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of Proposition 3 are violated, and the sample median is
not a U statistic.

Tukey (1958) suggests that var[n'?T,] can be esti-
mated by the bias-corrected sample variance of the
bracketed terms in (4). When T, is a U statistic, this
becomes

Vo= (1= 1) S [nT,— (1 - DTO, ~ T

= (1 - )3 (T~ T

By algebraic manipulation, it can be shown that
T,— T, = (m/(n — m))[k(X.) - T],

where
; n—1\"
kl(Xi)= m-—1 2 k(Xi,/Yj]"XjZ’-"’X'/m_l)‘
Sin—-1,m-1)
Thus,

V= Imi(n = 1/n = m )| 2 (6i(X) = oY

This result also appears in Sen (1960,1981), where it is
derived from a different approach. In particular, Sen
proposes the estimator

Vi=min 1) S (6(X) - TN

and shows that it is a strongly consistent estimator of
lim,_.. var(n'?T,). Thus the jackknife estimator V, =
(n —1)*Vi//(n —m)* is also consistent. For example,
when the population is normal with variance o* and T,
is the sample variance, then EV,=2nc"(n —2) and
EV,=2n(n - 2)o*/(n —1)?, while var(n"*T,)=2no"

(n —1). Thus, in this example, V, tends to overestimate
the variance, while V, underestimates it.

Finally, we note that occasionally the jackknife will
transform a nonU statistic into a U statistic. The kernel
can then be found using the previously stated results,
and the asymptotic properties of the jackknifed esti-
mator can be deduced. An example is the statistic
n'3(X; — X)?, which becomes (n —1)7'3(X; — X)?
after jackknifing. Some relationships between the jack-
knife and U statistics are mentioned elsewhere in the
literature. Mantel (1967) asserts that T, is composed of
U statistics of degrees n and n — 1 (though technically,
the degree must be fixed), and Arvesen (1969) discusses
jackknifing a function of a U statistic and suggests that
Proposition 3 may be true.

[Received October 1982. Revised June 1983.]
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Teaching Singular Distributions to Undergraduates

L. H. KOOPMANS*

Singular distributions are seldom covered in under-
graduate probability courses, although they are of in-
terest in statistics and, as is shown by example, can
easily arise through extending mixed discrete and con-
tinuous distributions to two or more dimensions. A rep-
resentation is given that makes the construction of a
class of singular distributions in two dimensions simple
to carry out. This representation is also used to charac-
terize the types of marginal distributions that members
of this class can have.

KEY WORDS: Singular distributions; Mixtures of
distributions.
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1. INTRODUCTION

While preparing an exam for an undergraduate
course in probability some years ago, I came upon the
following simple cumulative distribution function (cdf)

F(x,y)=(x +y)2
0=x=1,0=sy=1 1)

My students were equipped with the usual knowledge
about analyzing cdf’s: The probability function of a dis-
crete distribution, p(x,y), can be computed by a stan-
dard method at the jump points of F(x,y), while the
probability density function f(x,y) is computed by
taking the mixed second-order partial derivative of
F(x,y). I had even discussed mixed distributions for
which both components can be present (i.e., nonzero)
at the same time.
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Now, the problem with the cdf of (1) is that both
p(x,y) and f(x,y) are easily seen to be identically 0,
even though the cdf obviously represents a completely
proper probability distribution. At this point in an
exam, it is not unreasonable to expect the normal
undergraduate to panic. While I didn’t have the courage
to include the analysis of this cdf in the exam, it did
become the basis of some subsequent lectures (and a
short note (Koopmans 1969)).

The student of probability who is familiar with the
representation of probability distributions for random
variables via the Lebesgue decomposition theorem
(see, e.g., McCord and Maroney 1964, p. 71) will recall
that there are three pure distributional types, not just
the two mentioned previously. It follows, by process of
elimination, that the given cdf must be of the third type;
that is, it is an example of a pure singular distribution.

The usual method of teaching the probability distri-
butions of random variables guarantees that singular
distributions will not ordinarily come up. We begin with
physically interesting one-dimensional models that are
all of pure type, either discrete or continuous. Then by
a process of extension, multidimensional distributions
are constructed that are also of pure discrete or continu-
ous type. The most popular extension uses statistical
independence, which guarantees that if the marginals
are all discrete or all continuous, then the joint distribu-
tions will be of the same type. Thus, singular distribu-
tions tend not to arise in the usual course and are simply
not mentioned—with, perhaps, the one exception of
the singular normal distribution.

