
International Journal of Management & Information Systems – First Quarter 2015 Volume 19, Number 1

Copyright by author(s); CC-BY 7 The Clute Institute

Teaching Object-Oriented Programming:

A Comparison Of Java And Objective-C
Alexis Koster, San Diego State University, USA

Abstract

The programming language Java has been for many years the language in which many Web

applications as well as large server applications have been developed. More recently, it has also

been used in the development of Android applications. It has often been adopted as the primary

teaching language in both introductory and advanced programming courses. Due to its use on the

iPhone and the iPad, Objective-C is gaining popularity and is now taught in some programming

courses. Not as well designed as Java and not as general-purpose as Java, Objective-C is

unlikely to supplant it in college courses.

Keywords: Java; Objective-C; Object-oriented programming; Data encapsulation; Inheritance

INTRODUCTION: INFORMATION HIDING

rogrammers involved in the design and programming of large projects should know as little as

possible about the internals of the modules written by other programmers; this was demonstrated in

a seminal experiment in software engineering (Parnas, 1972). In particular, the implementation of

the data in a module must be hidden. This principle is known as “information hiding”, and is closely related to the

concepts of data abstraction (Liskov, 2001) and data encapsulation (Poo et al., 2008). At the time of Parnas’

experiment, programming languages had features that went against this principle. For example, Fortran has a

feature called COMMON making data available to all modules. So does the programming language C, with the

global extern variables (which also exist in Objective-C).

One of the main objectives of the introduction of classes and objects in programming languages was

precisely to provide a general mechanism for information hiding. Classes and objects are now required features of

languages taught in programming courses (Koster, 2010). The object-oriented languages in use today include,

among others, C++, C#, Java, Objective-C, and Visual Basic. The Java language has been for many years the

language of choice in computer science departments. Objective-C (Kochan, 2012), an older language than Java, has

recently seen an increase in its teaching.

Java was introduced by Sun Computer Systems in 1995 as a language for the development of Web

applications. An essential factor in Java’s acceptance and popularity stems from the way Java programs are

processed using the Java Virtual Machine (Poo et al., 2008), making Java a multi-platform language. A second

reason for the popularity of Java stemmed of the availability of a huge library of classes, many of which are useful

for the development of GUI-based applications

At the time Java made its initial appearance on the software scene, the language of choice for developing

large system applications was C++. C++ had taken the full C programming language as its basis and added to it

object-oriented features (Stroustrup, 1997). Java took as its basis a small and clean subset of C and integrated

object-oriented features in that subset. As a consequence, Java supplanted C++ in many software development

applications because it was much cleaner and simpler than C++.

Objective-C, designed in the early 1980’s, was adopted by Apple in 1996. It became the language of

development of applications under the Mac OS X operating system, and under the iOS operating systems of the

iPhone and the iPad. This led to the growing popularity of Objective-C and to the increase of its teaching in

P

International Journal of Management & Information Systems – First Quarter 2015 Volume 19, Number 1

Copyright by author(s); CC-BY 8 The Clute Institute

programming classes. As for C++, the full C language is a subset of Objective-C, which added to it object-oriented

features, including its class libraries known as the Foundation framework, Cocoa, and Cocoa Touch.

CLASSES, OBJECTS, METHODS

Classes and objects are the building blocks that realize the principles of information hiding and data

encapsulation. Another important feature is the use of hierarchies of classes, which provide for re-use of software.

In a nutshell, when a class has been created (for example class BankAccount), programmer Jane using that class

does not need to know how data are represented (they are “private” data), and does not need to know how the

methods (such as the method creditDeposit and print_Statement) are implemented. She needs to know how to

invoke those methods (for each method, its name, the number of parameters and their types, and the type of the data

returned by the method). Jane can create objects of the class BankAccount such as tom_Account and invoke the

“public” methods of the class, such as creditDeposit to process tom_Account. Moreover, if Jane works for a bank

that has a special type of bank account, for example a savings account, Jane can create a subclass of BankAccount

called SavingsAccount with its own methods (for example the method compute_Interest), whereas the existing

methods of the superclass BankAccount may still be used by objects of the subclass when needed (inheritance).

Both Java and Objective-C have the needed programming features for those concepts, but they do it in different

ways. Here are a few of these differences.

Reference To Objects

Java has introduced a simple and clean feature whereas Objective-C uses the C-based feature of explicit

pointer, which is more complex to express and more difficult for students to understand. Here is how we would

declare tom_Account to be a variable that will refer to an object of the class BankAccount in Java and in Objective-

C;

 BankAccount tom_Account; (Java)

 Bank_Account *tom_Account; (Objective-C)

The asterisk in Objective-C comes directly from the language C. It indicates that tom_Account will contain

a pointer to an object of the class BankAccount, as pointers are explicit elements of the language, which can be

processed on their own. Forgetting the asterisk is a very common error.

Methods and functions

Java has one unique syntax for all methods and functions. Continuing the previous example, here is how

we would create an object of the class BankAccount in Java, set the initial balance of $1000.0, and credit a deposit

of $200.0:

 tom_Account = new BankAccount();

 tom_Account.setInitialBalance(1000.0);

 tom_Account.creditDeposit(200.0);

The method BankAccount() in the first statement is called a constructor. It is used to create and initialize

an object of the class BankAccount; setInitialBalance and creditDeposit are two methods of the class BankAccount.

As public methods, they are part of the interface of the class BankAccount.

In Objective-C, the similar statements would be:

 tom_Account = [[BankAccount alloc] init];

 [tom_Account setInitialBalance:1000.0];

 [tom_Account creditDeposit:200.0];

International Journal of Management & Information Systems – First Quarter 2015 Volume 19, Number 1

Copyright by author(s); CC-BY 9 The Clute Institute

 As seen in those statements, Objective-C has an unusual syntax for indicating the arguments of a method.

