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Agents in creative enterprises are embedded in networks that inspire, sup-

port, and evaluate their work. Here, we investigate how the mechanisms by

which creative teams self-assemble determine the structure of these collabo-

ration networks. We propose a model for the self-assembly of creative teams

that is based on three parameters: team size, the fraction of newcomers in new

productions and the tendency of incumbents to repeat previous collaborations.

The model suggests that the emergence of a large connected community of

practitioners can be described as a phase transition. We find that team assem-

bly mechanisms determine both the structure of the collaboration network and

team performance, for teams derived from both artistic and scientific fields.

Teams are assembled because of the need to incorporate individuals with different ideas,

skills, and resources. Creativity is spurred when proved innovations in one domain are intro-

1



duced into a new domain, solving old problems and inspiring fresh thinking (1–4). However,

research shows that the right balance of diversity on a team is elusive. While diversity may

potentially spur creativity, it typically promotes conflict and miscommunication (5–7). It also

runs counter to the security most individuals experience in working and sharing ideas with past

collaborators (8). Successful teams evolve toward a size that is large enough to enable spe-

cialization and effective division of labor among teammates, but small enough to avoid over-

whelming costs of group coordination (9). Here, we investigate empirically and theoretically

the mechanisms by which teams of creative agents are assembled. We also investigate how

thesemicroscopicteam assembly mechanisms determine both themacrostructure of a creative

field, and the success of certain teams in using the resources and knowledge available in the

field. We develop a model for the assembly of teams of creative agents, in which the selection

of the members of a team is controlled by three parameters: the numberm of team members,

the probabilityp of selecting incumbents, that is, agents already belonging to the network, and

the propensityq of incumbents to repeat past collaborations. The model predicts the existence

of two phases which are determined by the values ofm, p andq. In one phase there is a large

cluster connecting a significant fraction of the agents, while in the other phase the agents form

a large number of isolated clusters.

We analyzed data from both artistic and scientific fields where collaboration needs have

experienced pressures such as differentiation and specialization, internationalization, and com-

mercialization (4, 10, 11): (i) the Broadway musical industry (BMI), and (ii) the scientific dis-

ciplines of social psychology, economics, ecology, and astronomy (Table 1). For theBMI, we

considered all 2258 productions in the period 1877–1990 (12, 13). Productions are defined as

musical shows that were performed at least once in Broadway. The team members comprise

individuals responsible for composing the music, writing the libretto and the lyrics, designing

the choreography, directing, and producing the show, but not the actors that performed in it. For
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each of the scientific disciplines, we considered all collaborations that resulted in publications

in recognized journals within the fields studied (14)—seven social psychology journals, nine

economics journals, ten ecology journals, and six astronomy journals (Table 2). Collaboration

networks (15–19) were then built for each of the journals independently, and for the whole

discipline by merging the data from the journals within a discipline (see Supporting Material).

The evolution of team sizes in theBMI bears out the expectation that team size and compo-

sition depend on the intricacy of the creative task. In the period 1877–1929, when the form of

the Broadway musical show was still being worked out through trial and error (12), there was

a steady increase in the number of artists per production, from an average of two to an average

of seven (Fig. 1A). This increase in size suggests that teams evolved to manage the complexity

of the new artistic form. By the late 20’s, the Broadway musical reached the form we know

today, as did team composition (4). The typical set of artists creating a Broadway musical have

been, since then, choreographer, composer, director, librettist, lyricist, and producer. For the

following 55 years, a period that includes the Great Depression, World War II, and the post-War

Boom, the average size of teams remained around seven (20).

We find similar scenarios for the evolution of team size in scientific collaborations. The

four fields experience an increase in team size with time (Figs. 1B-E). The increase has been

approximately linear in social psychology and economics, and faster than linear in ecology and

astronomy. For social psychology, team size growth rate was greater for high impact versus low

impact journals, suggesting that team size not only depends on the intricacy of the enterprise

but also that successful teams might adapt faster to external pressures.

