
Team Automata Satisfying Compositionality

Maurice H. ter Beek1,� and Jetty Kleijn2

1 Istituto di Scienza e Tecnologie dell’Informazione, CNR, Area della Ricerca di Pisa,
Via G. Moruzzi 1, 56124 Pisa, Italy,
maurice.terbeek@isti.cnr.it

2 Leiden Institute of Advanced Computer Science, Universiteit Leiden,
P.O. Box 9512, 2300 RA Leiden, The Netherlands,

kleijn@liacs.nl

Abstract. A team automaton is said to satisfy compositionality if its
behaviour can be described in terms of the behaviour of its constituting
component automata. As an initial investigation of the conditions under
which team automata satisfy compositionality, we study their computa-
tions and behaviour in relation to those of their constituting component
automata. We show that the construction of team automata according
to certain natural types of synchronization guarantees compositionality.

Keywords: team automata, compositionality, computations, behaviour,
synchronizations, shuffles.

1 Introduction

Component-based system design is a complex task that benefits from stepwise
development, i.e. an abstract high-level specification of a design is decomposed
into a more concrete low-level specification by step-by-step refinement, at each
step replacing components of the current specification by more detailed ones. To
guarantee correct decompositions it is important that the specification model
chosen is compositional, i.e. a specification of a composite system can be obtained
from specifications of its components [16]. In case of automata-based specification
models, compositionality requires that the relevant behaviour of a composite
automaton can be obtained from the behaviour of its constituting automata.

Most automata-based specification models guarantee compositionality by
choosing a single and very strict method of composing automata, in effect re-
sulting in composite automata that are uniquely defined by their constituents.
The choice prevalent in the literature is to allow the execution of an action in a
composite automaton if and only if all of its constituting automata sharing this
action simultaneously execute it. In [3] this type of synchronization of shared ac-
tions is coined maximal-action-indispensable (maximal-ai for short). Examples
� This author’s research was supported by an ERCIM postdoctoral fellowship and

was partly carried out during his stays at the Leiden Institute of Advanced Com-
puter Science of Leiden University and at the Computer and Automation Research
Institute of the Hungarian Academy of Sciences.

K. Araki, S. Gnesi, and D. Mandrioli (Eds.): FME 2003, LNCS 2805, pp. 381–400, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

382 Maurice H. ter Beek and Jetty Kleijn

of automata-based specification models with composition based on maximal-ai
synchronizations include I/O automata [20, 26], I/O systems [15, 16], Cooperat-
ing (Pushdown) Automata [8, 12], Timed Cooperating Automata [18], Reactive
Transition Systems [5, 6], and Interacting State Machines [21, 22]. This maximal-
ai type of synchronization also appears in disguise in non-automata-based spec-
ification models like CSP [13] and Statecharts [11].

Team automata were introduced for the specification of groupware systems
and their interconnections and they were shown to provide a flexible framework
for modelling collaboration between system components [1–3, 9]. Inspired by
I/O automata, a team automaton is composed of component automata, which
are automata with a partition of their sets of actions into input, output, and
internal actions. Team automata model the logical architecture of a design, while
abstracting from concrete data, configurations, and actions. They describe a
system solely in terms of an automaton, the role of actions, and synchronizations.

The crux of composing a team automaton is to define the way its constituting
components interact through synchronizations. While it is noted in [26] that a
single notion of composition is rather restrictive and may hinder a realistic mod-
elling of certain types of interactions, composition of I/O automata nevertheless
is unique. Within a team automaton, however, a component automaton is not
forced to participate in every synchronization of an action it shares. Hence there
is no such thing as the unique team automaton. Rather, a whole range of team
automata, distinguishable only by their synchronizations, can be composed over
a set of component automata. A team automaton is determined on the basis of
its components by choosing synchronizations reflecting the specific protocol of
collaboration to be modelled. This freedom offers the flexibility to distinguish
even the smallest nuances in the meaning of a design and thus sets this approach
apart from most other automata-based specification models.

In [3] we introduced a variety of fixed strategies for choosing the synchro-
nizations of a team automaton, thus leading to uniquely defined team automata.
These strategies are based on the basic types of synchronization maximal-ai ,
maximal-free, maximal-state-indispensable, and on the more complex types of
synchronization maximal-peer-to-peer and maximal-master-slave involving the
role of actions [3]. This paper provides an initial investigation of the conditions
under which these strategies lead to team automata satisfying compositionality.
To this aim, we study the relation between the computations and behaviour of
team automata defined according to the maximal-ai and maximal-free strategies
and those of their constituting components. Since a team automaton’s distinc-
tion of input, output, and internal actions is irrelevant for the results presented
in this paper, it is ignored from now on. Moreover, we consider only finitary
behaviour.

We begin this paper by fixing some notation, followed by some definitions and
results concerning team automata. Subsequently we investigate the behavioural
relation between team automata and their constituting components, only inter-
rupted by some definitions and results concerning (synchronized) shuffles. We
conclude this paper with a discussion of the obtained results.

Team Automata Satisfying Compositionality 383

2 Preliminaries

We assume familiarity with the basic notions from formal language theory [24].
We have the following conventions. Set inclusion is denoted by ⊆, whereas ⊂

denotes a strict inclusion. Set difference of sets V and W is denoted by V \W .
For a finite set V , its cardinality is denoted by #V . For convenience we denote
the set {1, 2, . . . , n} by [n]. Then [0] = ∅, the empty set. The cartesian product
of sets Vi, with i ∈ [n], is denoted by

∏
i∈[n] Vi. For j ∈ [n], projj :

∏
i∈[n] Vi → Vj

is defined by projj((a1, a2, . . . , an)) = aj . The empty word is denoted by λ. The
set of all finite words over an alphabet Σ (including λ) is denoted by Σ∗.

Let f : A → A′ and g : B → B′ be functions. Then f × g : A×B → A′ ×B′

is defined as (f × g)(a, b) = (f(a), g(b)). We use f [2] as shorthand for f × f (not
to be confused with iterated function application). Thus f [2](a, b) = (f(a), f(b)).

Let h : Σ → Γ ∗ be a function assigning to each symbol of Σ a finite word
over the alphabet Γ . The homomorphic extension of h to Σ∗, also denoted by h,
is defined in the usual way by h(λ) = λ and h(xy) = h(x)h(y) for all x, y ∈ Σ∗.

The function presΓ : Σ→Γ ∗, defined by presΓ (a)= a if a∈Γ and presΓ (a) =
λ otherwise, preserves the symbols from Γ and erases all other symbols.

3 Component Automata and Team Automata

In this section we recall some definitions and results concerning team automata
from [3], while ignoring their distinction of input, output, and internal actions.

Definition 1. A component automaton is a quadruple C = (Q,Σ, δ, I), with Q
its (possibly infinite) set of states, Σ its set of actions, Q∩Σ = ∅, δ ⊆ Q×Σ×Q
its set of labelled transitions, and I ⊆ Q its set of initial states. ��

Let a ∈ Σ. Then the set δa of a-transitions of C is defined as δa = {(q, q′) |
(q, a, q′) ∈ δ}. An a-transition (q, q) ∈ δa is called a loop (on a).

The dynamics of a component automaton is given through its computations,
while focussing on (certain) actions leads to a notion of behaviour.

Definition 2. Let C = (Q,Σ, δ, I) be a component automaton.
The set CC of its computations is defined as consisting of all finite sequences
α = q0a1q1a2q2 · · · anqn, with n ≥ 0, qi ∈ Q for 0 ≤ i ≤ n, and aj ∈ Σ for
1 ≤ j ≤ n such that q0 ∈ I and (qi, ai+1, qi+1) ∈ δ for all 0 ≤ i < n.

