
BIOINFORMATICS Vol. 00 no. 00 2010
Pages 1–11

TEAM: Efficient Two-Locus Epistasis Tests in Human
Genome-Wide Association Study
Xiang Zhang 1, Shunping Huang 1, Fei Zou 2 and Wei Wang 1

1Department of Computer Science, University of North Carolina at Chapel Hill
2Department of Biostatistics, University of North Carolina at Chapel Hill

ABSTRACT
As a promising tool for identifying genetic markers underlying

phenotypic differences, genome-wide association study (GWAS) has
been extensively investigated in recent years. In GWAS, detecting
epistasis (or gene-gene interaction) is preferable over single locus
study since many diseases are known to be complex traits. A brute
force search is infeasible for epistasis detection in the genome-
wide scale because of the intensive computational burden. Existing
epistasis detection algorithms are designed for dataset consisting
of homozygous markers and small sample size. In human study,
however, the genotype may be heterozygous, and number of
individuals can be up to thousands. Thus existing methods are not
readily applicable to human datasets. In this paper, we propose
an efficient algorithm, TEAM, that significantly speeds up epistasis
detection for human GWAS. Our algorithm is exhaustive, i.e., it
does not ignore any epistatic interaction. Utilizing the minimum
spanning tree structure, the algorithm incrementally updates the
contingency tables for epistatic tests without scanning all individuals.
Our algorithm has broader applicability and is more efficient than
existing methods for large sample study. It supports any statistical
test that is based on contingency tables, and enables both family-
wise error rate (FWER) and false discovery rate (FDR) controlling.
Extensive experiments show that our algorithm only needs to examine
a small portion of the individuals to update the contingency tables,
and it achieves at least an order of magnitude speedup over the brute
force approach.

1 INTRODUCTION
Genetic association analysis examines the statistical correlation
between an organism’s genotype with its phenotype. With the
development of high-throughput genotyping technologies, genetic
variation of human and other model organisms has been measured
at genome-wide scale. As the most abundant source of genetic
variation, the number of single nucleotide polymorphism (SNPs)
in public databases (dbGaP, JAX) is up to millions. Genome-wide
association study (GWAS) has been shown to be a promising tool to
locate the genetic factors that cause phenotypic differences (Saxena
et al., 2007; Scuteriet al., 2007; WTCCC, 2007; Weedonet al.,
2007). Epistasis, or gene-gene interaction detection, has received
increasing attention in complex trait analysis. Different from single-
locus approach, the goal of two-locus epistasis detection is to
identify interacting SNP-pairs that have strong association with the
phenotype. Please refer to Balding (2006); Hirschhorn and Daly

(2005); Hoh and Ott (2003); Musaniet al. (2007) for reviews of
current progress and challenges in epistasis detection in GWAS.

There are two grand challenges in epistasis detection. The first is
to develop statistical tests that can effectively capture the interaction
between SNPs. Various tests have been proposed for two-locus
association study, such as the chi-square test, likelihood-ratio test,
and entropy-based test (Balding, 2006). Another crucial challenge in
two-locus association study is the intensive computational burden
imposed by the enormous search space. Suppose that there are
N SNPs forM individuals. The overall search space of pairwise
interactions isMN(N−1)/2. The large number of tests also causes
the multiple testing problem (Miller, 1981). Controlling the family-
wise error rate (FWER) and false discovery rate (FDR) are standard
ways to control the error rate (Dudoit and Laan, 2008; Westfall
and Young, 1993). In the FWER and FDR controlling, permutation
test is preferred over simple Bonferroni correction since many
SNPs are correlated (Churchill and Doerge, 1994). The correlation
structure among genotype profiles is preserved across permutations
and is incorporated into permutation p-value estimation. The idea of
permutation test is to randomly shuffle the phenotype values among
the individuals and recalculate the test statistics. The distribution
of these test values are used to estimate the null distribution.
Permutation test dramatically increases the search space. With
K permutations, the entire search space of two-locus association
mapping isKMN(N − 1)/2. Consider a moderate GWAS setting,
in which M = 1, 000, N = 100, 000, andK = 1, 000. The
size of the search space is about5 × 1015. Apparently, a brute
force enumeration of the search space is infeasible and thus efficient
algorithms are in demand.

