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About 1–3% of the world population su�ers from epilepsy. Epileptic seizures are abnormal sudden discharges in the brain with
signatures manifesting in the electroencephalograph (EEG) recordings by frequency changes and increased amplitudes. �ese
changes, in this work, are captured through static and dynamic features derived from three Teager energy based lter-bank cepstra
(TE-FB-CEPs). We compared the performance of linear, logarithmic, and Mel frequency scale TE-FB-CEPs using radial basis
function neural network in general epileptic seizure detection. �e comparison is tried on eight di�erent classication problems
which encompass all the possible discriminations in the medical eld related to epilepsy. In a previous study, using traditional
cepstrum on the same database, we had found that the composite vectors showed a degraded performance in seizure detection. In
this study, however, irrespective of frequency scaling used, it is found that the composite vectors of TE-FB-CEPs maintain excellent
overall accuracy in all the eight classication problems.

1. Introduction

Epilepsy is a chronic neurological disorder with a preva-
lence of 1–3% of the world population [1]. Epilepsy is
characterized by recurrent unprovoked epileptic seizures,
which are episodic and rapidly evolving temporary events.
�e seizures re�ect the clinical signs of an excessive and
hypersynchronous activity of the neurons in the brain. �e
symptoms during seizure vary depending on the location
and extent of the a�ected brain tissue. �e unforeseen nature
of these seizures make the daily life of patients miserable
with temporary impairments of perception, speech, memory,
motor control, and/or consciousness and sometimes may
lead to enhanced risk of injury and/or death. Epilepsy can
be controlled but not cured with antiepileptic medication.
�e epileptic brain can be considered to function in one
of the two states: interictal state with occasional transient
waveforms, as isolated spikes, sharp waves, or spike-wave
complexes and ictal (seizure) state with continuous dis-
charge of polymorphic waveforms of varying amplitude
and frequency, spike and sharp wave complexes, rhythmic

hypersynchrony, or electrocerebral inactivity observed over
a duration longer than average duration of these abnormal-
ities during interictal intervals [2]. Until now, not much is
understood about the occurrence andmechanismunderlying
the epileptic seizure. Long-term inpatient/ambulatory elec-
troencephalograph (EEG), lasting from a few hours to several
days which denitely contain interictal and ictal hallmark
of epilepsy, is required clinically to diagnose, monitor, and
localize the epileptogenic zone [3]. �e EEG during seizure
is signicantly di�erent from that of the interictal state and
that of a normal subject.�e traditionalmethods rely onwell-
trained clinical neurophysiologists who visually inspect the
entire lengthy EEG signals, which not only are tedious and
time-consuming but cost higher. �erefore, many automated
epileptic detection systems have been developed using dif-
ferent approaches in the recent years [4]. Such automated
systems reduce the time taken to review o�ine the long-term
EEG recordings signicantly and facilitate the neurologist
to diagnose and treat more patients in a given time. �is
implies that the selected feature set must be such that besides
accuracy in seizure detection, the processing time must be
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very short. However, the wide variety of EEG patterns that
characterize the nature of seizures, such as spikes and waves,
low-amplitude desynchronization, polyspike activity, rhyth-
mic waves for a wide range of frequencies, and amplitudes,
tend to increase the complexity of the automated seizure
detection problem.

