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Abstract. This paper reports on AnnieWAY, an autonomous vehicle
that is capable of driving through urban scenarios and that has suc-
cessfully entered the finals of the DARPA Urban Challenge 2007 com-
petition. After describing the main challenges imposed and the major
hardware components, we outline the underlying software structure and
focus on selected algorithms. A recent laser scanner plays the promi-
nent role in the perception of the environment. It measures range and
reflectivity for each pixel. While the former is used to provide 3D scene
geometry, the latter allows robust lane marker detection. Mission and
maneuver selection is conducted via a concurrent hierarchical state ma-
chine that specifically ascertains behavior in accordance with California
traffic rules. We conclude with a report of the results achieved during the
competition.

1 Introduction

The capability to seamlessly perceive the vehicle environment, to stabilize the
vehicle, and to plan and conduct suitable driving maneuvers is a remarkable
competence of human drivers. For the sake of vehicular comfort, efficiency, and
safety, research groups all over the world have worked on building autonomous
technical systems that resemble such capability (cf. e.g. [1,2,3,4,5]).

The DARPA Urban Challenge 2007 has been a competition introduced to ex-
pedite mainly US research on autonomous vehicles. Its finals took place on Nov.
3rd, 2007 in Victorville, CA, USA. As in its predecessors, the Grand Challenges
2004 and 2005 [6,7], the vehicles had to conduct missions fully autonomously
and unmanned without any intervention of or interaction with the teams. In
contrast to the earlier competitions, the Urban Challenge required operation in
’urban’ traffic, i.e. in the presence of other vehicles operated either autonomously
themselves or by the organizer. The major challenge imposed was collision-free
driving in traffic in compliance with traffic rules (e.g. right of way at intersec-
tions) while completing the given missions that included overtaking maneuvers,
U-turns, parking, and merging into regular flow of traffic. Finally, recovery strate-
gies had to be demonstrated in deadlock situations or in traffic congestions that
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Fig. 1. Terrain of the Urban Challenge finals

cannot solely be handled with traffic rules. Fig. 1 shows the site of the finals in
Victorville.

This competition has significantly enhanced research, progress, and public
awareness in the field of autonomous driving.

Autonomous driving requires substantiated knowledge in different domains
like engineering, computer and cognitive sciences: A robust vehicle architecture
and design plays a central role. On-board sensor technology, sensor data analysis
including localization and sensor fusion techniques, are required for a consistent
perception of the environment and the ego pose of the vehicle therein. This in-
formation is eventually used for decision on and planning of a suitable behavior
that is appropriate in a given traffic situation. The outcome of the planning is
fed in real-time to a robust controller that keeps the vehicle in a stable condi-
tion under all circumstances. Fault and error detection and recovery procedures
need to supervise both hardware and software of the autonomous vehicle. Om-
nipresent measurement uncertainties as well as contradictory sensor data have
to be handled consistently. This broad variety of tasks shows that the Urban
Challenge connects interdisciplinary areas of research with relevance to science,
industry and community that may hardly be overestimated.
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Team AnnieWAY mainly gathers partners from the Collaborative Research
Centre on Cognitive Automobiles established by the German Research Founda-
tion (DFG) on January 2006. This Collaborative Research Centre - like Team
AnnieWAY - comprises partners from UniversitätKarlsruhe (TH), Forschungszen-
trum Karlsruhe, Technische Universität München, Fraunhofer-Gesellschaft IITB
Karlsruhe, and Universität der Bundeswehr München.

The Cognitive Automobiles team conducts fundamental and interdisciplinary
research of machine cognition in the context of mobile systems as the basis of ma-
chine action and the development of a scientific theory thereof. Its verifiability will
exemplarily be proven in the way that the behavior of automobiles in traffic will be
perceived, interpreted and even automatically generated. A cognitive automobile
will be capable of individual as well as cooperative perception and interaction. A
theory of machine cognition will make it feasible to propagate measurement un-
certainty and symbolic vagueness throughout the complete cognition chain to give
measures of certainty in order to quantify the trust in a specific generatedbehavior.
Cognition includes perception, deduction and recognition and thereby supplies au-
tomobiles with completely novel abilities. Cognitive automobiles are able to sense
themselves and their surroundings, as well as to accumulate and organize knowl-
edge [8].