Although the computational challenge of epistasis detection has
been well recognized, the algorithmic development is still very
limited. For a small number of SNPs, e.g., from tens to a
few hundreds, exhaustive algorithms that explicitly enumerate all
possible SNP combinations have been developed (Nelsonet al.,
2001; Ritchieet al., 2001). These methods are not scalable for
genome-wide computing. Genetic algorithm (Carlborget al., 2000)
has been proposed. This approach is heuristic, which does not
guarantee to find the optimal solution. To avoid explicitly exploring
the entire search space, a common heuristic used in epistasis
detection is a two-step approach (Evanset al., 2006; Hohet al.,
2000; Yanget al., 2009). First, a subset of SNPs are selected
according to certain criteria. Then the selected SNPs are used for
subsequent epistatic analysis. However, the SNP screening process
suffers from the same problem as the single-locus approach. SNPs
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S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24

X1 0 0 0 1 2 0 2 0 2 0 0 2 0 0 0 2 0 2 1 0 0 2 2 0
X2 2 2 0 2 0 2 0 2 2 2 2 0 1 0 0 2 0 2 1 0 2 2 2 2
X3 2 0 0 2 0 2 0 1 2 1 2 2 1 0 2 2 0 2 1 2 2 2 2 2
X4 0 2 2 0 0 0 2 1 0 2 2 0 0 0 0 0 0 0 1 0 1 2 0 0
X5 0 2 2 0 0 0 1 1 2 1 2 0 0 0 0 0 0 2 1 0 2 2 0 2
X6 0 2 2 0 0 0 2 1 0 1 2 0 0 0 0 2 0 2 1 0 2 2 0 0

Y0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
Y1 0 1 0 0 1 1 1 0 0 0 1 1 1 1 1 0 1 0 0 1 0 1 0 0
Y2 0 0 1 0 1 1 1 1 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 0
Y3 1 0 1 1 1 1 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0
Y4 0 1 1 1 1 1 0 0 0 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0
Y5 1 0 1 1 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 1 1

Table 1. An example dataset consisting of 6 SNPs{X1, · · · , X6}, the original phenotypeY0 and 5 phenotype permutations{Y1, · · · , Y5} for 24
individuals {S1, · · · , S24}

with strong epistasis but low marginal effects are likely to be filtered
out (Zhanget al., RECOMB2009).

Recently, the approach based on search space pruning has
been shown to be able to dramatically speed up the process of
epistasis detection without compromising the optimality of the
results. FastANOVA (Zhanget al., 2008) and FastChi (Zhanget al.,
PSB2009) are specifically designed for ANOVA test and chi-square
test respectively. The COE algorithm (Zhanget al., RECOMB2009)
is a more general approach that is applicable to all convex tests.
Utilizing an upper bound derived for the test being used, these
algorithms only need to examine a small number of promising SNP-
pairs and prune the SNP-pairs that are proven to have no strong
association with the phenotype. Unlike heuristic approaches, these
algorithms are guaranteed to find the optimal solution. Although
these methods provide promising alternatives for GWAS, there
are two major drawbacks that limit their applicability. First, they
are designed for relatively small sample size and only consider
homozygous markers (i.e., each SNP can be represented as a{0, 1}
binary variable). In human study, however, the sample size is
usually large and most SNPs contain heterozygous genotypes and
are coded using{0, 1, 2}. These make existing methods intractable.
Second, although the FWER and the FDR are both widely used for
error controlling, existing methods are designed only to control the
FWER. From a computational point of view, the difference in the
FWER and the FDR controlling is that, to estimate FWER, for each
permutation, only the maximum two-locus test value is needed. To
estimate the FDR, on the other hand, for each permutation, all two-
locus test values must be computed. Please refer to Section 2 for
further details of the FWER and the FDR controlling.

In this paper, we propose an exhaustive algorithm, TEAM1, for
efficient epistasis detection in human GWAS. TEAM has several
advantages over previous methods.

• It supports to both homozygous and heterozygous data.

• By exhaustively computing all two-locus test values in
permutation test, it enables both FWER and FDR controlling.

• It is applicable to all statistics based on the contingency table.
Previous methods either are designed for specific tests or
require the test statistics satisfy certain property.

1 TEAM stands for Tree-based Epistasis Association Mapping.

• Experimental results demonstrate that TEAM is more efficient
than existing methods for large sample study.

TEAM incorporates permutation test for proper error controlling.
The key idea is to incrementally update the contingency tables of
two-locus tests. We show that only four of the eighteen observed
frequencies in the contingency table need to be updated to compute
the test value. In the algorithm, we build a minimum spanning
tree (Cormenet al., 2001) on the SNPs. The nodes of the tree
are SNPs. Each edge represents the genotype difference between
the two connected SNPs. This tree structure can be utilized to
speed up updating process for the contingency tables. A majority
of the individuals are pruned and only a small portion are scanned
to update the contingency tables. This is advantageous in human
study, which usually involves thousands of individuals. Extensive
experimental results demonstrate the efficiency of the TEAM
algorithm.