The analysis of team size cannot capture the fact that teams are embedded in a larger network

(3). This complex network (21–24), which is the result of past collaborations and themedium

in which future collaborations will develop, acts as a storehouse for the pool of “knowledge”

created within the field. The way the members of a team are embedded in the larger network

3



affects the manner in which they access the knowledge in the field. Therefore, teams formed by

individuals with large but disparate sets of collaborators are more likely to draw from a more

diverse reservoir of knowledge. At the same time, and for the same reasons, the way teams are

organized into a larger network affects how likely it is that breakthroughs will occur in a given

field.

The agents comprising a team may be classified according to their experience. Some agents

arenewcomers, that is, rookies, with little experience and unseasoned skills. Other agents are

incumbents. They are established persons with a track record, a reputation, and identifiable tal-

ents. The differentiation of agents into newcomers and incumbents results in four possible types

of links within a team: (1) newcomer–newcomer; (2) newcomer–incumbent; (3) incumbent–

incumbent; and (4) repeat incumbent–incumbent. The distribution of different types of links

reflects the team’s underlying diversity. For example, if teams have a preponderance of repeat

incumbent–incumbent links, it is less likely that they will have innovative ideas because their

shared experiences tend to homogenize their pool of knowledge. In contrast, teams with a vari-

ety of types of links are likely to have more diverse perspectives to draw from, and therefore to

contribute more innovative solutions.

Since quantifying the emergence and effects of team diversity (2,9,25–27) is more difficult

than measuring team size, we consider next a model for the assembly of teams. In our model,

we assembleN teams in temporal sequence. The assembly of each team is controlled by three

parameters:m, p, andq. The first parameter,m, is the number of agents in a team. In our

investigations of the model we considered three situations: keepm constant, drawm from a

distribution, or use a sequence ofm values obtained from the data. For the theoretical analysis

of the model we keepm constant, while comparison with an empirical dataset was done using

the sequence ofm(t) values in the corresponding dataset.

The second parameter,p, is the probability of a team member being an incumbent. Higher
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values ofp indicate fewer opportunities for newcomers to enter a field. The third parameter,

q, represents the inclination for incumbents to collaborate with prior collaborators, rather than

initiate a new collaboration with an incumbent they have not worked with in the past.

We start at time zero with an endless pool of newcomers. Newcomers become incumbents

the first time step after being selected for a team. Each time stept, we assemble a new team and

add it to the network (Fig. 2). We select sequentiallym(t) different agents. Each agent in a team

has a probabilityp of being drawn from the pool of incumbents and a probability1− p of being

drawn from the pool of newcomers. If the agent is drawn from the incumbents’ pool and there

is already another incumbent in the team, then: (i) with probabilityq, the new agent is randomly

selected from among the set of collaborators of a randomly selected incumbent already in the

team; (ii) otherwise she is selected at random among all incumbents in the network.

Finally, nodes that remain inactive for longer thanτ time steps are removed from the net-

work. This rule is motivated by the observation that agents do not remain in the network

forever—agents age and retire, change careers, and so on. The removal process enables the

network to reach a steady state after a transient time. Our results do not depend in the specific

value ofτ (see Supporting Material).

Through participation in a team, agents become part of a large network (28). This fact

prompted us to examine the topology of the network of collaborations among the practitioners

of a given field. More specifically, we asked “Is there a large connected cluster comprising most

of the agents or is the network comprised of numerous smaller clusters?” A large connected

cluster would be supporting evidence for the so-called “invisible college,” the web of social

and professional contacts linking scientists across universities proposed by de Solla Price (29)

and Merton (30). A large number of small clusters would be indicative of a field made up

of isolated “schools of thought.” For all five fields considered here, we find that the network

contains a large connected cluster.