Selecting an optimal set of signicant features plays an
important role in developing a good classication system,
particularly when using pattern recognition paradigm. A
general thumb rule is to use those features which capture
those aspects of the time series which are relevant for
discriminating between the classes. To meet higher accuracy
it is not adequate if we have the best pattern classication
system. It is found that performance of majority of the
classiers deteriorates when some of the selected features are
redundant. �us, it is important that the selected features
must be screened for redundancy and irrelevancy. Also the
number of extracted features must be small. Otherwise it
will add onto computational overheads and a longer pro-
cessing time. Di�erent methods have been used to extract
diverse features, including those which capture frequency,
energy, and structural content of the signal, for the task of
epileptic seizure detection [5–8]. Epileptic seizure analysis
can be divided into three categories: (1) epileptic seizure
detection, (2) epileptic seizure prediction, and (3) epileptic
seizure origin localization [9].�e epileptic seizure detection
methods, usually, aim to detect patterns in EEG recordings
that are a manifestation of an epileptic seizure. �e entire
procedure of methods developed for automated epileptic
seizure detection can be subdivided into two stages, namely,
(i) feature extraction and (ii) classication [10]. We have
adopted this approach to epilepsy detection. In a recent
study, we had found that the overall performance of both
the composite vectors of the traditional cepstrum (CEP)
deteriorates compared to that of the baseline vector in the
seizure detection and classication of EEG segments [11].
However, there are not many studies who have explored to
a su�cient depth other features used in di�erent domains of
signal processing, for example, the occasionally used feature
such as cepstrum based on Teager energy operator, being
tried for seizure detection. Teager energy operator based
cepstral features (TEOCEP, TECC) [12–14] andTeager energy
based Mel cepstral coe�cients (T-MFCC) [15] have been
used for speech recognition and analysis. TEOCEP and
TECC composite cepstral vectors too have been found to
add to improved performance in speech processing [12, 14].
However, to the best of our knowledge, this is the rst study
where Teager energy based lter-bank cepstra (TE-FB-CEPs)
are applied and investigated for unbalanced general EEG data
classication. Also, no other work addresses all the eight
classication problems discussed below, which encompass all
the possible discriminations in the medical eld related to
epilepsy. �is is a pilot study primarily intended to (1) study
the e�ect of TE-FB-CEP on the EEG classication, including
epilepsy detection (2) compare the in�uence of the di�erent
frequency scales on the e�cacy and diagnostic ability of the
TE-FB-CEP EEG analysis. TE-FB-CEPs are used to take the
advantage of themodulation energy tracking capability of the
Teager energy operator (TEO). EEG signal is nonstationary

in nature; it contains high frequency information with
short interval segment and low frequency information with
long period segment. Computation of conventional CEP
demands the EEG segment to be stationary. Hence, the EEG
segment length must be short enough to meet stationarity
requirement, while long enough to capture specic patterns.
TE-FB-CEPs computation, however, does not demand such
requirements. In this study, we investigate and compare the
Teager energy based linear, logarithmic, and Mel frequency,
lter-bank cepstra.We also compare the performance of these
methods in terms of their corresponding composite vectors in
discriminating the eight classes on the general EEG database
by Andrzejak et al. [16].�e performance of these methods is
also compared with those of other researchers who had used
the same database.

�ere are two variants in the approach adopted in
automated detection of seizures. �e rst is based on a
set of heuristic rules and thresholds. �e second is based
on classier which employs pattern recognition techniques.
In the former approach the results depend upon a single
operating point and hence there is no much control over the
accuracy.On the other hand, the latter permits the classier to
adapt to the desired performance andmeet the requirements.
Hence, we go in for the latter approach. From this perspective,
an articial neural network is well suited as a classier. As
such there is no well-established method to select an optimal
network for classication. �e rationale behind choosing
radial basis function neural network (RBFNN) is that (1)
the earlier literature shows that RBFNN is a more suitable
classier in medical applications because of its simplicity and
faster learning abilities due to locally tuned neurons [17]; (2)
RBFNN is also suitable from the point of view of its high
speed, high accuracy, strong tolerance to input noise, and
real-time property in updating network structure [17].

2. Materials and Methods

2.1. EEG Records. �e EEG data used for this work is from
University of Bonn EEG database which is available in
public domain [16]. �e choice of this database is based
on the rationale that many seizure detection methods have
employed this database and it becomes easy to compare the
end results.�e database consists of ve sets (designated Z,O,
N, F, and S) each containing 100 single channel EEG segments
of 23.6-second duration. �ese segments have been picked
from continuous multichannel EEG recordings a�er removal
of any artifacts, like, muscle activity or eye movements,
making sure that they fullled stationarity requirements. Sets
Z andOcontain segments taken from surface EEG recordings
acquired from ve healthy volunteers using a standard 10–
20 electrode placement scheme.�e subjects were awake and
relaxedwith their eyes open for set Z and eyes closed for setO,
respectively. �e segments for sets N, F, and S were acquired
from ve epileptic patients undergoing presurgical diagnosis.
�e type of epilepsy identied was temporal lobe epilepsy
with the epileptogenic focus as the hippocampal formation.
�ese recordings were taken from intracranial electrodes
as they o�er the most precise access to the emergence of
seizures. Sets N and F contained only activity measured
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during seizure free intervals (interictal epileptiform activ-
ity), with segments in set N recorded from hippocampal
formation of the opposite hemisphere of the brain and those
in set F recorded within epileptogenic zone. On the other
hand, set S contained only seizure activity (ictal intervals),
with all segments recorded from sites exhibiting ictal activity.
�e patients had attained complete seizure control a�er
resection of one of the hippocampal formations which was
conrmed to be the epileptogenic zone. All the EEG signals
were recorded using the same 128-channel amplier system
using an average common reference. �e data were digitized
at 173.61 samples per sec with 12 bit resolution. �e bandpass
lter setting was at 0.53–40Hz (12 dB/octave). Each single
channel EEG segment has 4096 samples.