Note also that Objective-C uses a different syntax for functions that are not methods (such as NSLog to display to

the console or the main function), creating possible confusion for students as well as more complexity.

Information Hiding

In a Java class, the keyword private indicates that the data (also called “fields” or “instance variables”) of

an object of that class are hidden from other classes. We would start the definition of the class BankAccount as

follows:

 public class BankAccount

 {

 private Owner customer;

 private double initialBalance;

 private double endBalance;

 …….

Declaring instance variables as private is strongly recommended, but Java also provides protected instance

variables, which make them accessible to subclasses; package-access instance variables, which make them

accessible to classes of the same package; and public instance variables.

Things are much more muddled in Objective-C. The methods of an Objective-C class are declared in a

section called the interface section, they are defined in a section called the implementation section. Instance

variables declared in the interface section are accessible to the class and its subclasses, but hidden from other

classes. Instance variables declared in the implementation section are completely private (not even accessible by

the subclasses). It is considered good practice to give the name of an instance variable to the method that retrieves

its value. For example, consider part of the implementation section for the class BankAccount.

 @implementation BankAccount (Objective-C)

 { ……….

 double initialBalance

 }

 ……….

 -(double) initialBalance

 {

 return initialBalance;

 }

In the main program, we would retrieve the intialBalance of tom_Account with the following expression:

 [tom_Account initialBalance]

where initialBalance is the method, not the variable. This is very confusing for students and, in some sense, seems

to be contrary to the concept of information hiding. Objective-C goes even further. Instead of declaring the

instance variable initialBalance, the method initialBalance, and the method setInitialBalance (which sets the value of

the instance variable), we can do as follows, using the property construct.

1) In the interface section, have the following statement:

@property double initialBalance;

2) In the implementation section, have the following statement:

@synthesize initialBalance;

International Journal of Management & Information Systems – First Quarter 2015 Volume 19, Number 1

Copyright by author(s); CC-BY 10 The Clute Institute

Then Objective-C internally generates the instance variable initialBalance and the accessors method for it

(the method that gets its value and the method that sets it). At this point, the dot notation should be used, for those

accessor methods, for example

 tom_Account.initialBalance = 1000;

 double newBalance = tom_Account.initialBalance;

Again initialBalance in both of the statements is not the instance variable, even if it looks like we are using

the name of the instance variable (in particular in the first statement), seemingly violating the principle of

information hiding.

Because of the confusion created by this use of properties, it is now advised (Kochan, 2012) to use a

slightly different name for the variable and the property, starting with an underscore. The statement

 @synthesize initialBalance = _intialBalance;

indicates that the name of the instance variable is _initialBalance.

COURSE OUTCOMES

In Spring 2013, 22 students took the Objective-C course. In Spring 2014, 27 students took the Java course.

Both courses are Management Information Systems elective courses. Senior students and a few graduate students

enroll in them. Students already took a Visual Basic course, which is a prerequisite for those two courses. For each

of the Java course and the Objective-C course, the first examination included eight very basic questions about the

topics discussed above. For the Java examination, there were 26 errors overall for the 8 questions, or 0.96 error per

student. For the Objective-C course, the 22 students totaled 56 errors for the 8 questions, or 2.54 errors per student.

Although those figures are not produced by a rigorous experiment, they seem nevertheless to indicate that students

understand better the basic concepts of object-oriented programming after a Java course than after an Objective-C

course.

CONCLUSIONS

This comparison between a few basic features of Java and Objective-C shows that, overall, Java is a better

designed programming language than Objective-C. It is better suited to teach the concepts of object-oriented

programming, in particular of information hiding. Results of course examinations support this assertion. Java large

industry use makes it a more desirable choice for students. It is unlikely that Objective-C will overcome Java in the

classroom.

AUTHOR INFORMATION

Alexis Koster

After working several years in industry as a software engineer, Alexis Koster joined the MIS Department at SDSU

in 1983, where he has been teaching database systems and application development with various languages,

including Java and Objective-C. His current research interests focus on the role of the Internet in changing the

music industry and on the use of object-oriented programming in application development.

E-mail: akoster@mail.sdsu.edu

REFERENCES

1. Kerrigan, B. & Richtie, D. (1988). The C Programming Language, 2e. Upper Saddle River, NJ: Prentice-

Hall.

2. Kochan, S. (2012). Programming in Objective-C, 4e. Upper Saddle River, NJ: Pearson.

3. Koster, A. (2010). Are Academic Programs Adequate for the Software Profession? The American Journal

of Business Education, March.

International Journal of Management & Information Systems – First Quarter 2015 Volume 19, Number 1

Copyright by author(s); CC-BY 11 The Clute Institute

4. Liskov , B. & Guttag, J. (2001). Program Development in Java – Abstraction, Specification, and Object-

Oriented Design. Reading, MA: Addison-Wesley.

5. Parnas, D. (1972). Some Conclusions from an Experiment in Software Engineering Techniques. AFIPS

Conference Proceedings. Paper presented at the Fall Joint Computer Conference, Anaheim, Ca, 5-7

December. Montvalle, NJ; AFIPS Press.

6. Poo, D., Kiong, D., & Ashok, S. Object-Oriented Programming and Java, 2e. New York, NY: Springer.

7. Stroustrup, B. (1997). The C++ Programming Language, 3e. Reading, MA: Addison-Wesley.

International Journal of Management & Information Systems – First Quarter 2015 Volume 19, Number 1

Copyright by author(s); CC-BY 12 The Clute Institute

NOTES