Let Θ be an alphabet disjoint from Q.
The Θ-behaviour BΘ

C of C is defined as BΘ
C = presΘ(CC). ��

The Σ-behaviour of C is also simply called its behaviour.
For the rest of this paper we consider an arbitrary but fixed set S = {Ci |

i ∈ [n]} of component automata, where n ≥ 0 and each Ci is specified as Ci =
(Qi, Σi, δi, Ii). A team automaton over S has the cartesian product

∏
i∈[n]Qi of

the state spaces of its components as its state space, while its actions are the
actions of its components. Its transition relation, however, is based on but not
fixed by the transitions of its components. More precisely, the transition relation

384 Maurice H. ter Beek and Jetty Kleijn

of a team automaton over S is defined by choosing certain synchronizations of
actions of its components while excluding others.

Definition 3. Let a ∈
⋃

i∈[n]Σi. The set ∆a(S) of synchronizations of a in S is
defined as ∆a(S) = {(q, q′) ∈

∏
i∈[n]Qi×

∏
i∈[n]Qi | ∃j∈ [n] : projj

[2](q, q′) ∈ δj,a

and ∀i ∈ [n] : proji
[2](q, q′) ∈ δi,a or proji(q) = proji(q′)}. ��

Let a ∈
⋃

i∈[n]Σi. Then ∆a(S) thus consists of all possible combinations of
a-transitions of components from S, with all non-participating components re-
maining idle. It is explicitly required that at least one component is active,
i.e. executes an a-transition. The transformation of a state of a team automaton
T over S is defined by the local state changes of the components from S partic-
ipating in the action of T being executed. When defining T , a specific subset δa
of ∆a(S) thus must be chosen for each action a. This enforces a certain kind of
interaction between the components constituting the team automaton.

Definition 4. A team automaton over S is a quadruple T = (Q,Σ, δ, I), with
Q =

∏
i∈[n]Qi, Σ =

⋃
i∈[n]Σi, δ ⊆

∏
i∈[n]Qi ×Σ×

∏
i∈[n]Qi such that {(q, q′) |

(q, a, q′) ∈ δ} ⊆ ∆a(S), for all a ∈ Σ, and I =
∏

i∈[n] Ii. ��

Each choice of synchronizations thus defines a team automaton. Clearly every
team automaton is again a component automaton, which in its turn can be used
as a component in an iteratively composed hierarchical system.

Within the formalization of a team automaton, no explicit information on
loops is provided. In general one thus cannot distinguish whether a component
with a loop on an action a in its local state participates in a synchronization on
a by the team: this component may have been idle or—after having participated
in the execution of a starting from the global state—it may have returned to
its original local state. In order to relate the computations of a team to those
of its components we nevertheless resort to projections. The problem of loops is
resolved by assuming that the presence of a component’s loop in a transition of
a team implies execution of that loop. This is a maximal interpretation of the
components’ participation in synchronizations.

Definition 5. Let T = (Q,Σ, δ, I) be a team automaton over S and let j ∈ [n].
The projection πCj (α) on Cj of a computation α ∈ CT is defined as πCj (α) =
projj(q) in case α = q ∈ I, while in case α = βqaq′, for some βq ∈ CT ,
q, q′ ∈ Q, and a ∈ Σ, then πCj (α) = πCj (βq) if a /∈ Σj or projj

[2](q, q′) /∈ δj,a,
and πCj (α) = πCj (βq)aprojj(q

′) if projj
[2](q, q′) ∈ δj,a. ��

Computations of team automata correspond to sequences of synchronizations
and the projection on the j-th component yields a computation of that compo-
nent. However, since the transitions of a team automaton are only required to be
subsets of all possible synchronizations, not every computation of a component
of a team is part of a computation of that team.

Theorem 1. πCj(CT)⊆CCj for all j∈ [n] and all team automata T over S. ��

Team Automata Satisfying Compositionality 385

In [3] we defined several strategies for choosing the synchronizations of a team
automaton, each leading to a uniquely defined team automaton. These strategies
fix the synchronizations of a team automaton by defining, per action a, certain
conditions on the a-transitions to be chosen from ∆a(S), thus defining a unique
subset of ∆a(S) as the set of a-transitions of the team automaton. We refer to
such subsets as predicates for a. Once predicates have been chosen for all actions
in

⋃
i∈[n]Σi, the team automaton over S defined by these predicates is unique.

Definition 6. Let Ra(S) ⊆ ∆a(S), for all a ∈ Σ, and let R = {Ra(S) | a ∈ Σ}.
Then T = (Q,Σ, δ, I) is the R-team automaton over S if δa = Ra(S), for all
a ∈ Σ. ��

The predicates is-free and is-ai are based on those actions of T that are free and
ai , respectively. An action a is free in T if none of its a-transitions is brought
about by a synchronization of a by two or more components from S, while a is
action-indispensable (ai for short) in T if all its a-transitions are brought about
by a synchronization of all components from S sharing a.

Definition 7. Let a ∈
⋃

i∈[n]Σi. The predicate is-free in S for a is defined as
Rfree

a (S) = {(q, q′) ∈ ∆a(S) | #{i ∈ [n] | a ∈ Σi and proji
[2](q, q′) ∈ δi,a} = 1}

and the predicate is-action-indispensable (is-ai for short) in S for a is defined as
Rai

a (S) = {(q, q′) ∈ ∆a(S) | ∀i ∈ [n] : if a ∈ Σi, then proji
[2](q, q′) ∈ δi,a}. ��

The predicate is-free thus contains all a-transitions from ∆a(S) in which only
one component participates (assuming the maximal interpretation) while the
predicate is-ai contains all a-transitions from ∆a(S) in which all components
with a as an action participate.

The Rfree -team automaton (Rai -team automaton) over S is also called the
maximal-free (maximal-ai) team automaton over S because it is the unique
team automaton with the property that adding any synchronization yields a
team automaton with an action that is not free (ai).

Note that whenever none of the components from S share an action, i.e. for
all i ∈ [n], Σi ∩

⋃
k∈[n]\{i}Σk = ∅, then the maximal-free team automaton over

S and the maximal-ai team automaton over S are the same.
For the rest of this paper we fix T = (Q,Σ, δ, I) as a team automaton over

S and we fix an alphabet Θ disjoint from Q. We also fix an element j ∈ [n].

4 From Team Automata to Component Automata

In this section we start out from the computations and behaviour of a team
automaton which we want to relate to the computations and behaviour of its
constituting component automata. We address this issue element-wise, i.e. given
one particular computation (behaviour) of a team automaton we consider how to
extract from it the underlying computation (behaviour) of one of its constituting
component automata.

According to Theorem 1 we can apply projections on the computations of the
team automaton in order to obtain computations of its components. By filtering

386 Maurice H. ter Beek and Jetty Kleijn

πCj (α) ∈ CCjα ∈ CT
πCj

presΘ presΘ

presΘ(α) ∈ BΘ
T

?
presΘ(πCj (α)) ∈ BΘ

Cj

Fig. 1. Extracting behaviour from team automata to component automata.

out the state information from these computations we subsequently obtain their
behaviour. We thus have the situation depicted by the diagram in Fig. 1.

In addition we are interested in an operation that yields the Θ-behaviour of
Cj directly from the Θ-behaviour presΘ(α) of T , i.e. an operation that makes the
diagram depicted in Fig. 1 commute. A natural candidate is the homomorphism
presΣj preserving only those actions from presΘ(α) that belong to Cj . However,
presΣj (presΘ(α)) = presΘ(πCj (α)) in general does not hold.

Example 1. Consider component automata C1 and C2 as depicted in Fig. 2 and
team automaton T over {C1, C2} as depicted in Fig. 3. We haveΣ1 = Σ2 = {a, b}.

Now let Θ = {a, b} and let α = (q1, q2)b(q1, q2)a(q′
1, q

′
2) ∈ CT . Then we have

presΣ2
(presΘ(α)) = ba �= a = presΘ(q2aq′

2) = presΘ(πC2(α)). ��

This example shows that we cannot assume that a component participates in a
synchronization just because it has the action that is being synchronized upon
as one of its actions. There is thus no a priori relation between a component’s
set of actions and its participation in synchronizations of those actions. How-
ever, there exists a necessary and sufficient condition which guarantees that
presΣj (presΘ(α)) = presΘ(πCj (α)). This condition is based on the notion of ai
actions and guarantees the participation of all components that share the action
of a synchronization, but only for transitions that are actually used in team com-

b

q2 q′
2

a
q1 q′

1
a

bC1: C2:

Fig. 2. Component automata C1 and C2.

b(
q1
q2

) (
q′
1

q′
2

)
a

(
q′
1

q2

)(
q1
q′
2

) (
q′
1

q2

)

(
q′
1

q′
2

)

a

T : T ′: (
q1
q2

)

(
q1
q′
2

)

Fig. 3. Team automata T and T ′.