2.2. Teager Energy. �e rationale of adopting TE-FB-CEP
derived from nonlinear Teager energy (TE) in this study is
based on the following reasons. (1) Seizures are abnormal
sudden discharges in the brain which are represented in
the EEG recordings by frequency changes and increased
amplitude. �e ability to accurately capture these changes
is the key to detection of nonseizure and seizure states. TE
is a feature very sensitive to variations of signal amplitude
and frequency. (2) TE feature requires only four samples for
its computation at any given instant and hence is compu-
tationally very e�cient. (3) EEG signals are known to be
nonstationary in nature [18]. We hypothesize that epochs of
normal, interictal epileptic, and seizure belong to di�erent
nonlinear physiological processes. TE operator is a nonlinear
operator which can be used for the estimation of energy of
a nonstationary signal and hence TE is well suited for dis-
criminating these episodes. Conventionally, CEP is derived
from the original signal under investigation. However, the
TECEP is derived from the TE of the signal, which is richer
in information than the signal itself, as explained below.

If a signal sample is represented as �� = � cos(Ω� + Φ),
where � is the amplitude and Φ is the initial phase. Ω is
the digital frequency in radians/sample and is given by Ω =2��/��, where � is the analog frequency in Hz and �� is the
sampling frequency in Hz. �en as per the TE algorithm the
instantaneous TE, 	� at a given instant of time �, is given by
[19, 20]

	� = �2� − ��−1��+1 = �2sin2 (Ω) ,
	� ≈ �2 Ω2 (1)

for small Ω. With Ω < �/4 or �/�� < 1/8, the relative error
in the last approximation is always less than 11%. From (1)
it is clear that the instantaneous TE can track modulation
energy and identify instantaneous signal amplitude and also
corresponding instantaneous frequency. For example, in a
normal subject there is a ne balance in the brain between
factors that generate electrical activity and factors that restrict
it, and there are also systems that limit the spread of the
electrical activity. Usually, during a seizure, these limits break
down and an abnormal hypersynchronous neuronal activity
due to a large number of neurons in the cerebral cortex of the
brain occurs.�e cerebral activity during an epileptic seizure

is completely di�erent from that of the interictal state or that
of a normal subject. During interictal state the EEG is normal
with occasional transient waveforms and apparently random
with higher complexity, while during seizure the EEG tends
to become hypersynchronized and cyclical with decreased
complexity [21, 22]. Unlike the usual instantaneous signal
energy which is only proportional to squared instantaneous
amplitude, TE is proportional to the squared product of
both instantaneous amplitude and instantaneous frequency.
�is new energy measure is therefore capable of respond-
ing rapidly to changes in both amplitude and frequency.
Consequently disturbances in EEG signal generation and
conduction path get re�ected in the TEO energy [23, 24].

�e general form of Teager nonlinear energy operator in
the time domain for a discrete time signal �[�] as given by
Plotkin and Swamy [25–27] is

Ψtd {� [�]} = � [� − �] � [� − ] − � [� − �] � [� − �] , (2)

where � +  = � + � and Ψtd denotes generalized TEO.
�ey showed that for � ̸= and � ̸= �,Ψtd is very robust to

noise.�at is, if the input signal contains additive white noise,
then the output of (2) will not contain a component related
to input noise. �is is attributed to the removal of the square
term in (2) while satisfying the conditions � +  = � + �,� ̸=, and � ̸= �. In this work, we empirically found that the
combination � = 1,  = 2, � = 0, and � = 3 is a suitable
choice for noise reduction in EEG signals.

2.3. Cepstrum (CEP) Derived from Log Magnitude Spectrum.
Cepstrum (CEP) analysis is a nonlinear signal processing
technique with a variety of applications in areas such as
speech and image processing. Among the speech recognition
approaches the family based on CEP has been prominent
due to its performance and simplicity. CEP models a time
evolving signal as an ordered set of coe�cients representing
the signal spectral envelope. �is in fact is a curve passing
close to the peaks in the original spectrum. �e CEP, though
a compact representation, has been found to capture most
of the relevant information in the original time series. It is
possible to compare two relatively long time series with only
a few cepstral coe�cients. �is implies that if two cepstral
series are close then the corresponding signals have a similar
evolution in time.