The scope of Team AnnieWAY was to extract early research results from the
Cognitive Automobiles’ project that would allow real-time operation of the vehicle
under the restricted traffic environment in the Urban Challenge. Its team members
are professionals in the fields of image processing, 3D perception, knowledge rep-
resentation, reasoning, real time system design, driver assistance systems and au-
tonomous driving. Some of the team members were in the ’Desert Buckeyes’ team
of Ohio State University and Universitt Karlsruhe (TH) and developed the 3D vi-
sion system for the Intelligent Offroad Navigator (ION) that traveled successfully
29 miles through the desert during the Grand Challenge 2005 [9,10].

2 Hardware Architecture

The basis of the AnnieWAYautomobile is a 2006 VWPassatVariantB4 (Figure 2).
The Passat has been selected for its ability to be easily updated for drive-by-wire
use by the manufacturer.

AnnieWAYrelies on an off-the-shelfAMDdual-coreOpteronmultiprocessorPC
main computer whose computing power is comparable to a small cluster, yet offers
low latencies and high bandwidth for interprocess communication. All sensors con-
nect directly to the main computer which offers enough processing capacity to run
almost all software components. The main computer is augmented by a dSpace
AutoBox that operates as electronic control unit (ECU) for low-level control al-
gorithms. It directly drives the vehicle’s actuators. Both computer systems com-
municate over a 1 Gbit/s Ethernet network. The drive by wire system as well as
the car odometry are interfaced via the Controller Area Network (CAN) bus. The
DGPS/INS system allows for precise localization and connects to the main com-
puter and to the low-level ECU (AutoBox). The chosen hardware architecture is
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Fig. 2. Architecture and hardware components of the vehicle

supported by a real-time-capable software architecture which will be described in
the next section [11].

2.1 Long Distance 2d Lidar

Since lidar units produce their own light, low light conditions have no effect on
this kind of sensor.The Velodyne HDL-64E rotating laser scanner (www.velodyne.
com/lidar/index.html) comprises 64 avalanche photodiodes that are oriented with
constant azimuth and increasing elevation covering a 26.5-degree vertical field of
view. The lasers and diodes are mounted on a spinning platform that rotates at a
rate of 600 rpm. Thus, the HDL-64E provides a 360 degree field of view around the
vehicle producing more than 1 million points per second at an angular resolution of
0.09 degrees horizontally and a distance resolution of 5cmwithdistances up to 70m.
The result is a dense, highly accurate scan representation of almost the entire scene
surrounding the vehicle. For each point, the sensor measures range and reflectivity.
The reflectivity map is well suited for monoscopic image analysis tasks like lane
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marker detection. The inherent association of each reflectivity pixel with a range
measurement alleviates information fusion of these data significantly.

2.2 Stereo Vision

An active camera platform with two cameras is mounted in the vehicle that surveys
the forward 180 field of view. The system is able to conduct on-line self-calibration
while the individual cameras are steered individually in the direction of interest
[12], i.e. the system continuously calculates the precise orientation of its two cam-
eras. This capability is essential for 3d stereoscopic vision.

2.3 DGPS/INS

For precise localization we use the OXTS RT3003 Inertial and GPS Navigation
System which is an advanced six-axis inertial navigation system that incorporates
a Novatel L1/L2 RTKGPS receiver for position and a second GPS Receiver for
accurate Heading measurements. Odometry is taken directly from AnnieWAY’s
wheel encoders. The RT3003delivers better than 0.02m positioning accuracy un-
der dynamic conditions using differential corrections and 0.1◦ heading accuracy
using a 2m separation between the GPS antennas. The RT3003 Inertial and GPS
Navigation System includes three angular rate sensors (gyros), three servo-grade
accelerometers, the GPS receiver and the required processing. It works as a stan-
dalone, autonomous unit and requires no user input for operation.

2.4 Parking Lidars

Two additional Sick LMS 291 1D lidar scanners are mounted horizontally on the
front and rear bumper to support the HDL-64E sensor and stereo cameras during
parking maneuvers.

2.5 E-Stop System

As the vehicle had to operate unmanned, a remote stop system has been integrated
for safety reasons as required by the organizer. This E-Stop system allows to re-
motely command run-, pause-, or emergency-stop mode via a wireless transmis-
sion. The system is connected directly to the ignition and the parking brake to as-
certain appropriate emergency stop regardless of the state of the computer system.
Run and pause mode are signalled to the low-level control computer.