This discussion suggests that for singular distributions
to come up in a probability course one would have to
begin with one-dimensional singular distributions. This
is by no means the case. In fact, it will be seen in
Example 1 that the unwary instructor who has the
courage to present mixed discrete and continuous one-
dimensional distributions, but is not willing to tackle
singular distributions, is only one step from pedagogical
disaster in an extension to two dimensions.

Why is it desirable to treat singular distributions in an
undergraduate course? For the instructor with a mathe-
matical soul there is the satisfaction of being able to tell
students that they have now covered every possible
form of probability distribution for random variables.
Every such distribution must be a mixture of the three
basic types. A second reason is that once the basic tools
of discrete and continuous marginal and conditional
distributions for two random variables have been intro-
duced, essentially nothing more is needed to discuss an
extensive class of singular distributions in two dimen-
sions. This will be seen when the representation for
singular distributions is given in Section 3.

Part of the bargain in using this representation is that
we can easily characterize the types of marginals that
singular distributions can have. This will bring home the
fact that you can’t always tell the type of a joint distribu-
tion from its marginals.

Finally, whereas singular distributions are difficult
(if not impossible) to visualize in one dimension,

being distributions concentrated on uncountable zero-
dimensional sets (so to speak), in two dimensions they
are, or can be constructed to be, concentrated on rather
familiar one-dimensional figures such as lines and cir-
cles. The representation in Section 3 will enable students
to construct singular distributions on one-dimensional
figures of their choice. All of this helps to bring home
what multidimensional probability distributions can be
like and provides an opportunity for some additional
practice with marginal and conditional distributions.
Some examples are now given to illustrate these points.

2. A SIMPLE EXAMPLE IN WHICH A SINGULAR
DISTRIBUTION ARISES

I should reiterate that the representation given in
Section 3 is not for all singular distributions, but is only
for those whose marginals are mixtures of discrete and
continuous distributions of the form

F(x) = Fe(x) + Fa(x), @)

where F.(x) is the (absolutely) continuous component
and F;(x) the discrete component. I prefer to use this
form for mixtures because it is symbolically clean and
convenient. However, it does have the pedagogical dis-
advantage that the components are generally improper
distributions; that is, they have total probabilities less
than 1. For those who prefer the use of proper distribu-
tions with the total probabilities appearing as compo-
nent coefficients, it is a simple matter to make this
change. -

All examples, except for the one dealing with the
singular normal distribution, are for distributions with
positive probability only on the unit square

{(x,y): 0<x =1, ()Sy 51}'

Thus, the marginal distributions are concentrated on
the unit interval from 0 to 1. For this reason, the total
probabilities contained in the continuous and discrete
components of (2) are F(1) and Fy(1), respectively. To
save space, distribution specifics are given only for argu-
ments in the unit square; the standard extension to the
entire x—y plane is implicitly assumed. The fact that
F(x,y) =0 when either x or y is less than 0 is important
in some of the examples, such as the next one.

Example 1. Two identical electronic devices that gen-
erate uniform random numbers between 0 and 1 are
available to be issued to a statistician who is carrying out
a sampling survey in the field. An equipment manager
selects one of them at random for issue. Unfortunately,
one of the machines is broken and always gives the
value 0. A device is (independently) issued on two suc-
cessive days and is used by the statistician to obtain one
number each day. Let X represent the number obtained
on the first day and Y the number obtained on the
second. What is the joint distribution of X and Y?

We assume the statistician is not aware that one of the
devices is broken and wouldn’t be bothered by seeing a
0 on day one. In this case, it is reasonable to take X and
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Y to be independent and identically distributed. With
probability 3 the statistician will use a device for which
the distribution of values is uniform and with probabil-
ity 5 the distribution will have probability 1 of giving 0.
Thus, the cdf is of the form (2) with F(x) =x/2 and
Fy(x) = Iy(x)/2, where the symbol I,(x) represents the
function that is O for x <rand 1 forx =r.

The density for this distribution is f(x) =3 and the
probability function p(x) equals 3 for x =0 and is 0
elsewhere.

