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Proof of Theorem 3

Parts (b) and (c) of Theorem 3 can be shown following the same arguments for their coun-

terparts in Theorem 2. We now focus on part (a). To establish part (a), we show that the

ex ante expected prize spread in battle t is E(Vt) = �t + �(nj 2n)j�t, which is independent
of the temporal structure.

In this extended setting, we continue to denote by (kA; kB) the state of the contest. The

tuple indicates the number of victories each team has secured before battles in a cluster z

are carried out.

We �rst illustrate that for any battle t within any arbitrary cluster, the prize spreads

of the two teams must be symmetric regardless of the prevailing state (kA; kB). The case

of maxfkA; kBg � n + 1 is trivial. In this case, one team has won. The prize spread is

simply �t, which is symmetric. Without loss of generality, hereafter we focus on the case of

kA; kB < n+ 1.

Let n(z) be the number of battles included in a cluster z. Let Tz denote the set of battles
in a cluster z. We use t to index a battle in a cluster z with state (kA; kB). A player A(t)

receives �t if he wins, and the contest may enter any state (kA+1+l; kB+n(z)�1�l), with l 2
f0; 1; : : : ; n(z)�1g, after all the n(z) battles in z are fought. Note that (kA+l; kB+n(z)�1�l)
can be used to denote a stochastic contest state facing battle t. If he loses, then the contest

may enter any state (kA + l; kB + n(z)� l), with l 2 f0; : : : ; n(z)� 1g, after all the battles
in z are fought.

Suppose that after z the contest is in state (~kA; ~kB). Let ~vi(~kA; ~kB) denote team i's

conditional winning probability. Clearly, ~vi(~kA; ~kB) = 1 and ~vj(~kA; ~kB) = 0 when ~ki � n+1.
As a result, player A(t)'s e�ective spread amounts to

V At (kA; kB) = �t +�v
A
t (kA; kB);8t 2 Tz:

Here, �vAt (kA; kB) =
n(z)�1X
l=0

8<: [~vA(kA + (1 + l); kB + n(z)� (1 + l))
�~vA(kA + l; kB + n(z)� l)] � ~�A( ljn(z)� 1)

���
Tznftg

9=; ,
where ~�A( ljn(z)� 1)

���
Tznftg

is the probability that team A wins l out of the n(z)� 1 simul-
taneous (nontrivial) battles in cluster z, excluding battle t.

Similarly, the e�ective prize spread for player B(t) is V Bt (kA; kB) = �t+�v
B
t (kA; kB);8t 2
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Tz, where

�vBt (kA; kB) =
n(z)�1X
l=0

8>>><>>>:
[~vB(kA + l; kB + n(z)� l)

�~vB(kA + (1 + l); kB + n(z)� (1 + l))]
� ~�A( ljn(z)� 1)

���
Tznftg

)

9>>>=>>>; :
Note that

P
i2fA;Bg ~vi(kA+ l; kB + n(z)� l) = 1 and

P
i2fA;Bg ~vi(kA+ (1+ l); kB + n(z)�

(1 + l)) = 1 hold for every l 2 f0; :::; n(z) � 1g. We thus obtain V At (kA; kB) = V Bt (kA; kB).
Hence, each battle in z is symmetrically valued, and each nontrivial battle t in any cluster z

has a stochastic outcome (�A(t); �B(t)), which is solely determined by matched players' cost

distributions by Theorem 1.

We then consider V At (kA; kB) to further pin down the symmetric prize spread Vt(kA; kB)

for a battle t in any cluster. The case of maxfkA; kBg � n + 1 is trivial. One team has

won, thus the prize spread is simply �t. We now focus on the case of kA; kB � n. For the
unclustered battles after the last clustered battles, the results of Lemma 1(a) apparently

hold. We now consider the last cluster that contains more than one battle, which is denoted

by z1. We assume without loss of generality that there are unclustered battles following

this cluster.1 Lemma 1(a) applies to all (unclustered) battles that follow cluster z1. Recall

that �v(kA; kB) is de�ned in Observation 1 as vA(kA + 1; kB) � vA(kA; kB + 1) or equiva-
lently vB(kA; kB + 1)� vB(kA + 1; kB). Note that from Lemma 1(a), we have �v(kA; kB) =

�i(n� kij 2n� kA � kB)j2n+1t+1 .

For a stochastic state (kA + l; kB + n(z1)� 1� l), let

�At (kA + l; kB + n(z1)� 1� l)
= ~vA(kA + (1 + l); kB + n(z1)� (1 + l))� ~vA(kA + l; kB + n(z1)� l):

We have

�At (kA + l; kB + n(z1)� 1� l)
= vA(kA + (1 + l); kB + n(z1)� (1 + l))� vA(kA + l; kB + n(z1)� l)
= �v(kA + l; kB + n(z1)� 1� l)
= �A((n+ 1)� (kA + 1 + l)j 2n+ 1� (kA + kB + n(z1)))j2n+1kA+kB+n(z1)+1

;

if kA+ l < n+1; and kB +n(z1)� 1� l < n+1; and it boils down to zero otherwise. Hence,

�vAt (kA; kB) =
n(z1)�1P
l=0

[�At (kA + l; kB + n(z1)� 1� l) � ~�A( ljn(z1)� 1)
���
Tz1nftg

]