�e real CEP is dened as the inverse Fourier transform
of the log magnitude spectrum as given by

�� [�] = IDFT {log |DFT {� [�]}|} , (3)

where ��[�] represents �th order real cepstral coe�cient. If
the inverse Fourier transform is replaced by discrete cosine
transform (DCT), the resulting equation becomes

� [�] = DCT {log |DFT {� [�]}|} , (4)

where �[�] represents �th order pseudocepstral coe�cient.
�e advantages are that (1) DCT has better energy

compaction properties than the DFT and hence decreases
memory requirements; (2) it reduces the computational
complexity drastically without degrading the information
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content in the CEP and hence decreases execution time;
and (3) DCT produces highly uncorrelated features. �e
resulting sequence of coe�cients �[�], called pseudo-CEP,
is an approximation to the CEP, and in reality simply
represents an orthogonal and compact representation of the
log magnitude spectrum. �e di�erence between cepstral
coe�cients of di�erent time series can serve as a similarity
measure among these time series. �e cepstral coe�cients
decay rapidly to zero and hence, only the rst few coe�cients
are needed to capture most of the dynamic information in
the time series. �is property of cepstral coe�cients helps in
reducing the dimensionality. Also, the number of coe�cients
to be retained does not depend upon the length of the time
series. Moreover, the higher order coe�cients represent the
excitation process which is less useful. �e coe�cient �[0] is
similar to log energy (or DC component) of the signal and
represents the segment energy. It is, usually, not treated as a
cepstral coe�cient and in this study, we drop �[0].
2.4. Teager Energy Based Filter-Bank Cepstra (TE-FB-CEPs).
Asmentioned above, during interictal state the EEG is normal
with occasional transient waveforms and apparently random
with higher complexity, while during seizure the EEG tends
to become hypersynchronized and cyclical with decreased
complexity.�ese disturbances in EEG signal generation and
conduction path manifest in the TE energy. We hypothesize
that di�erent states of EEG a�ect di�erent frequency bands
di�erently and an improved seizure classication features
could be obtained by analyzing TE energy in di�erent
frequency bands. In this context, we also study the e�ect of
linear, logarithmic, and Mel frequency lter-banks on the
overall accuracy in general EEG data classication.

For a given EEG segment we compute the instantaneous
TE based on (2). Treating this TEO output as signal, the TEO
output is divided into a few subbands using a multirate lter-
bank. �e lter-bank uses triangular lters spread over the
whole frequency range from zero up to Nyquist frequency.
�e centre frequencies and the bandwidths are determined
by the frequency scaling of the lter-bank. Depending on
the frequency scaling used for lter-banks, we have three
types of TE-FB-CEPs: (1) linear frequency scale TE-FB-CEP,
(2) logarithmic frequency scale TE-FB-CEP, and (3) Mel
frequency scale TE-FB-CEP. �e magnitude spectrum of the
TEO output is computed and warped to the frequency scale
of the corresponding lter-bank followed by the usual log
and DCT computation using (4) to obtain the TE-FB-CEP
of the EEG segment under consideration. We designate the
resulting cepstrum by ��[�]. �e coe�cient ��[0] is similar
to log energy (or DC component) of the TE signal. Unlike
CEP, in this study, we account for ��[0]. �ere are two
important di�erences betweenTE-FB-CEPs and other Teager
energy operator based cepstral features (TEOCEP, TECC,
andT-MFCC): (1) in the computation of TE-FB-CEPs, TEO is
rst applied to raw signal andTEOoutput is fed to lter-bank.
�e cepstral coe�cients are derived from lter-bank output.
In the computation of the other Teager energy operator based
cepstral features, the raw signal is applied to lter-bank. TEO
is then applied to lter-bank output from which cepstral
coe�cients are derived; (2) computation of TE-FB-CEPs uses

lter-bank with triangular lters, while the computation of
latter uses mostly Gammatone lter-bank, which is suitable
in speech processing.