5



As is typically done in the study of percolation phase transitions (31), we use the fraction

S of nodes that belong to the largest cluster of the network to quantify the transition between

these two regimes: invisible college or isolated schools. We explore systematically the(p, q)

parameter-space of the model. We find that the system undergoes a percolation transition (31)

at a critical linepc(m, q). That is, the system experiences a sharp transition from a multitude

of small clusters to a situation in which one large cluster, comprising a significant fractionS of

the individuals, emerges—the so-called giant component (Fig. 3). The transition linepc(m, q)

therefore determines thetipping point for the emergence of the invisible college (32). Our

analysis shows that the existence of this transition is independent of the average number of

agents〈m〉 in a collaboration, although the precise value ofpc(m, q) does depend onm.

The proximity to the transition line—which depends on the distribution of the different

types of links—determines the structure of the largest cluster (Fig. 3A). In the vicinity of the

transition, the largest cluster has an almost linear or branched structure (Fig. 3A,p = 0.30).

As one moves toward largerp, the largest cluster starts to have more and more loops (Fig. 3A,

p = 0.35) and, eventually, it becomes a densely connected network (Fig. 3A,p = 0.60).

Networks with the same fractionS of nodes in the largest cluster do not necessarily corre-

spond to networks with identical properties. Each point in the(p, q) parameter-space is char-

acterized by bothS and the fractionfR of repeat incumbent-incumbent links. For example, in

Fig. 3C, the linefR = 0.32 corresponds to those values ofp andq for which 32% of all links in

new teams are between repeat collaborators (33). The fraction of repeat incumbent-incumbent

links has a significant impact on the dynamics of the network. WhenfR is large, collabora-

tions are firmly established and therefore the structure of the network changes very slowly. In

contrast, low values offR correspond to enterprises with high turnover and very fast dynamics.

Intermediate values offR are related to situations in which collaboration patterns with peers are

“fluid” (see Supporting Material).
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For each of the five fields for which we have empirical data, we measure the relative size of

the giant componentS (see Supporting Material). For all fields consideredS is larger than 50%

(Table 1). This result provides quantitative evidence for the existence of an “invisible college”

in all the fields. Intriguingly, the relative sizes of the giant component is similar for three of the

four fields considered:BMI, social psychology, and ecology,S = 0.70, S = 0.68, andS = 0.75

respectively. However, for astronomyS was significantly larger (0.92), while for economics it

was significantly smaller (0.54).

To gain further insight in the structure of collaboration networks, we use our model to es-

timate the values ofp andq for each field. Given the temporal sequence of teams giving rise

to the network of collaborations, one can calculate the fraction of incumbents and the fraction

of repeat incumbent-incumbent links. These fractions and the model enable us to then estimate

the values ofp andq that are consistent with the data (34).

We estimatep andq for each field, and then simulate the model topredict the key properties

of the network of collaborations, including the degree distribution of the network and the frac-

tion S of nodes in the largest cluster. By comparing predictions of the model with the empirical

results, we are able to test and validate the model. We first compare the degree distribution

of the collaboration networks with the predictions of the model (Fig. 4A-E), and find that the

model predicts the empirical degree distributions remarkably well. In Table 1, we compare the

predictions of the model forS with the measured values. The model correctly predicts that

an “invisible college” containing more than 50% of the nodes exists in all cases. Even more

significantly, the values ofS predicted by the model are in close agreement with the empirical

results.

To investigate how changes of the team assembly mechanism affect the structure of the

network, we use the model to generate networks with the same sequence of team sizes as the

data, but with different values ofp andq. We show in Figs. 4F-J that, notably, four out of the
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five creative networks we consider are very close to the “tipping” line at which an invisible

college emerges. The exception is astronomy. We also find that, for astronomy, the fraction of

repeat incumbent-incumbent links is significantly larger than for the other fields.

If diversity affects team performance and our model correctly captures how diversity is

related to the way teams are assembled, then the parametersp andq must be related to team

performance. To investigate this issue, we consider, for the four scientific fields, how teams

publishing in different journals are assembled. We used each journal’s impact factor as a proxy

for the typical quality of teams’ output. We then studied the different journals separately to

quantify the relationship between team assembly mechanisms and performance.