Team Automata Satisfying Compositionality 387

putations. A transition (q, q′) ∈ δa is useful (in T) if there exists a computation
α ∈ CT such that α = βqaq′γ for some β ∈ (QΣ)∗ and γ ∈ (ΣQ)∗.

Definition 8. The set uAI j(T) of useful j-ai actions is defined as uAI j(T) =
{a ∈ Σj | ∀q, q′ ∈ Q : if (q, q′) ∈ δa is useful, then projj

[2](q, q′) ∈ δj,a}. ��

This leads to the following sufficient condition under which the preserving ho-
momorphism presΣj makes the diagram of Fig. 1 commute.

Lemma 1. If Θ ∩ Σj ⊆ uAI j(T), then for all α ∈ CT , presΣj (presΘ(α)) =
presΘ(πCj (α)).

Proof. LetΘ∩Σj ⊆ uAI j(T). We begin by considering α = q0a1q1a2q2 · · · anqn ∈
CT . By induction on n we prove that presΣj (presΘ(α)) = presΘ(πCj (α)).

If n = 0, then α = q0 and thus presΣj (presΘ(q0)) = presΘ(πCj (q0)) = λ.
Next assume that n = k + 1, for some k ≥ 0, and that presΣj (presΘ(β)) =

presΘ(πCj (β)), where β = q0a1q1a2q2 · · · akqk. Hence α = βanqn. This implies
presΣj (presΘ(α)) = presΣj (presΘ(β))an if an ∈ Θ ∩Σj and presΣj (presΘ(α)) =
presΣj (presΘ(β)) if an /∈ Θ ∩Σj .

First let an ∈ Θ∩Σj . Then projj
[2](qn, qn+1) ∈ δj,an since Θ∩Σj ⊆ uAI j(T)

and thus presΘ(πCj (α)) = presΘ(πCj (β)anprojj(qn+1)) = presΘ(πCj (β))an =
presΣj (presΘ(βanqn)) by the induction hypothesis. Hence presΣj (presΘ(α)) =
presΘ(πCj (α)).

Next let an /∈ Θ ∩Σj . Then an /∈ Θ or an /∈ Σj .
If an /∈ Σj , then πCj (α) = πCj (β) and thus, by the induction hypothesis,
presΘ(πCj (α)) = presΘ(πCj (β)) = presΣj (presΘ(β)). Since presΣj (presΘ(β)) =
presΣj (presΘ(βanqn)) it follows that presΘ(πCj (α)) = presΣj (presΘ(α)).
If an /∈ Θ, then presΘ(πCj (α)) = presΘ(πCj (β)) and thus, by the induction hy-
pothesis, presΘ(πCj (α)) = presΣj (presΘ(β)) = presΣj (presΘ(α)). ��

This condition is also necessary.

Lemma 2. If (Θ ∩Σj) \ uAI j(T) �= ∅, then there exists an α ∈ CT such that
presΣj (presΘ(α)) �= presΘ(πCj (α)).

Proof. Let (Θ ∩ Σj) \ uAI j(T) �= ∅. Then the following situation must exist.
Let α= q0a1q1a2q2 · · · anqn ∈CT be such that for all 1≤i<n, either ai /∈Θ, or
ai /∈Σj , or projj

[2](qi−1, qi)∈δj,ai , while projj
[2](qn−1, qn) /∈δj,an , with an ∈Θ∩Σj .

Thus presΣj (presΘ(α))=presΣj (presΘ(a1a2 · · · an−1))an. As projj
[2](qn−1, qn) /∈

δj,an we however have presΘ(πCj (α)) = presΘ(πCj (q0a1q1a2q2 · · · an−1qn−1)) �=
presΣj (presΘ(a1a2 · · · an−1))an = presΣj (presΘ(α)). ��

Theorem 2. For all α ∈ CT , presΣj (presΘ(α)) = presΘ(πCj (α)) if and only if
Θ ∩Σj ⊆ uAI j(T). ��

Summarizing we thus have the following situation. Team automaton T is able
to execute a computation α for which the diagram of Fig. 1 does not commute
solely when Cj contains at least one action from Θ that is not useful j-ai in T .

388 Maurice H. ter Beek and Jetty Kleijn

Until now we extracted the behaviour of the component automata of a team
automaton from its computations. The above results however also provide us
with a sufficient condition for obtaining the behaviour of components directly
from the behaviour of the team automaton.

Theorem 3. If Θ ∩Σj ⊆ uAI j(T), then BΘ∩Σj
T ⊆ BΘ

Cj .

Proof. Let Θ∩Σj ⊆ uAI j(T) and let v ∈ BΘ∩Σj
T . Then v ∈ presΘ∩Σj (CT). Now

let α ∈ CT be such that presΘ∩Σj (α) = v. By Theorem 1, πCj (α) ∈ CCj . Since
Θ ∩ Σj ⊆ uAI j(T), Lemma 1 implies that presΣj (presΘ(α)) = presΘ(πCj (α)).
Hence v = presΘ∩Σj (α) = presΣj (presΘ(α)) = presΘ(πCj (α)) ∈ BΘ

Cj . ��

Contrary to what might be expected from Theorem 2, the statement of Theo-
rem 3 cannot be reversed.

Example 2. (Ex. 1 cont.) Consider team automaton T ′ over {C1, C2} as depicted
in Fig. 3. Then Θ ∩Σ1 = {a, b} and uAI 1(T ′) = {b}. However, BΘ∩Σ1

T ′ = {λ, a}
is included in BΘ

C1
= {bn, bna | n ≥ 0}. ��

Whereas a simple projection πCj applied to a computation of T suffices to obtain
a computation of Cj , a similarly simple preserving homomorphism presΣj applied
to a behaviour of T need not always yield a behaviour of Cj unless all actions
Σj of Cj are useful j-ai . The reason for this difference is as follows.

In a computation of T we still have available the information as to which
components from S participated in each synchronization performed during this
computation. When we deal with a behaviour of T , however, only the sequence
of executed actions is available, i.e. we have lost all information as to which
components from S participated in which execution. This implies that whenever
we can be sure of a component’s participation in each execution of an action it
has as an action itself, then we can simply apply our preserving homomorphism
to a team behaviour in order to obtain the behaviour of that component.

Since every action of a component from S is useful j-ai in the maximal-ai
team automaton T over S, Theorem 3 implies the following result.

Corollary 1. If T is the Rai -team automaton over S, then BΘ∩Σj
T ⊆ BΘ

Cj . ��

While this behavioural relation is well known for automata-based specifica-
tion models with composition based on maximal-ai synchronizations, Theo-
rems 2 and 3 show a more precise condition guaranteeing it and moreover exclude
the existence of a similar relation in case composition is not maximal-ai based.

Thus far we studied how to obtain the computations (behaviour) of the com-
ponents constituting S from the computations (behaviour) of team automata
over S. In the next section we consider the dual approach.

5 From Component Automata to Team Automata

In this section we start out from the computations and behaviour of the compo-
nent automata constituting S. Consequently we want to describe computations

Team Automata Satisfying Compositionality 389

and behaviour of team automata over S. We begin by addressing this issue
element-wise, i.e. given a computation (behaviour) of each component in a sub-
set of S we want to know whether there exists a team automaton over S with a
computation (behaviour) that uses this combination of computations.

