreciate the help given to me by Miro Spönemann on the Kieler graph

layout tools and Ralf Lämmel his invaluable help answering questions about Prolog.

We gratefully acknowledge support for this work by NSF grants CCF 0724979 and

OCI-1148125.

References

1. Almendros-Jimenez, J., Iribarne, L.: A model transformation language based on logic pro-

gramming. In: SOFSEM 2013: Theory and Practice of Computer Science (2013)

2. Almendros-Jimenez, J., Iribarne, L.: A framework for model transformation in logic program-

ming (2008)

3. Almendros-Jimenez, J., Iribarne, L.: Odm-based uml model transformations using prolog

(2011)

4. Apache Velocity Project. http://velocity.apache.org/

5. Batory, D., Azanza, M., Saraiva, J.: The Objects and Arrows of Computational Design. In:

MODELS (Oct 2008)

6. Batory, D.: Multilevel models in model-driven engineering, product lines, and metaprogram-

ming. IBM Syst. J. (Jul 2006)

7. Bezivin, J., Jouault, F., Valduriez, P.: On the need for megamodels. In: Proc. of the OOP-

SLA/GPCE Workshop on Best Practices for Model-Driven Software Development (2004)

8. Dehayni, M., Feraud, L.: An approach of model transformation based on attribute grammars.

In: Konstantas, D., Leonard, M., Pigneur, Y., Patel, S. (eds.) Object-Oriented Information

Systems, Lecture Notes in Computer Science, vol. 2817. Springer Berlin Heidelberg (2003)

9. Diskin, Z.: Algebraic models for bidirectional model synchronization. In: MoDELS (2008)

10. Elmasri, R., Navathe, S.: Fundamentals of Database Systems. Addison-Wesley (2010)

11. Favre, J.M.: Towards a basic theory to model model driven engineering. In: Workshop on

Software Model Engineering, WISME 2004 (2004)

12. Hainaut, J.L.: The transformational approach to database engineering. In: GTTSE (2006)

13. Kieler Web Service Tool. http://trac.rtsys.informatik.uni-kiel.de/trac/

kieler/wiki/Releases/Tools

14. Oetsch, J., Pührer, J., Seidl, M., Tompits, H., Zwickl, P.: Videas: A development tool for

answer-set programs based on model-driven engineering technology. In: LPNMR (2011)

15. Oldevik, J.: Umt: Uml model transformation tool overview and user guide documentation.

http://umt-qvt.sourceforge.net/docs/ (2004)

16. Pierce, B.: Basic Category Theory for Computer Scientists. MIT Press (1991)

17. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling: state of the art and

research challenges. In: Proc. of the 2007 Dagstuhl Conference on Model-Based engineering

of embedded real-time systems (2010)

18. Strrle, H.: A prolog-based approach to representing and querying software engineering models

19. SWI-Prolog. http://www.swi-prolog.org/

20. UML Factory. http://www.umlfactory.com/

21. Violet UML Editor. http://alexdp.free.fr/violetumleditor/page.php

22. yUML Beta. http://yuml.me/

http://velocity.apache.org/
http://trac.rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Releases/Tools
http://trac.rtsys.informatik.uni-kiel.de/trac/kieler/wiki/Releases/Tools
http://umt-qvt.sourceforge.net/docs/
http://www.swi-prolog.org/
http://www.umlfactory.com/
http://alexdp.free.fr/violetumleditor/page.php
http://yuml.me/

	Teaching Model Driven Engineering from a Relational Database Perspective
	Don Batory, Eric Latimer, Maider Azanza