=
minfn(z1)�1;n�kAgP

l=maxf0;kB+n(z1)�1�ng
[�At (kA+l;kB+n(z1)� 1� l)� ~�A( ljn(z1)� 1)

���
Tz1nftg

]

1The case in which no more battles follow the cluster z1 is simpler and yields the same result.
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=
minfn(z1)�1;n�kAgP

l=maxf0;kB+n(z1)�1�ng
[
�A((n+ 1)� (kA + 1 + l)j 2n+ 1

�(kA + kB + n(z1)))

������
2n+1

kA+kB+n(z1)+1

� ~�A( ljn(z1)� 1)
���
Tz1nftg

]

= �A(n� kAj 2n� (kA + kB))jf~tj~t�kA+kB+1;~t6=tg ;8t 2 Tz1 ,

where �A(n� kAj 2n� (kA + kB))jf~tj~t�kA+kB+1;~t6=tg is the probability of team A's winning

exactly n � kA out of the 2n � kA � kB (nontrivial) battles (excluding battle t) when the
contest enters the state (kA; kB) after the cluster that precedes z1 is contested.

It follows that Vt(kA; kB) = V
A
t (kA; kB); t 2 Tz1 can be rewritten as

�t +�v
A
t (kA; kB) = �t + �A(n� kAj 2n� (kA + kB))jf~tj~t�kA+kB+1;~t6=tg :

The above formula for Vt(kA; kB) still applies for the case maxfkA; kBg � n + 1. In this

case, clearly �A(n� kAj 2n� (kA + kB))jf~tj~t�kA+kB+1;~t6=tg = 0. Because kA + l < n + 1;

and kB + n(z1) � 1 � l < n + 1, the range of l (i.e. from maxf0; kB + n(z1) � 1 � ng to
minfn(z1) � 1; n � kAg) excludes all (and only) the events that the result of battle t does
not make a di�erence in determining the winning probability of the whole contest.

We then consider the cluster that immediately precedes z1, which is denoted by z2.

Suppose that it faces an arbitrary state (kA; kB). Note that we allow it to include only one

battle. Recall that we can focus on the case of kA; kB < n+ 1. We have

�vAt (kA; kB)

=
n(z2)�1X
l2=0

8<: [~vA(kA + (1 + l2); kB + n(z2)� (1 + l2))
�~vA(kA + l2; kB + n(z2)� l2)] � ~�A( l2jn(z2)� 1)

���
Tz2nftg

9=; :
Suppose that after z2 the contest is in a state (~kA; ~kB). Recall that ~vi(~kA; ~kB) = 1 and

~vj(~kA; ~kB) = 0 when ~ki � n+1. Note that we have shown that in cluster z1, every nontrivial
battle t has winning probabilities (�A(t); �B(t)). We now calculate ~vi(~kA; ~kB) for ~kA; ~kB � n.
Note in this case, every battle in cluster z1 is nontrivial. Thus

~vA(~kA;~kB) =
n(z1)X
l1=0

[vA(~kA+l1;~kB+n(z1)� l1)� ~�A( l1jn(z1))
���
Tz1
]; with ~kA+~kB=kA+kB+n(z2):

Hence, 8l2 2 f0; 1; :::; n(z2)� 1g,

~vA(kA + (1 + l2); kB + n(z2)� (1 + l2))� ~vA(kA + l2; kB + n(z2)� l2)

=
n(z1)X
l1=0

[vA(kA + (1 + l2) + l1; kB + n(z2)� (1 + l2) + n(z1)� l1)

�vA(kA + l2 + l1; kB + n(z2)� l2 + n(z1)� l1)] � ~�A( l1jn(z1))
���
Tz1
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=
n(z1)X
l1=0

�v(kA + l2 + l1; kB + n(z2)� (1 + l2) + n(z1)� l1) � ~�A( l1jn(z1))
���
Tz1

=
n(z1)X
l1=0

f�A(n� (kA + l2 + l1)j 2n+ 1� (kA + kB + n(z2) + n(z1))j2n+1kA+kB+n(z2)+n(z1)+1

� ~�A( l1jn(z1))
���
Tz1
g

= �A(n� (kA + l2)j 2n+ 1� (kA + kB + n(z2))j2n+1kA+kB+n(z2)+1
. (1)

Therefore, 8t 2 Tz2 , we have

�vAt (kA; kB)

=
n(z2)�1X
l2=0

f �A(n� (kA + l2)j 2n+ 1� (kA + kB + n(z2))j2n+1kA+kB+n(z2)+1

� ~�A( l2jn(z2)� 1)
���
Tz2nftg

g

= �A(n� kAj 2n� (kA + kB))jf~tj~t�kA+kB+1;~t6=tg . (2)

In view of (1), we can also obtain �vAt (kA; kB);8t 2 Tz3 by considering clusters z3 and z2
while applying the procedure for deriving (2) by considering clusters z2 and z1. The following

general formula can then be obtained: for any battle t in any cluster zk,

�vAt (kA; kB) = �A(n� kAj 2n� (kA + kB))jf~tj~t�kA+kB+1;~t6=tg ;8t 2 Tzk , (3)

where (kA; kB) is the contest state before cluster zk is carried out.

By repeating the exercise in the proof of Lemma 1(b), we can conclude that each battle

t has an ex ante expected prize spread of �t + �A(nj 2n)j�t, which does not depend on how
these battles are clustered or sequenced. We then complete the proof.
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