Definition 9. Let α ∈
∏

i∈[n] CCi . Then α is used in T if there exists a β ∈ CT
such that for all i ∈ [n], πCi(β) = proji(α). ��

Note that any vector of initial states is used in T since
∏

i∈[n] Ii ⊆ CT . If
K ⊆ [n] and αk ∈ CCk , for all k ∈ K, then we say that

∏
k∈K αk is used in T

whenever there exists a γ ∈
∏

i∈[n] CCi that is used in T and which is such that
projk(γ) = αk, for all k ∈ K. Finally, as vectors over

∏
j CCj have one element

we identify the vector and its element in those cases.
In general not all vectors of computations of components from S are used in

T . As said before, it may be the case that a computation of a component from
S never participates in a team computation. Moreover, it may happen that a
vector over two or more computations of components from S is not used as such
in T , even when each entry of this vector is used in T .

Example 3. (Ex. 1 cont.) Let α′ = q2aq
′
2bq

′
2 ∈ CC2 . Then α′ is not used in T

because there exists no β ∈ CT such that πC2(β) = α′. Now consider team
automaton T ′′ over {C1, C2} as depicted in Fig. 4.

(
q1
q2

) (
q′
1

q′
2

)T ′′: T ai : (
q1
q2

) (
q′
1

q′
2

)a

(
q′
1

q2

)(
q1
q′
2

) (
q1
q′
2

) (
q′
1

q2

)

b

a a

Fig. 4. Team automaton T ′′ and maximal-ai team automaton T ai .

Now let α1 = q1aq
′
1 ∈ CC1 and let α2 = q2aq

′
2 ∈ CC2 . Clearly both α1 and α2

are used in T ′′ because β1 = (q1, q2)a(q′
1, q2) ∈ CT ′′ and β2 = (q1, q2)a(q1, q′

2) ∈
CT ′′ . However, β1 and β2 are the only two nontrivial computations of T ′′. Since
πC1(β2) = q1 and πC2(β1) = q2 this means that there exists no β ∈ CT ′′ such
that πC1(β) = α1 and πC2(β) = α2. Hence (α1, α2) is not used in T ′′.

Note that (α1, α2) is used in T because β = (q1, q2)a(q′
1, q

′
2) ∈ CT is such

that πC1(β) = proj1((α1, α2)) = α1 and πC2(β) = proj2((α1, α2)) = α2. ��

While in general not every vector of computations of components from S is used
in T , we wonder if the situation improves when T is defined in a particular way.

In analogy with the previous section we first consider T to be the maximal-ai
team automaton over S. However, not even in maximal-ai team automata over
S need all vectors of computations of components from S be used.

390 Maurice H. ter Beek and Jetty Kleijn

Example 4. (Ex. 1, 3 cont.) The maximal-ai team automaton T ai over {C1, C2}
is depicted in Fig. 4. Consider q1 ∈ CC1 and recall that α2 = q2aq

′
2 ∈ CC2 .

Since (q1, q2)a(q′
1, q

′
2) is the only nontrivial computation of T ai there exists no

computation β′ ∈ CT ai such that πC1(β
′) = q1 and πC2(β

′) = α2. Hence (q1, α2)
is not used in T ai . ��

The fact that the maximal-ai strategy forces components to synchronize on their
shared actions provides us with enough information to formulate the conditions
under which a vector of computations is used in a computation of the maximal-ai
team automaton over S. To this aim we define a vector α consisting of compu-
tations of the components from S—one for each component—to be ai-consistent
if there exists a word w over Σ with the following property: whenever we pre-
serve from w only the actions of a component from S, then we obtain exactly
the behaviour resulting from the computation in α that originates from that
component. In an ai -consistent vector the computations forming its entries thus
“agree” with respect to the behaviour of their respective components.

Definition 10. Let α ∈
∏

i∈[n] CCi . Then α is ai-consistent if there exists a
w ∈ Σ∗ such that for all i ∈ [n], presΣi(w) = presΣi(proji(α)). ��

We now have a sufficient and necessary condition for a vector of computations
of components from S to be used in the maximal-ai team automaton over S.

Theorem 4. α ∈
∏

i∈[n] CCi is used in the Rai -team automaton over S if and
only if α is ai-consistent.

Proof. (If) Let α ∈
∏

i∈[n] CCi be ai -consistent and let T be the Rai -team
automaton over S. Now let w ∈ Σ∗ be such that for all i ∈ [n], presΣi(w) =
presΣi(proji(α)). Let w = a1a2 · · · am for somem ≥ 0 and ak ∈ Σ, for all k ∈ [m].
For each i ∈ [n], let the indices i1, i2, . . . , imi

∈ [m] be such that presΣi(w) =
ai1ai2 · · · aimi

. Hence mi = 0 if presΣi(w) = λ and 1 ≤ i1 < i2 < · · · < imi ≤ m
otherwise. Moreover, observe that

⋃
i∈[n]{i1, i2, . . . , imi

} = [m]. Since for all
i ∈ [n], presΣi(w) = presΣi(proji(α)) and proji(α) ∈ CCi , it follows that for all
i ∈ [n], proji(α) = qi

0ai1q
i
1ai2 · · · aimi

qi
mi

with qi
0 ∈ Ii and qi

1, q
i
2, . . . , q

i
mi

∈ Qi.
Now define β = q0a1q1a2 · · · amqm, with qk ∈

∏
i∈[n]Qi for all 0 ≤ k ≤ m,

in such a way that for all i ∈ [n] and for all 0 ≤ k ≤ m, proji(qk) = qi
� if

i� ≤ k < i�+1 with � < mi (by convention, i0 = 0) and proji(qk) = qi
mi

if
imi ≤ k ≤ m. Consequently we prove that β ∈ CT while—in one stroke—
πCi(β) = proji(α), for all i ∈ [n], follows from an inductive argument.

By its definition, q0 =
∏

i∈[n] q
i
0 ∈

∏
i∈[n] Ii = I. Next consider (qk−1, ak, qk),

for some k ∈ [m]. Let i ∈ [n]. We distinguish the following two cases.
If ak ∈ Σi, then k = i� for some � ∈ [mi] and i�−1 ≤ k − 1 < k = i�. The

definitions of qk−1 and qk then yield proji(qk−1) = qi
�−1 and proji(qk) = qi

�. Since
proji(α) ∈ CCi it follows that (qi

�−1, q
i
�) ∈ δi,ai� = δi,ak .

If ak /∈ Σi, then k �= i� for some � ∈ [mi]. If k < imi , then there exists an � ≥ 1
such that i�−1 ≤ k−1 < k < i�. Thus proji(qk−1) = proji(qk) = qi

�−1. Conversely,
if k ≥ imi

, then imi
≤ k − 1 < k ≤ m. Thus again proji(qk−1) = proji(qk).

Team Automata Satisfying Compositionality 391

Since
⋃

i∈[n]{i1, i2, . . . , imi
} = [m], it follows that ak ∈ Σi for at least one

i ∈ [n] and hence (qk−1, qk) ∈ Rai
ak

(S) = δak . This implies that for all k ∈ [m],
q0a1q1a2 · · · akqk ∈ CT and for all i ∈ [n], πCi(q0a1q1a2 · · · akqk) ∈ CCi . Hence
for all i ∈ [n], πCi(β) = πCi(q0a1q1a2 · · · amqm) = proji(α) and α is thus used in
the maximal-ai team automaton T .

(Only if) Let α ∈
∏

i∈[n] CCi be used in the Rai -team automaton T over S.
Then there exists a β ∈ CT such that πCi(β) = proji(α), for all i ∈ [n]. Now
let w = presΣ(β) ∈ Σ∗. Since T is the Rai -team automaton over S, Lemma 1
implies that presΣi(w) = presΣi(presΣ(β)) = presΣ(πCi(β)) = presΣi(πCi(β)) =
presΣi(proji(α)), for all i ∈ [n]. Hence α is ai -consistent. ��

In order to relate the computations of maximal-ai team automata to the com-
putations of their constituting components, we define when S is ai -consistent.

Definition 11. S is ai-consistent if for all i ∈ [n] and for each γ ∈ CCi there
exists an ai-consistent vector α ∈

∏
i∈[n] CCi such that proji(α) = γ. ��

We have now defined ai -consistency both for vectors (of computations) and for
S. However, from the context it will always be clear whether we deal with an
ai -consistent vector or rather with an ai -consistent S.