In Fig. 5, we show the values ofp, q, andS for the journals in each of the fields as a function

of the impact factor of the journal. We found thatp was positively correlated with impact factor

for economics, ecology and social psychology, whereasq was negatively correlated with impact

factor for the same fields. The result forp implies that successful teams have a higher fraction of

incumbents, who contribute expertise and know-how to the team, while the result forq implies

that teams that are less diverse typically have lower levels of performance.

The relative sizeS of the giant component in a journal was also associated with perfor-

mance for ecology and social psychology. Teams publishing in journals with a high impact

factor typically give rise to a large giant component, while teams publishing in low-impact

journals typically form small isolated clusters. This suggests that teams publishing in high im-

pact journals perform a better sampling of the knowledge within a field, and thus are able to

more efficiently use the resources of the “invisible college.” Surprisingly, neitherp, q, orS were

significantly correlated with impact factor in astronomy. This distinguishes astronomy from all

the other creative enterprises considered.

We have shown that team size evolves with time, probably up to an optimal size, as in the

case of theBMI. A similar process may be occurring for the parameters quantifying expertise,
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p, and diversity,q. Four of the five fields considered—all except astronomy—have very similar

values ofp andq thus suggesting that a “universal” set of optimal values might exist. The fact

that in astronomy there are no correlations betweenp, q, or S and the impact of journals, also

indicates that this field is different from the others. Whether these differences are due to the

needs imposed by the creative enterprise itself or to historical or other reasons is a question that

we cannot answer conclusively.
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Table 1: Global network properties of the fields studied. The sources for theBMI are: (i) Broadway Musicals
Show by Show (12), and (ii) The Musicals No One Came to See (13). The data analyzed excludes revivals and
focus on the “steady state” period 1940–1985. The data for scientific publications was obtained from Web of
ScienceR©. We selected recognized journals in each of the different scientific fields (see Table 2). For each field
we show the total number of productions and agents in all the period considered, the values ofp andq estimated
with the model from the data, the fractionfR of repeat incumbent-incumbent links, the sizeN of the network in
the last year of the period considered, the valueNmod predicted by the model, the fractionS of agents that belong
to the largest cluster, and the valueSmod predicted by the model. Note thatS takes values between 0 and 1 and
does not depend on the size of the network (31).

Field Period #Prod. #Agents p q fR N Nmod S Smod

BMI 1877–1990 2258 4113 0.52 0.77 0.16 428 420 0.70 0.80

Social psychology 1955–2004 16526 23029 0.56 0.78 0.22 11412 14408 0.68 0.67

Economics 1955–2004 14870 23236 0.57 0.73 0.22 9527 11172 0.54 0.50

Ecology 1955–2004 26888 38609 0.59 0.76 0.23 23166 26498 0.75 0.84

Astronomy 1955–2004 30552 30192 0.76 0.82 0.39 18021 22794 0.92 0.98
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Table 2:Journal-specific network structure. We present the same information as in Table 1 for each of the journals
studied. We rank journals within each field according to their impact factor (IF). Note that, for some low-impact
journals, the fractionfR of repeat incumbent-incumbent links is too high to be reproducible with the model. In
those cases, which we represent byq > 1, simulations of the model are done withq = 1. Note that the model still
reproduces the empirical results quite well for these cases.