2.6 Actuators

To actually control the car, actuators for steering, brake, throttle and gear shift-
ing have been mounted. The steering actuator consists of a small electric motor
attached to the steering column while the brakes are controlled by an additional
brake booster.
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3 Software Architecture

The core components of the vehicle are the perception of the environment, an inter-
pretation of the situation in order to select the appropriate behavior, a path plan-
ning component and an interface to the vehicle control. Figure 3 depicts a block
diagram of the information flow in the autonomous system. Spatial information
from the sensors are combined to a static 2D map of the environment. Moving ob-
jects are treated differently. Such dynamic objects also include traffic participants
that are able to move but have zero velocity at the moment. To detect moving ob-
jects, the spatial measurements of the lidar sensor are clustered and tracked with
a multi-hypothesis approach. To detect possibly moving objects (which are stand-
ing still right now), a simple form of reasoning is used: If an object has the size of a
car and is located on a detected lane, it is considered to be probably moving. Lane
markers are detected in the reflectance data of the main lidar. Together with the
road network map (RNDF), the absolute position obtained from the DGPS/INS
system and the mission plan (MDF), this information serves as input for the sit-
uation assessment and the subsequent behavior generation. Most of the time, the
behavior will result in a driveable trajectory. If a road is blocked or the car has to
be parked, modules for special maneuvers, like the parking lot navigation module,
are activated.

Fig. 3. Overview of the software architecture and the information flow

3.1 Environmental Mapping

Accurate and robust detection of obstacles at a sufficient range is an essential pre-
requisite to avoid obstacles on the road and inunstructured environments likepark-
ing lots. AnnieWAY uses a 2D grid structure gE(u) where each cell stores infor-
mation on the local elevation. The grid map is constructed and updated asyn-
chronously by the lidar sensors. The elevation gE(u) of the grid is the height range
at a given cell position:
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gE(u) = max
u∈U ,l∈L

h(u, l) − min
u∈U ,l∈L

h(u, l) ,

where L is the number of points recorded in a single rotation, U is the region rep-
resenting the size of one grid cell (30cm×30cm) and h is the vertical component
of each scan point. The map is shifted along with the motion of the vehicle. This
restricts the size of the map to an area around the vehicle while the cells are bound
to an absolute position.

Fig. 4. Example for the mapping of 3D lidar data (left) onto a 2D grid (right)

Figure 4 shows an example for our mapping algorithm. On the left side, the raw
sensor information is shown, the right side shows the map resulting from this data.

3.2 Lane Marker Detection

Lanemarkers are detected from the intensity readings of the lidar as depicted in the
top of Fig. 5. In contrast to camera images, the laser reflectivity map is insensitive
to background light and shadows while producing only a sparse intensity image.
In order to increase the density of the lane marker information, subsequent scans
are registered and accumulated employing INS information similar to the obstacle
map described in the last subsection. An example of a resulting map is shown in
the bottom of Fig. 5.

Lane markers are detected applying in the Radon transform domain of the accu-
mulated reflectivity data. While Fig. 5 illustrates that the algorithm works well in
real environments, it also clearly reveals a significant offset between the road net-
work provided by the organizer and the visible lane markers. Thus even the correct
detection of visible lane markers led to potential wrong or misleading lane posi-
tions in the competition. Hence the algorithm was suspended during the Urban
Challenge.

3.3 Tracking of Dynamic Objects

Driving in urban environments requires to capture and estimate the dynamics of
other traffic participants in real time. In our vehicle we use a detection and
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Fig. 5. Intensity readings of the lidar (top). Lane marker map, the estimated current lane
segment and a part of the original road net (bottom).

tracking system that consists of two parts: Clustering of point cloud/image data
into objects and tracking of these objects in subsequent sensor frames. Every clus-
ter that cannot be associated to a known object yields initialization of a new object
on themap.Weuse a linearKalmanfilter to bothpredict the next location of amov-
ing object, and to observe useful information in the tracking process which cannot
be measured directly with our sensors like velocities or accelerations.