Now, by using the independence of the variables and
doing some rearranging of terms, the joint cdf of X and
Y can be written in the form

F(x,y)=F(Xx)F(y)
=F(x)F(y) + Fi(x)Fa(y)
+ [B(x)E(y) + E(x)Fa(y)]. (3)

The Lebesgue decomposition theorem for two-dimen-
sional cdf’s can be written as

F(x,y) = E(x,y) + Fa(x,y) + E(x, ). (4)

It is easy to verify that the three terms of the expansion
(4) are, term for term, the corresponding three com-
ponents in (3). In particular, because Fy(x) =3 for all
x =0, the singular term reduces to F(x,y) = (x +y)/4.

Note that F(1,1) =3. It follows that half of the total
joint probability is tied up in the singular component,
which, if normalized to have total probability 1, would
be exactly the singular distribution (1).

The other half of the probability is evenly split be-
tween a uniform distribution on the unit square and a
point mass at (0, 0). Physically, the continuous term cor-
responds to the statistician getting the good device on
both days. The discrete term corresponds to using the
bad device both days. Thus, the singular term applies to
those situations in which the good device was issued on
one day and the bad one on the other. This suggests that
the singular component consists of a uniform distribu-
tion on the vertical line for which x =0 and another on
the horizontal line for which y = 0. We will confirm this
conjecture after the representation of the singular com-
ponent is given.

3. REPRESENTATION OF F(x,y)

Let p(x) and f(x) denote the probability (mass) and
probability density function of X, respectively, and let
X, denote the set of x’s for which p(x) >0. The cdf of
the conditional distribution of Y given X is denoted by
F(ylx). This distribution is also a mixture of discrete
and continuous distributions F;(y|x) and F.(y|x). The
associated conditional probability function and proba-
bility density are denoted by p (y|x) and f( y|x). The set
of y values, Y,(x), for which p(y|x) >0 are especially
important in what follows.

"Write F(x,y) = f.‘,,F(y |x")F(dx'). Now, expand
both the marginal distribution and the conditional dis-
tribution in this expression into the sums of their dis-
crete and continuous components. Collect the resulting

four terms into three terms exactly as was done in (3).
Then, make the same identification of these terms with
the components of the Lebesgue decomposition (4).
The discrete and continuous components have familiar
forms:

E) =] EGRGOr,
and

E(x,y) = 2 E(ylx")p(x").

x'=x
x' € Xd

However, the singular component representation we are
after comes from the third term:

E@ = SEGKpG)+ [ BRI

x' € Xd (5)

For all three terms,

EGk =] f(reay,
and
F(ylx') = Z;p(y’IX’).

y' € Ya(x") - (®

The important thing to note is that, in the singular
component (5), the continuous conditional distribution
is involved with the discrete marginal, while the discrete
conditional distribution is integrated with respect to the
continuous marginal density.

As an illustration of the use of the representation (5)
we now verify that the singular distribution (1) consists
of uniform distributions on the lines x =0 and y =0 as
conjectured in Example 1.

Example 2. Set y =1 in Expression 1. The resulting
function, F(x)= (1 + x)/2 is the X-marginal cdf of the
desired distribution. Note that it puts probability ; at
x =0 and a uniform density on the rest of the line. That
is, X, = {0}, p(0) =3, and f(x) = 3. For the singular dis-
tribution representation (5), the continuous conditional
density is defined only on X,;. We hypothesize that the
mass at the point O represents the projection of the
uniform probability along the line x = 0 onto the x axis.
So we try the conditional density f(y|0) = 1. The uni-
form distribution on the x axis is guaranteed by the
marginal density f(x) =3, and we keep it there for the
joint distribution by defining the conditional probability
function to be p(0x) =1 for all x. ‘

It follows that Y,(x) = {0}; that is, this set is indepen-
dent of x. This is seen later to be the key property
distinguishing singular distributions for independent
variables from those for dependent variables.

Now, apply Expressions (6) to obtain F.(y|0) = y and
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F,(ylx) = I(y). Then, an application of (5) gives

F(x,y)=1y +f 1-3dx’
0
=(y +x)2

as was to be shown.

In the following example, X and Y are dependent
variables.