EEG signals tend to be arbitrary in nature, and with
some epileptic conditions, the frequency of the signal can
change drastically with time depending upon the severity
of the condition. In particular, during seizure the frequency
components of the EEG signal become extremely erratic and
unpredictable. To reduce the edge e�ects, a Hanning window
was applied before spectrum was computed for such signals.

2.5. Radial Basis Function Neural Network (RBFNN). �e
recent research activities which use neural networks for
classication have established that neural networks being
powerful tools for pattern recognition problems can be a
promising alternative to conventional methods of classi-
cation. �e main advantage of neural networks lies in the
fact that it makes use of self-adaptive techniques to adjust to
the data without any explicit specication. In this work we
employ radial basis function neural network (RBFNN) for
the classication of normal, nonseizure, and seizure segments
through TE-FB-CEPs derived from EEG signals. RBFNN
has advantages of easy design, good generalization, strong
tolerance to input noise, and online learning ability. �e
properties of RBF networks make it very suitable to design
�exible control systems [17].

RBFNNs are nonlinear hybrid networks, which usually
contain a single layer of hidden neurons. �ere are three
layers: an input layer, a hidden layer, and an output layer.
Each input neuron corresponds to an element from the input
vector and is connected to the � hidden layer neurons. Each
hidden neuron is connected to the output neurons. �e
number of neurons in the output layer is equal to the number
of possible classes � in the classication problem. �e input
layer broadcasts the coordinates of the input vector to each
of the nodes in the hidden layer. Each node in the hidden
layer then produces an activation based on the associated
radial basis function. Finally, each node in the output layer
computes a linear combination of the activations from the
hidden nodes. �e output nodes from a RBFNN can be
described as

�� (�) = ∑
�
��� ����� − ������ �� 1 ≤ � ≤ �, 1 ≤ � ≤ �, (5)

where��(�) represents the function corresponding to the �th
output unit or class-� and is a linear combination of � radial
basis functions with center �� and bandwidth ��. �� is the
weight vector of class-� and ��� is the weight of �th class and�th center. �e commonly used basis function in the RBFNN
to solve pattern recognition problems is a Gaussian function
and with this (5) becomes

�� (�) = ∑
�
��� exp(����� − ������2(2�2� ) ) 1 ≤ � ≤ �, 1 ≤ � ≤ �.

(6)

From (6) it can be observed that the output of RBFNN
depends upon total number of neurons �, the weights
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between the output and the hidden layer ���, the centers
of neurons ��, and the bandwidths of the neurons ��. �is
implies that the performance of RBFNN is determined by
the selection of the right parameters. RBFNN can be trained
in di�erent ways. In one of the conventional methods, the
training begins with a predetermined network structure.
�en the centers and the bandwidths are trained. Again,
several methods are proposed to nd the centers of which
clustering based methods are popular.

In this work, we use MATLAB toolbox which greatly
simplies the implementation of the required RBFNN. �e
function newrb is used to approximate functions/vectors
dened by a set of data points. Newrb adds neurons to the
hidden layer of a radial basis network until it meets the
speciedmean squared error goal.�e function newrb uses a
radial basis layer which requires a parameter, spread (related
to bandwidth of the neuron), to be xed. It is important that
the spread constant be large enough that the radial basis layer
neurons respond to overlapping regions of the input space,
but not so large that all the neurons respond in essentially
the same manner. In other words, the parameter spread
decides the tment to the function. �e larger the spread,
the smoother the function approximation. Too large spread
means that a lot of neurons are required to t a fast-changing
function. Too small spread means many that neurons are
required to t a smooth function, and the network might not
generalize well. �e function newrb is called with di�erent
spreads to nd the best value for a given problem. A simple
thumb rule is to choose a spread constant larger than the
distance between adjacent input vectors, so as to get good
generalization, but smaller than the distance across the whole
input space.

3. Results and Discussion

In this work, we handle all the di�erent classication prob-
lems proposed by Guo et al. [28] and Tzallas et al. [29, 30]
to encompass all the possible discriminations in the medical
eld related to epilepsy and compare the performance of our
approach with those of other researchers.

(1) In the rst classication problem, two classes are
examined, normal and seizure. �e normal class
includes only set Z while seizure class includes set S.
In this classication problem, 200 EEG segments are
included.

(2) In the second classication two classes, namely, non-
seizure and seizure are examined, but not all sets are
used. �e nonseizure class includes sets Z, N, and F
while seizure class includes set S. In this classication
problem, the dataset includes 400 EEG segments.