If S is ai -consistent, then this guarantees that for all computations of its
constituents there exists a vector of computations which is ai -consistent and
thus each computation of a component from S is used in a computation of the
maximal-ai team automaton T over S. In that case the set of computations (be-
haviour) of a component from S thus equals the set of computations (behaviour)
of the maximal-ai team automaton over S projected on that component.

Theorem 5. Let T be the Rai -team automaton over S. Then

(1) CCi = πCi(CT), for all i ∈ [n], if and only if S is ai-consistent, and
(2) if S is ai-consistent, then for all i ∈ [n], BΣi

Ci = BΣi
T .

Proof. (1) (Only if) Let CCi = πCi(CT), for all i ∈ [n]. Let γ ∈ CCj . Since CCj =
πCj (CT) there exists a β ∈ CT such that πCj (β) = γ. Now let α ∈

∏
i∈[n] CCi be

such that for all i ∈ [n], proji(α) = πCi(β). Since CCi = πCi(CT), for all i ∈ [n],
this α exists. Furthermore, by Theorem 4, α is ai -consistent. Definition 11 then
implies that S is ai -consistent.

(If) Let S be ai -consistent. Due to Theorem 1 we need to prove that for all
i ∈ [n], CCi ⊆ πCi(CT). Now let γ ∈ CCj . Since S is ai -consistent there exists an
ai -consistent vector α ∈

∏
i∈[n] CCi such that projj(α) = γ. Then by Theorem 4

there exists a β ∈ CT such that πCj (β) = projj(α) = γ. Hence γ ∈ πCj (CT).
(2) Since T is the Rai -team automaton over S, Corollary 1 implies that

BΣi
T ⊆ BΣi

Ci . Moreover, by (1) and Lemma 1, BΣi
Ci ⊆ BΣi

T . ��

We move on to the case that T is the maximal-free team automaton over S.
Now T consists of completely independent, non-synchronizing components.

Consequently, our first intuition might be to jump to the conclusion that in

392 Maurice H. ter Beek and Jetty Kleijn

b b b

b
qp r

(
p
q

)C4:C3: (
p
r

)T free :

Fig. 5. Component automata C1 and C2, and maximal-free team automaton T free .

that case every single computation of a component from S is used in T . In case
the components from S contain loops, however, a computation of a component
from S need not be used in T . This is due to our maximal interpretation of the
components’ participation in synchronizations.

Example 5. Consider component automata C3 and C4, and the maximal-free
team automaton T free over {C3, C4}, as depicted in Fig. 5.

It is easy to see that α′′ = qbr ∈ CC4 and that no computation β ∈ CT free is
such that πC4(β) = α′′. Hence α′′ is not used in T free . ��
By postulating that loops can never synchronize with transitions of other com-
ponents, this problem can be avoided.

Definition 12. S is Θ-loop limited if for all i ∈ [n] and for all a ∈ Θ ∩ Σi,
whenever (q, q) ∈ δi,a for some q ∈ Qi, then for all k ∈ [n] \ {i}, δk,a = ∅. ��
If S is Σ-loop limited, then we may also simply say that it is loop limited.

In the maximal-free team automaton T over a loop-limited S, each action of
Cj can be executed independently of the current local states that the other com-
ponents from S are in, since none of these other components participates in such
an execution. It thus comes as no surprise that in that case each computation
of a component from S is used in a computation of T .

Lemma 3. If S is loop limited, then every α ∈ CCj is used in the Rfree-team
automaton over S.

Proof. Let S be loop limited and let T be the Rfree -team automaton over S.
Observe that together with Definitions 3 and 7 this implies that if (p, p′) ∈ δj,a,
then for all q ∈ Q such that projj(q) = p, (q, q′) ∈ δa = Rfree

a (S) with projj(q′) =
p′, and for all i ∈ [n]\{j}, proji(q′) = proji(q). Now let α = p0a1p1a2 · · · ampm ∈
CCj , i.e. (pk−1, pk) ∈ δj,ak , for all 1 ≤ k ≤ m. Since Q =

∏
i∈[n]Qi and I =

∏
i∈[n] Ii, the observation above implies that there exists a computation β =

q0a1q1a2 · · · amqm ∈ CT such that projj
[2](qk−1, qk) = (pk−1, pk) ∈ δj,ak , for all

1 ≤ k ≤ m. Hence πCj (β) = α and α is thus used in T . ��

From Theorem 1 we know that given a computation of a team automaton over
S, the projection on a component from S is included in the set of computations
of that component. Together with Lemma 3 this implies that whenever S is loop
limited, then the set of computations of a component from S equals the set of
computations of the maximal-free team automaton T over S projected on that
component. Moreover, the behaviour of that component is included in the be-
haviour of T . Like the proof of Lemma 3, also the proof of this statement is based

Team Automata Satisfying Compositionality 393

on the observation that in a maximal-free team automaton, each executed action
has only one participating component. This implies that the team automaton
can always execute any computation of any of its components while keeping all
remaining components in an initial state.

Theorem 6. Let T be the Rfree-team automaton over S. Then

if S is loop limited, then for all i ∈ [n], CCi = πCi(CT) and BΣi
Ci ⊆ BΣ

T .

Proof. Let S be loop limited and let i ∈ [n]. Then Lemma 3 implies that CCi ⊆
πCi(CT) and thus, by Theorem 1, CCi = πCi(CT). Now let α ∈ BΣi

Ci and let
β ∈ CCi be such that presΣi(β) = α. Since CCi = πCi(CT), there must exist a
γ ∈ CT such that β = πCi(γ). Moreover, since T is the Rfree -team automaton
over S, it follows that we may assume that πCk(γ) ∈ Ik, for all k ∈ [n] \ {i}.
Hence presΣ(γ) = presΣ(πCi(γ)) = presΣi(β) = α and thus α ∈ BΣ

T . ��

The behaviour of the maximal-free team automaton T over S trivially is made
up of the behaviour of not just one component from S, but of the behaviour
of all of the components from S. Therefore, even if S is loop limited, BΣj

Cj may
be strictly included in BΣ

T . Furthermore, the fact that CCi = πCi(CT), for all
i ∈ [n], need not imply that S is loop limited.

Example 6. (Ex. 1 cont.) Consider the maximal-free team automaton T 1,2 over
{C1, C2} as depicted in Fig. 6. We directly see that BΣ2

C2
= {λ, abn | n ≥ 0} �

{bn, bna, bnaa, bnaabn | n ≥ 0} = BΣ
T 1,2 .

Recall that α′ = q2aq
′
2bq

′
2 ∈ CC2 . Since β = (q1, q2)a(q1, q′

2)a(q
′
1, q

′
2)b(q

′
1, q

′
2) ∈

CT 1,2 , α′ is used in T 1,2. It is moreover not difficult to see that for all k ∈ [2],
CCk ⊆ πCk(CT 1,2) and thus, by Theorem 1, CCk = πCk(CT 1,2). However, {C1, C2}
is not loop limited because (q1, q1) ∈ δ1,b and (q′

2, q
′
2) ∈ δ2,b. ��

Both for maximal-ai and for maximal-free team automata over S we have for-
mulated (in Theorems 5 and 6, respectively) a condition which guarantees that
all component computations participate in at least one team computation. In
fact, for maximal-ai team automata over S the ai -consistency of S was shown
to be also a necessary condition. Given these conditions the relation between
the behaviour of the components from S and that of the maximal-ai (maximal-
free) team automaton over S could be precisely described. In the remainder of

b

b

b (
q1
q2

)T fa :

(
q1
q′
2

) (
q′
1

q2

)
aa

a

a

(
q′
1

q′
2

)(
q1
q2

) (
q′
1

q′
2

)T 1,2:

(
q′
1

q2

)(
q1
q′
2

)
a

a

a

a

Fig. 6. Team automata T 1,2 and T fa .