Example 3. Uniform Distribution on the Line y = x.
This is a fairly well-known distribution with cdf
F(x,y) = minimum(x, y). The sensible construction
takes the uniform density f(x) = 1 for X and the condi-
tional probability function that puts probability 1 at
y =xforeachx: Y,(x) ={x}and p(x|x) = 1. Since X has
no discrete component, f(y|x) need not be defined.

From (6) we get F,(y|x) =L(y). Now if y <x then
L.(y)=1 for x' between 0 and y and is 0 beyond y.
Thus,

Fey) = [ L)ax =,

However, if y > x, since the integrand is 1 from 0 to y,
this integral yields F(x,y)=x. Thus, F(x,y)=mini-
mum(x, y) as stated.

Example 3 shows that you can’t always tell the distri-
bution type of a two- (or higher-) dimensional distribu-
tion from its marginals. Both marginals are uniform
distributions, thus they are pure continuous, whereas
the joint distribution is pure singular.

Example 4. A Distribution on a Circle. This example
is primarily an exercise in integration that puts all of the
probability of a singular distribution on the circle
(=3 +(y -2’ =07

Let the X marginal be the uniform distribution and
let Y,(x) consist of the two points 5 + ( — (x — 3)?)'?. Put
discrete conditional probability 3 on each point. The
joint cdf is a bit messy, but it is reasonably straight-
forward to evaluate the Ymarginal cdf F(y) = F(1,y)to
be

F(y)=Vi-(y -1’ y<z

Example 5. Verify that the cdf of the singular distri-
bution that puts a uniform distribution on the line
x+y=1is

F(x,y)=(x+y —Dh(x +y).

Example 6. The Singular Standard Normal Distribu-
tion. Let ¢(x) denote the standard normal density. Put
conditional probability 1 on the regression line y = x if
the correlation coefficient p =1 and on the line y = —x
if p= —1. If ® denotes the standard normal cdf, verify
that

F(x,y) = ® (minimum(x,y)) if p=1

and

F(x,y) = [Px) = ®(=y)lo(x +y) if p= —1.

Show that the Y marginal is ¢( y) in both cases. Note the
similarity between this example and Examples 2 and 4.

4. CHARACTERIZATION OF THE POSSIBLE
MARGINAL TYPES

A straightforward application of the criterion for uni-
form convergence for infinite series, given for example
in Titchmarsch (1939, p. 5), shows that the first term of
(5) is always (absolutely) continuous. Thus, if the X
marginal is pure discrete, the second term in (5) is 0 and
the Y marginal is necessarily continuous. Thus, even
when X and Y are dependent random variables, the
discrete-discrete case for the two marginals can only
arise from the discrete term in the Lebesgue decomposi-
tion (4).

If the X marginal is of mixed type, then mixed, dis-
crete, and continuous marginals are all possible for Y.
Example 1 is an example of the mixed-mixed case. Ex-
amples 2, 3, and 4 could have been applied to the con-
tinuous component of a mixed marginal distribution for
X, leading to a pure continuous marginal for Y.

Note that the continuity of the second term in (5)
depends on the fact that the set Y,(x) of jump points of
p(ylx) can vary with x. Suppose that X is pure con-
tinuous or is of mixed type with pure discrete condi-
tional distribution for x in X,, then, only the second
term is present in (5). By allowing Y;(x) to (a) vary on
a set of X probability 1, (b) vary on a set with X proba-
bility between 0 and 1 and be constant but nonempty for
a second set of positive X probability, (c) be constant on
a set of X probability 1, examples can be produced for
which the Y marginal is (a) continuous, (b) mixed, and
(c) discrete, respectively.

In summary, if X and Y are dependent and have a
joint singular distribution represented by (5), then the
possible marginal-type combinations are (i) discrete-
continuous, (ii) mixed-discrete, (iii) mixed-mixed, (iv)
mixed-continuous, and (v) continuous-continuous.

If X and Y are independent, then Y,(x) can’t vary
with x, and in fact (5) reduces to the last term in (3). It
follows that the marginals must be either both mixed, or
the marginal pairs must be mixed-continuous, mixed-
discrete, or of opposite pure types; the continuous-
continuous case is now excluded. This explains why
singular distributions with continuous marginals, like
the singular normal, do not arise in the usual construc-
tion of joint distributions by independence.

[Received January 1983. Revised April 1983. ]
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