(3) In the third problem, again, two classes, nonseizure
and seizure are examined. Now the nonseizure class
includes sets Z, O, N, and F while seizure class
includes set S. In this classication problem, 500 EEG
segments are included in the dataset.

(4) In the fourth classication problem, three classes are
examined, normal, nonseizure, and seizure, but not

all sets are used. �e normal class includes only set
Z, nonseizure class includes set F, while seizure class
includes set S. In this case, 300 EEG segments are
used.

(5) �e �h classication problem takes care of ve
datasets comprising 500 EEG segments into three
classes, normal (Z and O), nonseizure (N and F), and
seizure (S).

(6) �e sixth classication problem handles ve datasets
comprising 500 EEG segments into ve individual
classes, eyes-open (Z), eyes-closed (O), nonseizure
interictal (N), nonseizure interictal (F), and seizure
(S).

(7) In the seventh classication problem, three datasets
comprising 300 EEG segments into two classes, non-
seizure (N and F) and seizure (S) are examined.

(8) Finally, in the eighth classication problem, three
classes are examined, normal, nonseizure, and
seizure, but not all sets are used. �e normal class
includes only set Z; nonseizure class includes set
N, while seizure class includes set S. In this case,
300 EEG segments are used.

�e rst three classication problems were proposed by
Guo et al. [28], the next three classication problems were
proposed by Tzallas et al. [29, 30], while the seventh and
eighth are proposed by us.�ese classication problems have
been chosen such that they are close to clinical applications.

Now, we compare the diagnostic capability of the three
TE-FB-CEPs: (1) linear scale TE-FB-CEP, (2) logarithmic
scale TE-FB-CEP, and (3) Mel scale TE-FB-CEP and their
composite vectors in the above eight classication problems
using RBFNN. Empirically, we had found that repeating the
same procedure as in [11], an analysis window length, # ≥868 samples (5.0 seconds), a spread constant, % ≤ 2 for
RBFNN, and a number of cepstral coe�cients, & ≥ 9
leads to optimum results in all the eight cases. In this work,
an 868-sample sliding window with 50% overlap between
consecutive windows, & = 9 and % = 2, is used in
the computation of TE-FB-CEP. Distance-based classiers
demand normalization of the data and hence feature vectors
are normalized before they are applied to RBFNN.

First we compare the results of the performance of the
three TE-FB-CEP baseline vectors in the general EEG seizure
detection. �e comparison is tried on each of the above
mentioned eight di�erent classication problems which have
been widely used in the literature related to epilepsy. Typical
EEG segments, one from each dataset (in the order Z, O, N, F,
and S), are shown in Figure 1. We adopted leave-one-record-
out cross-validation scheme. In specic, we run 10 runs of a
10-fold cross-validation (with 10 runs for each fold split), thus
having a total of 100 RBFNN runs to average to produce the
nal result. With each new fold split, the EEG data segments
are randomized. Descriptive results of RBFNN analysis using
TE-FB-CEP baseline vectors for discriminating di�erent
classication problems are depicted in Table 1. It is found
that all the three TE-FB-CEP baseline feature vectors exhibit
excellent performance, with logarithmic frequency scaling
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Table 1: Percentage average accuracy of RBFNN analysis using linear, logarithmic, and Mel scale TE-FB-CEP methods (# = 868, & = 9,
and % = 2) for baseline vectors in discriminating eight classication problems (CPs).

CP Linear scale TE-FB-CEP Logarithmic scale TE-FB-CEP Mel scale TE-FB-CEP

1 81.65 82.37 81.60

2 89.05 90.36 88.98

3 92.38 93.07 91.61

4 82.08 82.89 81.72

5 81.84 82.78 81.53

6 81.38 81.50 79.50

7 85.31 86.04 85.30

8 84.07 84.09 83.42

Table 2: Percentage average accuracy of RBFNN analysis using linear, logarithmic, and Mel scale TE-FB-CEP methods (# = 868, & = 9,
and % = 2) for composite vector-1 in discriminating eight classication problems (CPs).

CP Linear scale TE-FB-CEP Logarithmic scale TE-FB-CEP Mel scale TE-FB-CEP

1 97.40 97.93 98.09

2 96.37 97.05 96.13

3 95.31 96.92 95.29

4 98.57 98.89 98.55

5 96.50 98.11 96.27

6 97.18 98.01 96.88

7 97.08 98.09 97.63

8 98.73 98.94 98.65
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Figure 1: Typical EEG segments from each of the ve sets (Z, O, N,
F, and S), from top to bottom.

showing the best performance among the three cases, in all
the CPs.

