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Abstract 
 

The programming language Java has been for many years the language in which many Web 

applications as well as large server applications have been developed.  More recently, it has also 

been used in the development of Android applications.  It has often been adopted as the primary 

teaching language in both introductory and advanced programming courses.  Due to its use on the 

iPhone and the iPad, Objective-C is gaining popularity and is now taught in some programming 

courses.  Not as well designed as Java and not as general-purpose as Java, Objective-C is 

unlikely to supplant it in college courses. 

 

Keywords: Java; Objective-C; Object-oriented programming; Data encapsulation; Inheritance 

 

 

INTRODUCTION: INFORMATION HIDING 

 

rogrammers involved in the design and programming of large projects should know as little as 

possible about the internals of the modules written by other programmers; this was demonstrated in 

a seminal experiment in software engineering (Parnas, 1972). In particular, the implementation of 

the data in a module must be hidden.  This principle is known as “information hiding”, and is closely related to the 

concepts of data abstraction (Liskov, 2001) and data encapsulation (Poo et al., 2008).   At the time of Parnas’ 

experiment, programming languages had features that went against this principle.  For example, Fortran has a 

feature called COMMON making data available to all modules.  So does the programming language C, with the 

global extern variables (which also exist in Objective-C). 

 

One of the main objectives of the introduction of classes and objects in programming languages was 

precisely to provide a general mechanism for information hiding.  Classes and objects are now required features of 

languages taught in programming courses (Koster, 2010).  The object-oriented languages in use today include, 

among others, C++, C#, Java, Objective-C, and Visual Basic.  The Java language has been for many years the 

language of choice in computer science departments. Objective-C (Kochan, 2012), an older language than Java, has 

recently seen an increase in its teaching. 

 

Java was introduced by Sun Computer Systems in 1995 as a language for the development of Web 

applications.  An essential factor in Java’s acceptance and popularity stems from the way Java programs are 

processed using the Java Virtual Machine (Poo et al., 2008), making Java a multi-platform language.   A second 

reason for the popularity of Java stemmed of the availability of a huge library of classes, many of which are useful 

for the development of GUI-based applications 

 

At the time Java made its initial appearance on the software scene, the language of choice for developing 

large system applications was C++.  C++ had taken the full C programming language as its basis and added to it 

object-oriented features (Stroustrup, 1997).  Java took as its basis a small and clean subset of C and integrated 

object-oriented features in that subset.  As a consequence, Java supplanted C++ in many software development 

applications because it was much cleaner and simpler than C++. 

 

Objective-C, designed in the early 1980’s, was adopted by Apple in 1996.  It became the language of 

development of applications under the Mac OS X operating system, and under the iOS operating systems of the 

iPhone and the iPad.   This led to the growing popularity of Objective-C and to the increase of its teaching in 
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programming classes.  As for C++, the full C language is a subset of Objective-C, which added to it object-oriented 

features, including its class libraries known as the Foundation framework, Cocoa, and Cocoa Touch. 

 

CLASSES, OBJECTS, METHODS 

 

Classes and objects are the building blocks that realize the principles of information hiding and data 

encapsulation.  Another important feature is the use of hierarchies of classes, which provide for re-use of software.  

In a nutshell, when a class has been created (for example class BankAccount), programmer Jane using that class 

does not need to know how data are represented (they are “private” data), and does not need to know how the 

methods (such as the method creditDeposit and print_Statement) are implemented.   She needs to know how to 

invoke those methods (for each method, its name, the number of parameters and their types, and the type of the data 

returned by the method).   Jane can create objects of the class BankAccount such as tom_Account and invoke the 

“public” methods of the class, such as creditDeposit to process tom_Account.  Moreover, if Jane works for a bank 

that has a special type of bank account, for example a savings account, Jane can create a subclass of BankAccount 

called SavingsAccount with its own methods (for example the method compute_Interest), whereas the existing 

methods of the superclass BankAccount may still be used by objects of the subclass when needed (inheritance).  

Both Java and Objective-C have the needed programming features for those concepts, but they do it in different 

ways.  Here are a few of these differences. 

 

Reference To Objects  

 

Java has introduced a simple and clean feature whereas Objective-C uses the C-based feature of explicit 

pointer, which is more complex to express and more difficult for students to understand.  Here is how we would 

declare tom_Account to be a variable that will refer to an object of the class BankAccount in Java and in Objective-

C; 

 

       BankAccount tom_Account;              (Java) 

       Bank_Account  *tom_Account;         (Objective-C) 

 

The asterisk in Objective-C comes directly from the language C.  It indicates that tom_Account will contain 

a pointer to an object of the class BankAccount, as pointers are explicit elements of the language, which can be 

processed on their own.   Forgetting the asterisk is a very common error. 