3.4 Mission and Maneuver Planning

As a first preprocessing step for the planning, all elements of the RNDF (lanes,
checkpoints, exits, etc.) are converted to a graph-based representation.RNDFway-
points form the vertices of the graph; lanes and exits are represented by graph
edges. Information such as distances, lane boundaries, and speed limits annotate
the respective graph edges. These annotations can be updated dynamically, e.g.
to describe a road blockage. The graph is used as input to the mission planner. It
finds the optimal route from one checkpoint to another using an A* graph search
algorithm. The search process is repeated for every pair of subsequent checkpoints
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in the MDF. The resulting route is written into the central real-time database to-
gether with all relevant information. Besides the obvious application of driving the
shortest route, this enables other modules to make use of the map data, e.g. the
lane recognition is supported by the a priori knowledge on the existence and type
of lane markings. In addition to the information provided by the RNDF, the map
also contains virtual turnoff lanes at intersections.A virtual lane connects each exit
waypoint with a corresponding entry waypoint. It is generated assuming standard
intersection geometry. If deviations between road network map and reality are de-
tected, the map can be updated dynamically, enabling a safer and faster rerun of
the respective lane.

High-level behavior decisions of the car are derived from the mission plan, to-
gether with the map data and the car’s current position by a concurrent hierarchi-
cal state machine. The different states are also responsible for a behavior in accor-
dance with the California traffic rules. Figure 6 shows the main level of the used
state machine and the sublevel for intersection handling. The hierarchical struc-
ture simplifies the design and debugging of the state machine.
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Fig. 6. Example from the concurrent hierarchical state machine used to model traffic
situations and the behavior

3.5 Vehicle Control

The last step of the processing chain is the vehicle control which can be separated
into lateral and longitudinal control.

For the lateral movement of the vehicle a software state space controller was
chosen. This controller minimizes the distance and heading error of the car as it
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moves along the planned curve. A feed-forward term, that uses the curvature of the
planned curve, strongly increases accuracy.

Since the vehicle’s longitudinal dynamic is nonlinear, a compensation algorithm
was chosen, which converts a requested acceleration into brake pressure and accel-
eration pedal values. The nonlinearity was compensated with the inverse of the
static characteristic (engine and brake system). Velocity-dependant disturbances
like wind drag and roll resistance of the wheels were measured in advance and ac-
counted for in the control structure. For unpredictable disturbances, such as addi-
tional wind, an integrator was added. A higher control strategy asserts the bump-
less transfer between a velocity, a stopping, and a following controller whereby the
output of each controller is the desired acceleration (s. Fig. 7).

Fig. 7. High level strategy for longitudinal control

4 Results

Originally 89 teams have entered the competition, 11 of which were sponsored by
the organizer. After several stages, 36 of those teams were selected for the semi-
final. There, AnnieWAY has accomplished safe conduction of a variety of maneu-
vers including

– regular driving on lanes
– turning at intersections with oncoming traffic
– lane change maneuvers
– vehicle following and passing
– following order of precedence at 4-way stops
– merging into moving traffic

Although the final eventwas originally planned to challenge 20 teams, only 11 final-
ists were selected by the organizers due to safety issues. AnnieWAY has entered the
final and was able to conduct a variety of driving maneuvers. It drove collision-free,
but stopped due to a software exception in one of the modules.
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Figure 8 depicts three examples of the vehicles actual course taken from a log-
file and superimposed on an aerial image. The rightmost figure shows the stopping
position in the finals.

Fig. 8. Three steps of AnnieWAYs course driven autonomously in the finals

The competition was won by CMU, followed by the teams of Stanford and Vir-
ginia Tech.

5 Conclusions

The autonomous vehicle AnnieWAY is capable of driving through urban scenar-
ios and has successfully entered the finals of the DARPA Urban Challenge 2007

competition. In contrast to earlier competitions, the Urban Challenge required to
conduct missions in ’urban’ traffic, i.e. in the presence of other autonomous and
human-operated vehicles. The major challenge imposedwas collision-free and rule-
compliant driving in traffic. AnnieWAY is based on a simple and robust hardware
architecture. In particular, we rely on a single computer system for all tasks but
low level control. Environment perception is mainly conducted by a roof-mounted
laser scanner that measures range and reflectivity for each pixel. While the former
is used to provide 3D scene geometry, the latter allows robust lane marker detec-
tion. Mission and maneuver selection is conducted via a concurrent hierarchical
state machine that specifically ascertains behavior in accordance with California
traffic rules. More than 100 hours of urban driving without human intervention in
complex urban settings with multiple cars, correct precedence order decision at in-
tersections and - last not least - the entry in the finals underline the performance
of the overall system.
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