�e results of RBFNN analysis using composite cepstral
vectors for discriminating di�erent classication problems
in the three TE-FB-CEP methods are shown in Tables 2
and 3. �e rst composite vector includes velocity vector

together with the static cepstral vector.�e second composite
vector includes velocity and acceleration vectors together
with the static cepstral vector. It is found that the rst
and second composite vectors with logarithmic frequency
scaling outperform in all the CPs. Nevertheless, the compos-
ite cepstral vectors, with linear and Mel frequency scaling
methods too, show an excellent performance. �is is in
agreement with applications in other domains of signal
processing where the composite vectors, in general, enhance
the performance. For example, the composite cepstral vectors
of TEOCEP and TECC add to improved performance in
speech processing [12, 14]. In a recent study [11], on the
other hand, we had found that the overall performance
of both the composite vectors of the traditional cepstrum
(CEP) deteriorated compared to that of the baseline vector
in the seizure detection and classication of EEG segments.
It was interesting to note that the baseline CEP vector alone
showed the best performance. �e composite CEP vectors,
instead of at least maintaining best performance, showed a
degraded performance. �is implied that the velocity and
acceleration CEP features were hurting the performance,
probably because of the nonlinearities introduced in the
EEG signicantly a�ected the computation of derivatives.
However, in contrast to this behavior, the composite vectors
in all the three TE-FB-CEP methods, irrespective of the
frequency scale (linear, log, or Mel), maintain excellent
overall accuracy in all the eight classication problems which
are close to clinical applications.

Various researchers have proposed di�erent methods
for epileptic seizure detection using the database by
Andrzejak et al. [16]. Table 4 provides a comparison between
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Table 3: Percentage average accuracy of RBFNN analysis using linear, logarithmic, and Mel scale TE-FB-CEP methods (# = 868, & = 9,
and % = 2) for composite vector-2 in discriminating eight classication problems (CPs).

CP Linear scale TE-FB-CEP Logarithmic scale TE-FB-CEP Mel scale TE-FB-CEP

1 98.51 99.99 98.40

2 97.05 98.90 97.08

3 97.20 98.73 97.29

4 98.62 99.28 98.72

5 98.26 98.72 98.41

6 99.22 99.30 99.20

7 97.88 98.61 98.12

8 98.83 99.12 98.76

Table 4: A comparison of classication accuracy achieved by ourmethod and best performed others’method for eight classication problems.
CP stands for classication problem.

CP
No.

Number
of classes

Researcher
(year)

Method Dataset
Classication
accuracy (%)

1 2 Tzallas et al., (2007) [29, 30] Time-frequency analysis and ANN Z, S 100.0

1 2
Subasi and Gursoy (2010)
[31]

Principal component analysis, independent component
analysis, linear discriminant analysis, and support
vector machines

Z, S 100.0

1 2 Guo et al., (2010) [28]
Discrete wavelet transform, line length feature, and
MLPNN

Z, S 99.6

1 2 Guo et al., (2011) [32]
Genetic programming based feature extraction and
k-nearest neighbors classier

Z, S 99.0

1 2 Wang et al., (2011) [33] Wavelet transform and Shannon entropy Z, S 100.0

1 2 Iscan et al., (2011) [34]
Cross-correlation, power spectral density, support
vector machines, linear discriminant analysis, and�-nearest neighbors classier Z, S 100.0

1 2 Orhan et al., (2011) [35]
Wavelet transform, k-nearest neighbors classier, and
ANN

Z, S 100.0

1 2 �is work (2013) TE-FB-CEP feature vectors and RBFNN Z, S 99.99

2 2 Ocak (2009) [36] Discrete wavelet transform and approximate entropy ZNF, S 96.65

2 2 Guo et al., (2010) [28]
Discrete wavelet transform, line length feature and
MLPNN

ZNF, S 97.75

2 2 �is work (2013) TE-FB-CEP feature vectors and RBFNN ZNF, S 97.90

3 2 Tzallas et al., (2007) [29, 30] Time-frequency analysis and ANN ZONF, S 97.73

3 2 Guo et al., (2010) [28]
Discrete wavelet transform, line length feature, and
MLPNN