394 Maurice H. ter Beek and Jetty Kleijn

this paper we moreover define the behaviour of maximal-ai (maximal-free) team
automata in terms of the behaviour of their constituting components. This re-
quires establishing which combinations of words—if any—from the behaviour of
components from S can be combined—and in particular how—such that a word
from the behaviour of the maximal-ai (maximal-free) team automaton over S
results. This leads us to the shuffle (a.k.a. merge or weave) operation from the
theory of formal languages.

6 Shuffles and Synchronized Shuffles

In this section we give definitions and results concerning shuffles and synchro-
nized shuffles. A shuffle of two words is an arbitrary interleaving of the symbol
occurrences in the original words, like the shuffling of two decks of cards. This
is a well-known language-theoretic operation with a long history in theoretical
computer science, in particular within formal language theory [10, 14]. How-
ever, the underlying idea also appears in many other disguises throughout the
computer science literature, e.g. in concurrency theory in the form of parallel
operators modelling communication between processes [4, 23].

Definition 13. Let ∆ be an alphabet and let u, v ∈ ∆∗. Then a word w ∈ ∆∗

is a shuffle of u and v, denoted by w ∈ u || v, if w = u1v1u2v2 · · ·unvn, with
n ≥ 1, ui, vi ∈ ∆∗ for all i ∈ [n], u = u1u2 · · ·un, and v = v1v2 · · · vn.
The shuffle of languages K,L ⊆ ∆∗, denoted by K || L, is defined as K || L =⋃

u∈K,v∈L(u || v). ��

Example 7. Let ∆ = {a, b, c, d}. Let u = abc ∈ ∆∗ and let v = cd ∈ ∆∗. Then
u || v = {abccd,acbcd,cabcd,abcdc,acbdc,cabdc,acdbc,cadbc,cdabc}. ��

The shuffle operation is both commutative and associative: for all u, v, w ∈
∆∗, u || v = v || u and (u || v) || w = u || (v || w), and likewise for languages.
The shuffle of languages Li, with i ∈ [n], can thus be defined as || i∈[n] Li =
L1 || L2 || · · · || Ln.

We now generalize the basic shuffle by defining a synchronized shuffle. Rather
than just interleaving the occurrences of the symbols in the words being shuf-
fled, whenever a symbol is subject to synchronization the synchronized shuffle
combines its occurrences in different words into one occurrence. Each thus syn-
chronized occurrence of a symbol in the resulting words then corresponds to
a synchronization. This means that the words in a synchronized shuffle have a
common “backbone” consisting of occurrences of synchronized symbols. The idea
underlying the various synchronized shuffles we define here appears in numerous
disguises throughout the computer science literature, e.g. in concurrency theory
as the concurrent composition or weave of synchronizing processes [17, 25] and
in formal language theory as the ‘produit de mixage’ of languages [7, 19].

For the rest of this paper we use Γ to denote an arbitrary but fixed alphabet.

Team Automata Satisfying Compositionality 395

Definition 14. Let ∆ be an alphabet and let u, v ∈ ∆∗. Then a word w ∈ ∆∗ is a
synchronized shuffle (S-shuffle for short) on Γ of u and v, denoted by w ∈ u ||Γ v,
if w ∈ (u1 || v1)x1(u2 || v2)x2 · · ·xn−1(un || vn), with n ≥ 1, ui, vi ∈ (∆ \ Γ)∗

for all i ∈ [n], xi ∈ Γ for all i ∈ [n − 1], u = u1x1u2x2 · · ·xn−1un, and v =
v1x1v2x2 · · ·xn−1vn.
The S-shuffle on Γ of languages K,L ⊆ ∆∗, denoted by K ||Γ L, is defined as
K ||Γ L =

⋃
u∈K,v∈L(u ||Γ v). ��

Note that the S-shuffle is indeed a generalization of the shuffle: for all u, v ∈ ∆∗,
u ||∅ v = u || v, and likewise for languages.

Example 8. (Ex. 7 cont.) Now u ||{c} v = {abcd}, whereas u ||{b,c} v = ∅. ��

We proceed by defining two special cases of the S-shuffle, each obtained by
varying the set of symbols required to be synchronized. Given two words over
two alphabets, the full S-shuffle requires all symbols in the intersection of these
two alphabets to be synchronized, while the relaxed S-shuffle requires only a
specified subset of the symbols in this intersection to be synchronized. Both
operations are thus defined with respect to the alphabets of the words involved.

Definition 15. Let ∆1 and ∆2 be alphabets, let u ∈ ∆∗
1, let v ∈ ∆∗

2, and let
w ∈ (∆1 ∪∆2)∗. Then

(1) w is a full S-shuffle (fS-shuffle for short) of u and v w.r.t. ∆1 and ∆2, denoted
by w ∈ u

∆1
||
∆2

v, if w is an S-shuffle on ∆1 ∩∆2 of u and v, and
(2) w is a relaxed S-shuffle (rS-shuffle for short) on Γ of u and v w.r.t. ∆1 and

∆2, denoted by w ∈ u
∆1

||Γ
∆2

v, if w is an S-shuffle on Γ ∩ ∆1 ∩ ∆2 of u
and v. ��

Let L1 ⊆ ∆∗
1 and let L2 ⊆ ∆∗

2. Then the fS-shuffle of L1 and L2 w.r.t.∆1 and∆2,
denoted by L1 ∆1

||
∆2

L2, is defined as L1 ∆1
||
∆2

L2 =
⋃

u∈L1,v∈L2
(u

∆1
||
∆2

v)

and the rS-shuffle on Γ of L1 and L2 w.r.t.∆1 and∆2, denoted by L1 ∆1
||Γ
∆2

L2,

is defined as L1 ∆1
||Γ
∆2

L2 =
⋃

u∈L1,v∈L2
(u

∆1
||Γ
∆2

v). Note that for all u ∈ ∆∗
1,

v ∈ ∆∗
2, and Γ ⊇ ∆1 ∩∆2, u ∆1

||Γ
∆2

v = u
∆1

||
∆2

v, and likewise for languages.

Example 9. (Ex. 8 cont.) Now u
∆

||{c}
∆

v = {abcd}, whereas u
∆

||{b,c}
∆

v =
u
∆

||
∆
v = ∅. Consequently, let ∆1 = {a, b, c}, ∆2 = {c, d}, u = abc ∈ ∆∗

1,

and v = cd ∈ ∆∗
2. Then u

∆1
||{c}
∆2

v = u
∆1

||{b,c}
∆2

v = u
∆1

||
∆2

v = {abcd}. ��

Since the S-shuffle is defined in terms of the shuffle, its commutativity follows
immediately: for all u, v ∈ ∆∗, u ||Γ v = v ||Γ u, and likewise for languages.
The fact that both the fS-shuffle and the rS-shuffle are defined in terms of the
S-shuffle subsequently implies that also these operations are commutative in
the following sense: for all u ∈ ∆∗

1 and v ∈ ∆∗
2, u ∆1

||
∆2

v = v
∆2

||
∆1

u and

u
∆1

||Γ
∆2

v = v
∆2

||Γ
∆1

u, and likewise for languages.

396 Maurice H. ter Beek and Jetty Kleijn

The S-shuffle is moreover associative: for all u, v, w ∈ ∆∗, {u} ||Γ (v ||Γ w) =
(u ||Γ v) ||Γ {w}, and likewise for languages. The S-shuffle on Γ of languages Li,
with i ∈ [n], can thus be defined as ||Γi∈[n] Li = L1 ||Γ L2 ||Γ · · · ||Γ Ln.