Field Journal IF Period Agents p q fR S Smod

Social J. Pers. Soc. Psychol. 3.862 1965–2003 9112 0.56 0.74 0.20 0.75 0.79

psychology J. Exp. Soc. Psychol. 2.131 1965–2004 2133 0.40 0.76 0.11 0.44 0.07

Pers. Soc. Psychol. B. 1.839 1976–2004 4339 0.45 0.74 0.14 0.54 0.47

Eur. J. Soc. Psychol. 1.060 1971–2004 1790 0.41 0.93 0.15 0.44 0.08

J. Appl. Soc. Psychol. 0.523 1971–2004 4602 0.33 1.00 0.10 0.06 0.02

J. Soc. Psychol. 0.291 1956–2004 6294 0.32>1 0.12 0.05 0.01

Soc. Behav. Personal. 0.227 1973–2004 1981 0.26>1 0.08 0.03 0.01

Economics Q. J. Econ. 4.756 1956–2004 2320 0.37 0.58 0.08 0.26 0.05

Econometrica 2.215 1965–2004 3351 0.45 0.67 0.13 0.26 0.05

J. Polit. Econ. 2.196 1956–2004 3464 0.30 0.88 0.07 0.06 0.01

Am. Econ. Rev. 1.938 1956–2004 6807 0.42 0.84 0.15 0.27 0.02

Econ. J. 1.295 1956–2004 4528 0.31 0.99 0.09 0.08 0.01

Eur. Econ. Rev. 1.021 1969–2004 2585 0.35 0.85 0.10 0.15 0.02

J. Econ. Theory 0.833 1969–2004 2062 0.28>1 0.08 0.51 0.03

Econ. Lett. 0.337 1978–2004 5129 0.31 0.98 0.10 0.01 0.01

Appl. Econ. 0.200 1969–2004 4488 0.26>1 0.08 0.01 0.01

Ecology Am. Nat. 4.059 1955–2004 4990 0.44 0.70 0.13 0.49 0.19

Ecology 3.701 1965–2003 8885 0.48 0.71 0.15 0.56 0.65

Oecologia 3.128 1969–2004 10545 0.44 0.81 0.15 0.51 0.36

Ecol. Appl. 2.852 1991–2004 3417 0.29 0.99 0.08 0.30 0.06

J. Ecol. 2.833 1955–2004 3639 0.43 0.91 0.15 0.40 0.19

Funct. Ecol. 2.351 1989–2004 2873 0.36>1 0.13 0.05 0.02

Oikos 2.142 1961–2004 6589 0.43 0.84 0.15 0.48 0.11

Biol. Conserv. 2.056 1977–2004 5821 0.27>1 0.09 0.08 0.01

Ecol. Model. 1.561 1978–2004 5260 0.35>1 0.13 0.14 0.02

J. Nat. Hist 0.497 1967–2004 2631 0.36>1 0.04 0.13 0.01

Astronomy Astron. J. 5.647 1965–2003 10832 0.78 0.86 0.40 0.96 0.99

Publ. Astron. Soc. Pac. 3.529 1955–2004 6769 0.58 0.78 0.22 0.85 0.89

Icarus 2.611 1983–2004 4357 0.72 0.90 0.38 0.89 0.97

Publ. Astron. Soc. Jpn. 2.312 1965–2004 2432 0.77 0.95 0.44 0.95 0.99

Astrophys. Space Sci. 0.522 1968–2004 10823 0.55 1.00 0.29 0.60 0.05

IAU Symp. 0.237 1984–2004 10185 0.60 0.75 0.23 0.80 0.92
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Figure Captions

Figure 1: Time evolution of the typical number of team members in:(A) the Broadway mu-
sical industry; and scientific collaborations in the disciplines of(B) social psychology,(C)
economics,(D) ecology, and(E) astronomy.