Methods and functions   

 

Java has one unique syntax for all methods and functions.  Continuing the previous example, here is how 

we would create an object of the class BankAccount in Java, set the initial balance of $1000.0, and credit a deposit 

of $200.0: 

 

      tom_Account = new BankAccount(); 

      tom_Account.setInitialBalance(1000.0); 

      tom_Account.creditDeposit(200.0); 

 

The method BankAccount() in the first statement is called a constructor.  It is used to create and initialize 

an object of the class BankAccount; setInitialBalance and creditDeposit are two methods of the class BankAccount.  

As public methods, they are part of the interface of the class BankAccount. 

 

In Objective-C, the similar statements would be: 

 

     tom_Account = [[BankAccount alloc] init]; 

     [tom_Account setInitialBalance:1000.0]; 

     [tom_Account creditDeposit:200.0]; 
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 As seen in those statements, Objective-C has an unusual syntax for indicating the arguments of a method.  

Note also that Objective-C uses a different syntax for functions that are not methods (such as NSLog to display to 

the console or the main function), creating possible confusion for students as well as more complexity.    

 

Information Hiding   

 

In a Java class, the keyword private indicates that the data (also called “fields” or “instance variables”) of 

an object of that class are hidden from other classes.  We would start the definition of the class BankAccount  as 

follows: 

 

    public class BankAccount 

    { 

        private Owner customer; 

        private double initialBalance; 

        private double endBalance; 

        …….  

 

Declaring instance variables as private is strongly recommended, but Java also provides protected instance 

variables, which make them accessible to subclasses; package-access instance variables, which make them 

accessible to classes of the same package; and public instance variables. 

 

Things are much more muddled in Objective-C.  The methods of an Objective-C class are declared in a 

section called the interface section, they are defined in a section called the implementation section.  Instance 

variables declared in the interface section are accessible to the class and its subclasses, but hidden from other 

classes.   Instance variables declared in the implementation section are completely private (not even accessible by 

the subclasses).  It is considered good practice to give the name of an instance variable to the method that retrieves 

its value.  For example, consider part of the implementation section for the class BankAccount. 

 

   @implementation BankAccount   (Objective-C) 

   { ………. 

      double initialBalance 

   } 

   ……….  

   -(double) initialBalance 

   { 

       return initialBalance; 

   } 

 

In the main program, we would retrieve the intialBalance of tom_Account with the following expression: 

 

  [tom_Account  initialBalance] 

 

where initialBalance is the method, not the variable.  This is very confusing for students and, in some sense, seems 

to be contrary to the concept of information hiding.   Objective-C goes even further.  Instead of declaring the 

instance variable initialBalance, the method initialBalance, and the method setInitialBalance (which sets the value of 

the instance variable), we can do as follows, using the property construct. 

 

1) In the interface section, have the following statement: 

@property double initialBalance; 

2)  In the implementation section, have the following statement: 

@synthesize initialBalance; 
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Then Objective-C internally generates the instance variable initialBalance and the accessors method for it 

(the method that gets its value and the method that sets it).  At this point, the dot notation should be used, for those 

accessor methods, for example 

 

    tom_Account.initialBalance = 1000;   

    double newBalance = tom_Account.initialBalance; 

 

Again initialBalance in both of the statements is not the instance variable, even if it looks like we are using 

the name of the instance variable (in particular in the first statement), seemingly violating the principle of 

information hiding. 

 

Because of the confusion created by this use of properties, it is now advised (Kochan, 2012) to use a 

slightly different name for the variable and the property, starting with an underscore.  The statement 

 

   @synthesize initialBalance = _intialBalance; 

indicates that the name of the instance variable is _initialBalance. 

 

COURSE OUTCOMES 

 

In Spring 2013, 22 students took the Objective-C course.  In Spring 2014, 27 students took the Java course.  

Both courses are Management Information Systems elective courses.  Senior students and a few graduate students 

enroll in them.  Students already took a Visual Basic course, which is a prerequisite for those two courses.  For each 

of the Java course and the Objective-C course, the first examination included eight very basic questions about the 

topics discussed above.  For the Java examination, there were 26 errors overall for the 8 questions, or 0.96 error per 

student.  For the Objective-C course, the 22 students totaled 56 errors for the 8 questions, or 2.54 errors per student.  

Although those figures are not produced by a rigorous experiment, they seem nevertheless to indicate that students 

understand better the basic concepts of object-oriented programming after a Java course than after an Objective-C 

course. 

 

CONCLUSIONS 

 

This comparison between a few basic features of Java and Objective-C shows that, overall, Java is a better 

designed programming language than Objective-C.  It is better suited to teach the concepts of object-oriented 

programming, in particular of information hiding.   Results of course examinations support this assertion.  Java large 

industry use makes it a more desirable choice for students.   It is unlikely that Objective-C will overcome Java in the 

classroom. 
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