Due to the importance of the alphabets w.r.t. which words are fS-shuffled or
rS-shuffled, a notion of associativity for the rS-shuffle and fS-shuffle is intuitively
not immediate. We do not provide proofs here, but for all u ∈ ∆∗

1, v ∈ ∆∗
2,

and w ∈ ∆∗
3, the fS-shuffle satisfies the property {u}

∆1
||
∆2∪∆3

(v
∆2

||
∆3

w) =
(u

∆1
||
∆2

v)
∆1∪∆2

||
∆3

{w}, while the rS-shuffle satisfies the property that

{u}
∆1

||Γ
∆2∪∆3

(v
∆2

||Γ
∆3

w) = (u
∆1

||Γ
∆2

v)
∆1∪∆2

||Γ
∆3

{w}, and likewise for
languages. The fS-shuffle of languages Li ∈∆∗

i , with i∈ [n], can thus be defined as
|| {∆i|i∈[n]} Li = (· · · ((L1 ∆1

||
∆2

L2) ∆1∪∆2
||
∆3

L3) · · ·) ⋃
i∈[n−1]∆i

||
∆n

Ln, while
the rS-shuffle on Γ of languages Li ∈ ∆∗

i , with i ∈ [n], can thus be defined as
||Γ{∆i|i∈[n]} Li = (· · · ((L1 ∆1

||Γ
∆2

L2) ∆1∪∆2
||Γ
∆3

L3) · · ·) ⋃
i∈[n−1]∆i

||Γ
∆n

Ln.
The following alternative definition of the fS-shuffle is used in the sequel.

Theorem 7. If wi ∈ ∆∗
i , for all i∈ [n], then || {∆i|i∈[n]} wi = {w ∈ (

⋃
i∈[n]∆i)∗ |

pres∆i
(w) = wi, for all i ∈ [n]}. ��

7 Team Automata Satisfying Compositionality

In this section we identify precisely some types of team automata that satisfy
compositionality, i.e. whose behaviour can be obtained from that of their con-
stituting components.

Since all synchronizations in a maximal-ai team automaton require the par-
ticipation of all its components sharing the action being synchronized, it is not
surprising that the behaviour of a maximal-ai team automaton equals the fS-
shuffle of the behaviour of its constituting components. In fact, corresponding
versions of this result have been formulated for other automata-based specifi-
cation models with composition based on maximal-ai synchronizations [15, 26].

Theorem 8. Let T be the Rai -team automaton over S. Then

BΣ
T = || {Σi|i∈[n]} BΣi

Ci .

Proof. (⊆) This follows immediately from Corollary 1 and Theorem 7.
(⊇) Let w∈|| {Σi|i∈[n]}B

Σi
Ci . Then, by Theorem 7, presΣi(w)∈BΣi

Ci , for all i∈
[n]. Hence there exist αi ∈CCi such that presΣi(αi) = presΣi(w), for all i∈ [n],
and thus

∏
i∈[n] αi is ai -consistent. As w∈(

⋃
i∈[n]Σi)∗ is such that presΣi(w)=

presΣi(αi), for all i∈ [n], the proof of the (If)-direction of Theorem 4 implies there
exists a β ∈ CT such that pres⋃

i∈[n] Σi(β) = presΣ(β) = w. Hence w ∈ BΣ
T . ��

Example 10. (Ex. 1, 4 cont.) BΣ
T ai ={λ, a}={bn, bna |n≥0}

Σ1
||
Σ2

{λ, abn |n≥0}
= || {Σi|i∈[2]} BΣi

Ci . Note that while ba /∈ || {Σi|i∈[2]} BΣi
Ci , clearly ba ∈ BΣ

T . ��

Team Automata Satisfying Compositionality 397

Each synchronization in a maximal-free team automaton is such that only one
of its components participates—under the assumption that a loop on the action
being synchronized is always executed. Hence, if we require S to be loop limited,
then the behaviour of the maximal-free team automaton over S equals the shuffle
of the behaviour of the components from S. Actually we prove a more general
result, viz. that the behaviour of a team automaton that is composed according
to a mixture of the maximal-free and maximal-ai strategies equals the rS-shuffle
of the behaviour of its constituting components.

Theorem 9. Let Γ̄ = Σ\Γ and let T be the {Rai
a | a ∈ Σ∩Γ}∪{Rfree

a | a ∈ Γ̄}-
team automaton over S. Then

if S is Γ̄ -loop limited, then BΣ
T = ||Γ{Σi|i∈[n]} BΣi

Ci .

Proof. Let T ′ be the team automaton that is obtained from T by attaching a
label to each action from Γ̄ depending on the component executing that action,
i.e. T ′ = (Q,Σ′, δ′, I) with Σ′ = {[a, i] | a ∈ Γ̄ ∩Σi, i ∈ [n]} ∪ (Σ ∩ Γ) and δ′ =
{(q, [a, i], q′) | a ∈ Γ̄ , (q, a, q′) ∈ δ, proji

[2](q, q′) ∈ δi,a, i ∈ [n]}∪(δ∩(Q×Γ×Q)).
Since all actions from Γ̄ are free in T , the behaviour of T is an encoding of
the behaviour of T ′. Let ψ : (Σ′)∗ → Σ∗ be the homomorphism defined by
ψ([a, i]) = a and ψ(a) = a. Then clearly BΣ

T = ψ(BΣ′
T ′).

For all i ∈ [n], let C′
i be the component automaton that is obtained from Ci

by labelling each of its actions from Γ̄ with i, i.e. C′
i = (Qi, Σ

′
i, δ

′
i, Ii) with Σ′

i =
{[a, i] | a ∈ Γ̄ ∩Σi}∪(Γ ∩Σi) and δ′

i = {(q, [a, i], q′) | a ∈ Γ̄ , (q, a, q′) ∈ δi}∪(δi∩
(Qi ×Γ ×Qi)). Obviously, BΣi

Ci = ψ(BΣ′
i

C′
i
), for all i ∈ [n]. Let S ′ = {C′

i | i ∈ [n]}.

Since S is Γ̄ -loop limited it thus follows that δ[a,i] = Rfree
[a,i](S ′), for all a ∈ Γ̄ and

i ∈ [n]. Hence T ′ is the {Rai
a | a ∈ Σ∩Γ}∪{Rfree

a | a ∈ Σ′ \Γ}-team automaton
over S ′. Moreover, since the components from S ′ can share actions from Σ ∩ Γ
but not from Σ′ \ Γ , it follows that for all K ⊆ [n],

⋂
k∈K Σ′

k =
⋂

k∈K Σk ∩
Γ , i.e. the free actions of T ′ are ai and T ′ thus equals the maximal-ai team
automaton over S ′. Consequently the relation between the fS-shuffle and the
rS-shuffle stated immediately following Definition 15, together with Theorem 8,
implies that BΣ

T = ψ(BΣ′
T ′) = ψ(|| {Σ′

i
|i∈[n]} BΣ′

i

C′
i
) = ψ(||Γ{Σ′

i
|i∈[n]} BΣ′

i

C′
i
), which is

equal to ||Γ{ψ(Σ′
i
)|i∈[n]} ψ(BΣ′

i

C′
i
) = ||Γ{Σi|i∈[n]} BΣi

Ci because ψ(Σ′ \Γ) ∩Γ = ∅. ��

Theorem 10. Let T be the Rfree-team automaton over S. Then

if S is loop limited, then BΣ
T = || i∈[n] BΣi

Ci .

Proof. This follows immediately from Theorem 9 with Σ ∩ Γ = ∅. ��

Example 11. (Ex. 1, 6 cont.) Since {C1, C2} is not loop limited, it is no surprise
that ab /∈ BΣ

T 1,2 , whereas ab ∈ || i∈[2] BΣi
Ci . Now consider the Rfree

a ∪ Rai
b -team

automaton T fa over {C1, C2}, as depicted in Fig. 6. Clearly {C1, C2} is {a}-loop
limited and indeed BΣ

T fa = ||{b}
{Σi|i∈[2]} BΣi

Ci . ��

398 Maurice H. ter Beek and Jetty Kleijn

8 Conclusion

In this paper we have shown that—under certain conditions—team automata
defined according to the maximal-ai and maximal-free strategies exhibit a be-
haviour that equals a certain type of (synchronized) shuffles of the behaviour of
their constituting component automata. We have thus identified for each of a
few specific types of team automata an operation which proves compositionality.
As is shown in [1], corresponding results hold when also infinitary behaviour is
taken into account.