Figure 2: Modeling the emergence of collaboration networks in creative enterprises.(A) Cre-
ation of a team withm = 3 agents. Consider, at time zero, a collaboration network comprising
five agents, all incumbents (blue circles). Along with the incumbents, there is a large pool of
newcomers (green circles) available to participate in new teams. The rules to create the team
involve two steps. In step one, one selects an agent for the new team. With probabilityp this
agent is a randomly selected incumbent, while with probability1 − p it is a randomly selected
newcomer. For concreteness, let us assume that incumbent “4” is selected as the first agent in
the new team. One then repeats step one to determine if the second agent in the team is an
incumbent or a newcomer. If the new agent is also an incumbent, then the incumbent is no
longer selected at random. Instead, one uses step two: With probabilityq the second incumbent
is selected from the set of incumbents that havealreadycollaborated with incumbent “4”, while
with probability1− q it is selected at random from the set of all incumbents. In the figure, the
new agent is selected from the pool of node “4” previous collaborators. Finally, one repeats step
one to determine if the third agent in the team is an incumbent or a newcomer. In the figure,
a newcomer is selected.(B) Time evolution of the network of collaborations according to the
model forp = 0.5, q = 0.5 andm = 3.
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Figure 3: Predictions of the model.(A) Phase transition in the structure of the collaboration
network. We plot only the largest cluster in the network. For smallp, the network is formed
by numerous small clusters (p = 0.10). At the critical pointpc—the “tipping point”—a large
cluster emerges, that is, a cluster that contains a significant fraction of the agents. In the vicinity
of the transition, the largest cluster has an almost linear or branched structure (p = 0.30). As one
increasesp, the largest cluster starts to have loops (p = 0.35) and, eventually, becomes a densely
connected cluster containing essentially all nodes in the network (p = 0.60). We show results
for q = 0.5 andm = 4, wherem is the number of agents in a team.(B) The transition described
in (A) can be characterized by the fractionS of nodes that belong to the giant component—the
order parameter—and the average size〈s〉 of the other clusters—the susceptibility (31). The
model displays a second-order percolation transition as the fractionp of incumbents increases
from 0 to 1. The transition occurs forp = pc, which coincides with the maximum of〈s〉.
Note thatpc is a decreasing function ofm. We show results forq = 0.5, andm = 4 and8.
(C) We display graphically the value ofS as a function ofp andq, for m = 4. Note that for
any value ofq, the model displays the percolation transition, and that the critical fractionpc

depends onq, defining a percolation linepc(m, q). The critical linepc(m, q) is an increasing
function of q. Even though the order parameterS is an important parameter to quantify the
structure of the network, not all points with the sameS, that is, all points represented with the
same color, correspond to fields with identical properties. This result is made clear by the lines
of equal probability of fractionfR of repeat incumbent-incumbent collaborations. The upper-
right corner of the(p, q) plane is characterized byfR close to one, while the lower-left corner
corresponds tofR close to zero. As we show in Fig. 4, all fields considered have parameter
values above the transition line.

17



Figure 4: Network structure of different creative fields. Degree distributions for:(A) the Broad-
way musical industry,(B) the field of social psychology,(C) the field of economics,(D) the field
of ecology, and(E) the field of astronomy. Lines correspond to simulation results and symbols
to empirical data. Simulations are carried out using the sequence{m(t)} of team sizes found
in the empirical data, and with the values ofp and q estimated from the measured fractions
of the different types of links. We present the predictions of the model with the lines and the
empirical degree distributions with the open circles. For all cases considered, the data falls
within the 95% confidence intervals of the predictions of the model. The(p, q) parameter-space
of the network of collaborators for:(F) the Broadway musical industry,(G) the field of social
psychology,(H) the field of economics,(I) the field of ecology, and(J) the field of astronomy.
The solid lines, separating the red and the blue regions, indicate the values ofp andq for which
50% of the nodes belong to the largest cluster, that is, the percolation transition at which a giant
component—the invisible college—emerges. The distance from the percolation line predicts
the overall structure of the network. For example, the networks in astronomy is well above the
“tipping” line and has a very dense structure (see Table 1). In contrast, all other fields are close
to the transition and have relatively sparse giant components. Another important characteristic
of the network is provided by the value of the fractionfR of repeat incumbent-incumbent links.
To help with the interpretation of the results, we plot with dotted lines the curvesfR = 0.32. For
four of the creative networks considered, we findfR < 0.25. For astronomy, we findfR = 0.39.

Figure 5: Relation between team assembly mechanisms, network structure, and performance.
We calculate the values ofp, q, andS for several journals in each of the four scientific fields
considered. Note that, in a few cases,q should be larger than one in order to reproduce the
empirical values offR—in this casesq is considered one and the corresponding points are
shaded. We plot the values ofp, q, andS as a function of the impact factor of the journal, and
then use the Spearman rank-order correlation coefficientrs to determine significant correlations.
Shaded graphs indicate significantly correlated variables at the 95% confidence level.
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