ZONF, S 97.77

3 2 Orhan et al., (2011) [35]
Wavelet transform, k-nearest neighbors classier, and
ANN

ZONF, S 100.0

3 2 �is work (2013) TE-FB-CEP feature vectors and RBFNN ZONF, S 98.73

4 3 Güler and Übeyli (2005) [37]
Lyapunov exponents, recurrent neural
network (RNN)

Z, F, S 96.79

4 3 Tzallas et al., (2007) [29, 30] Time-frequency analysis and ANN Z, F, S 99.28

4 3 �is work (2013) TE-FB-CEP feature vectors and RBFNN Z, F, S 99.28

5 3 Guo et al., (2010) [28] Wavelet transform, line length, and ANN ZO, NF, S 97.77

5 3 Orhan et al., (2011) [35]
Wavelet transform, k-nearest neighbors classier, and
ANN

ZO, NF, S 95.60

5 3 �is work (2013) TE-FB-CEP feature vectors and RBFNN ZO, NF, S 98.72

6 5 Güler and Übeyli (2007) [37]
Wavelet transform, Lyapunov exponents-support vector
machine

Z, O, N, F, S 99.28

6 5 Übeyli (2010) [38] Lyapunov exponents and PNN Z, O, N, F, S 98.05

6 5 �is work (2013) TE-FB-CEP feature vectors and RBFNN Z, O, N, F, S 99.30

7 2 �is work (2013) TE-FB-CEP feature vectors and RBFNN NF, S 99.12
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our method (using a logarithmic frequency scaling) and
other methods that have used the same database. In the
table, we present a listing of the method, dataset used, and
classication accuracy, for the eight classication problems.
It is to be noted that all the methods shown in the table,
including ours, had used modern classiers for rst training
and then classication. In the rst classication problem (CP
no. 1), the results obtained by Tzallas et al. [29, 30], Subasi and
Gursoy [31], Wang et al. [33], Iscan et al. [34], and Orhan et
al. [35] are the best (100%). Our method yielded an accuracy
of 99.99% which is almost 100%. In the second problem (CP
no. 2), our method shows the best results (98.90%). For the
third classication problem (CP no. 3), the result found by
Orhan et al. [35] is the best (100%). Our method showed an
average accuracy of 98.73%, which is better than those by
Tzallas et al. [30] and Guo et al. [28]. It is found that for the
fourth classication problem (CP no. 4), our method works
on par with that of Tzallas et al. [30], each with an overall
accuracy equal to 99.28%. For the �h and sixth classication
problems (CP nos. 5 and 6), our method showed the highest
average accuracy. In the seventh and eighth classication
problems (CP nos. 7 and 8), the new classication problems
appended by us in this paper, the results are found to be
excellent. All these results collectively show a considerable
improvement in our approach over many of the previous
epilepsy detection methods. �e above comparison also
implies that an automated system developed based on this
approach should provide feedback to the experts for quick
and accurate EEG classication.

�e database used has already been preprocessed by the
removal of artifacts by visual inspection. �is is a limitation
of our method (like many who have used the same database).
Nevertheless, the results of this study provide su�cient
evidence to warrant the assessment under actual clinical
situations that can provide more robust conrmation of
the application of this approach to capture diagnostically
signicant information. Hence the method is well suited
for implementation not only in epilepsy detection system,
but also in applications, such as seizure warning systems,
closed loop seizure control systems, or delivering abortive
responses/monitoring patients using implantable therapeutic
devices [39].

4. Conclusions

A comparison of the EEG epileptic seizure detection and
classication based on baseline and composite vectors com-
prising velocity and acceleration features, using TE-FB-CEP
methods, is presented. In the literature it is found that in
the applications, such as speech analysis and recognition the
velocity and acceleration features do enhance the perfor-
mance. However, our previous study showed that in the case
of EEG discrimination using CEP method, the velocity and
acceleration features were hurting the performance.�e chief
nding of this study is that unlike CEPmethod, in the TE-FB-
CEP methods, irrespective of the frequency scale employed
the composite vectors exhibit excellent performance in the
discrimination of EEG segments in a variety of classication
problems close to clinical applications. Automated systems

developed based on TE-FB-CEP methods should provide
feedback to the clinical neurophysiologists for quick and
accurate EEG discrimination. Such discrimination is impor-
tant in some applications, such as seizure warning systems,
closed loop seizure control systems, or delivering abortive
responses/monitoring patients using implantable therapeutic
devices.
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