I/O automata fit in the framework of team automata as a special type of
maximal-ai team automata [3]. This in fact holds for more automata-based speci-
fication models with composition based on the maximal-ai strategy [1]. For these
models, most results of this paper on the relation between the computations and
behaviour of team automata and those of their constituting components extend
known results: we single out precisely which characteristics of the maximal-ai
strategy—e.g. the fact that an action is ai , useful j-ai , or maximal-ai—are re-
sponsible for a particular behavioural relation. This often leads to less stringent
conditions than those presented in the literature on these models.

Concerning the maximal-free strategy we present new results on the relation
between the computations and behaviour of team automata and those of their
constituting components. In this case, our maximal interpretation of the compo-
nents’ participation in synchronizations forced us to assume S to be loop limited
in order to guarantee that all component computations participate in team com-
putations. In [1, 2] we show how to circumvent this additional condition by using
vectors to represent the actual participation of components in synchronizations.

To identify more types of team automata satisfying compositionality, it re-
mains to determine the conditions under which the behaviour of team automata
defined according to other strategies can be obtained from the behaviour of their
constituting component automata.

While ignored in this paper, team automata distinguish input, output, and
internal actions. In [3] we defined an operation that “hides” the input and out-
put actions of a team automaton from other team automata by making them
internal. This prohibits their further use in synchronizations on a higher level
of an iteratively composed hierarchical system, which is important when using
team automata for component-based design by means of a step-by-step refine-
ment of specifications. As a case study we modelled the hierarchical design of a
groupware architecture by means of a step-by-step refinement of specifications
in terms of team automata. We furthermore showed—under certain very relaxed
conditions—the order in which a team automaton is iteratively composed to be
irrelevant.

Let team automata T , T ′, and T ′′ be iteratively composed over component
automata C1, C2, and C3 in the way sketched in Fig. 7.

If all the depicted team automata are composed according to the same strat-
egy, then T , T ′, and T ′′ have the same set of actions and—upto a reordering—the
same set of (initial) states and the same transition relation. In that case they
moreover exhibit the same behaviour. The results of this paper additionally show

Team Automata Satisfying Compositionality 399

C2 C3C2 C3C1

T

C1 C2

T1,2 T2,3

T ′ T ′′

C3C1

Fig. 7. Team automata T , T ′, and T ′′ composed iteratively over {C1, C2, C3}.

that if T is composed according to the maximal-ai , the maximal-free strategy, or
a combination thereof, then its behaviour equals a certain type of (synchronized)
shuffle of the behaviour of C1, C2, and C3. It remains to investigate how these
results can be extended to the case of iteratively composed team automata such
as T ′ and T ′′.

Together with the syntactic hierarchical results of [3], the results presented
in this paper thus show that the team automata framework is well suited for
component-based system design by means of a stepwise development of specifi-
cations based on decomposition and refinement.

Acknowledgements

We thank Josep Carmona, Mieke Massink, and the three anonymous referees for
their useful comments on a preliminary version of this paper.

References

1. M.H. ter Beek, Team Automata—A Formal Approach to the Modeling of Collab-
oration Between System Components. Ph.D. thesis, Leiden Institute of Advanced
Computer Science, Universiteit Leiden, 2003.

2. M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg, Team Automata for
CSCW. In Proc. 2nd Int. Coll. on Petri Net Technologies for Modelling Commu-
nication Based Systems (H. Weber, H. Ehrig, and W. Reisig, eds.), Fraunhofer
Institute for Software and Systems Engineering, 2001, 1-20.

3. M.H. ter Beek, C.A. Ellis, J. Kleijn, and G. Rozenberg, Synchronizations in team
automata for groupware systems. Computer Supported Cooperative Work—The
Journal of Collaborative Computing 12, 1 (2003), 21-69.

4. Handbook of Process Algebra (J.A. Bergstra, A. Ponse, and S.A. Smolka, eds.),
Elsevier Science, 2001.

5. J. Carmona and J. Cortadella, Input/Output Compatibility of Reactive Systems.
In Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design (M.D. Aa-
gaard and J.W. O’Leary, eds.), LNCS 2517, Springer-Verlag, 2002, 360-377.

6. J. Carmona, J. Cortadella, and E. Pastor, Synthesis of Reactive Systems: Appli-
cation to Asynchronous Circuit Design. In Concurrency and Hardware Design—
Advances in Petri Nets (J. Cortadella, A. Yakovlev, and G. Rozenberg, eds.),
Springer-Verlag, 2002, 107-151.

7. R. De Simone, Langages Infinitaires et Produit de Mixage. Theoretical Computer
Science 31 (1984), 83-100.

400 Maurice H. ter Beek and Jetty Kleijn

8. D. Drusinsky and D. Harel, On the Power of Bounded Concurrency I: Finite
Automata. Journal of the ACM 41, 3 (1994), 517-539.

9. C.A. Ellis, Team Automata for Groupware Systems. In Proc. Int. Conf. on Sup-
porting Group Work: The Integration Challenge (S.C. Hayne and W. Prinz, eds.),
ACM Press, 1997, 415-424.

10. S. Ginsburg and E.H. Spanier, Mappings of Languages by Two-Tape Devices.
Journal of the ACM 12, 3 (1965), 423-434.

11. D. Harel, Statecharts: A Visual Formalism for Complex Systems. Science of Com-
puter Programming 8 (1987), 231-274.

12. T. Hirst and D. Harel, On the Power of Bounded Concurrency II: Pushdown
Automata. Journal of the ACM 41, 3 (1994), 540-554.

13. C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
14. M. Jantzen, The Power of Synchronizing Operations on Strings. Theoretical Com-

puter Science 14 (1981), 127-154.
15. B. Jonsson, Compositional Verification of Distributed Systems. Ph.D. thesis, De-

partment of Computer Systems, Uppsala University, 1987.
16. B. Jonsson, Compositional Specification and Verification of Distributed Systems.

ACM Transactions on Programming Languages and Systems 16, 2 (1994), 259-303.
17. T. Kimura, An Algebraic System for Process Structuring and Interprocess Com-

munication. In Proc. 8th Symp. on Theory of Computing, ACM Press, 1976, 92-
100.

18. R. Lanotte, A. Maggiolo-Schettini, and A. Peron, Timed Cooperating Automata.
Fundamenta Informaticae 42 (2000), 1-21.

19. M. Latteux and Y. Roos, Synchronized Shuffle and Regular Languages. In Jewels
are Forever (J. Karhumäki, H.A. Maurer, Gh. Păun, and G. Rozenberg, eds.),
Springer-Verlag, 1999, 35-44.

20. N.A. Lynch and M.R. Tuttle, An Introduction to Input/Output Automata. CWI
Quarterly 2,3 (1989), 219-246.

21. D. von Oheimb, Interacting State Machines: A Stateful Approach to Proving Se-
curity. To appear in Proc. Int. Conf. on Formal Aspects of Security (A. Abdallah,
P. Ryan, and S. Schneider, eds.), LNCS 2629, Springer-Verlag, 2003.

22. D. von Oheimb and V. Lotz, Formal Security Analysis with Interacting State Ma-
chines. In Proc. 7th European Symp. on Research in Computer Security (D. Goll-
mann, G. Karjoth, and M. Waidner, eds.), LNCS 2502, Springer-Verlag, 2002,
212-228.

23. A.W. Roscoe, The Theory and Practice of Concurrency , Prentice Hall, 1997.
24. A. Salomaa, Formal Languages, Academic Press, 1973.
25. J.L.A. van de Snepscheut, Trace Theory and VLSI Design, LNCS 200, Springer-

Verlag, 1985.
26. M.R. Tuttle, Hierarchical Correctness Proofs for Distributed Algorithms. Master’s

thesis, Department of Electrical Engineering and Computer Science, MIT, 1987.

	Team Automata Satisfying Compositionality
	1 Introduction
	2 Preliminaries
	3 Component Automata and Team Automata
	4 From Team Automata to Component Automata
	5 From Component Automata to Team Automata
	6 Shuffles and Synchronized Shuffles
	7 Team Automata Satisfying Compositionality
	8 Conclusion

	References