2 THE PROBLEM OF TWO-LOCUS EPISTASIS
DETECTION IN HUMAN GWAS

Suppose that the genotype dataset consists ofN SNPs{X1, · · · , XN}
for M individuals{S1, · · · , SM}. We adopt the convention of using
0 and 2 to represent the homozygous majority and homozygous
minority genotype respectively, and 1 to represent the heterozygous
case. LetY0 ∈ {0, 1} be the phenotype of interest (0 for controls
and 1 for cases). LetY ′ = {Y1, · · · , YK} be the set ofK
permutations ofY0. In each permutationYk, the phenotype labels
are randomly reassigned to individuals with no replacement.

Table 1 shows an example dataset of SNPs and phenotype
permutations. The genotype dataset consists of 6 SNPs{X1, · · · , X6}
for 24 individuals{S1, · · · , S24}. Individuals{S1, · · · , S12} are
cases and{S13, · · · , S24} are controls. The phenotype is permuted
5 times, i.e.,Y ′ = {Y1, · · · , Y5}.

Let T denote the statistical test to be used. Specifically, we
represent the test value of SNPXi and phenotypeYk (0 ≤ k ≤ K)
as T (Xi, Yk), and represent the test value of SNP-pair (XiXj)
andYk asT (XiXj , Yk). A contingency table, which records the
observed values of certain events, is the basis of many statistical
tests. Table 2 shows contingency tables for the single-locus test
T (Xi, Yk) andT (Xj , Yk), genotype relationship between SNPs
Xi andXj , and two-locus testT (XiXj , Yk).
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Xi = 0 Xi = 1 Xi = 2 Total
Yk = 0 eventA eventB eventE
Yk = 1 eventC eventD eventF

Total M

(a) Contingency table forT (Xi, Yk)

Xj = 0 Xj = 1 Xj = 2 Total
Yk = 0 eventG eventH eventI
Yk = 1 eventJ eventL eventO

Total M

(b) Contingency table forT (Xj , Yk)

Xi = 0 Xi = 1 Xi = 2 Total
Xj = 0 eventS eventT eventR
Xj = 1 eventP eventQ eventU
Xj = 2 eventV eventW eventZ

Total M

(c) Contingency table for two SNPsXi andXj

Xi = 0 Xi = 1 Xi = 2 Total
Xj = 0 Xj = 1 Xj = 2 Xj = 0 Xj = 1 Xj = 2 Xj = 0 Xj = 1 Xj = 2

Yk = 0 eventa1 eventa2 eventa3 eventb1 eventb2 eventb3 evente1 evente2 evente3

Yk = 1 eventc1 eventc2 eventc3 eventd1 eventd2 eventd3 eventf1 eventf2 eventf3

Total M

(d) Contingency table for(XiXj) andYk

Table 2. Contingency tables for single-locus testsT (Xi, Yk), T (Xj , Yk), genotype relation between(Xi, Xj), and two-locus testT (XiXj , Yk)

Because of the large number of hypotheses being tested, multiple
testing problem has received considerable attention in GWAS.
Controlling the FWER and FDR are two widely used approaches
to control the error rate. The FWER is the probability of having
at least one false positive. The FDR is the expected proportion of
false positives among rejected hypotheses. Permutation test is the
standard way to estimate the null distribution in both approaches.
Next, we briefly describe the typical procedures of the FWER and
FDR control. For statistical background of these approaches, please
refer to Dudoit and Laan (2008); Westfall and Young (1993) for
details.

The FWER controlling procedure: For each permutationYk ∈ Y ′,
let TYk

represent the maximum test value among all SNP-pairs, i.e.,
TYk

= max{T (XiXj , Yk)|1 ≤ i < j ≤ N}. The distribution of
{TYk

|Yk ∈ Y ′} is used as the null distribution. Given an error
rate thresholdα, thecritical valueTα is theαK-th largest value in
{TYk

|Yk ∈ Y ′}. A SNP-pair(XiXj) is considered significant if its
test value with the original phenotypeY0 exceeds the critical value,
i.e.,T(XiXj , Y0) ≥ Tα.

The FDR controlling procedure: Let PV represent the set of
the pooled test values of all permutation tests, i.e.,PV =
{T (XiXj , Yk)|1 ≤ i < j ≤ N, 1 ≤ k ≤ K}. Thep-value of
testT (XiXj , Y0) can be calculated asp(T (XiXj , Y0)) = |{t ≥
T (XiXj , Y0)|t ∈ PV }|/|PV |, i.e., the proportion of the values
in PV that are no less thanT (XiXj , Y0). Let p(1) ≤ p(2) · · · ≤
p(N(N−1)/2) be the orderedp-values of the original tests. Letv =
max{u : p(u) ≤ uα

N(N−1)/2
}. The classic Benjamini-Hochberg

method rejects all hypotheses for which the correspondingp-values
are in the set{p(1), p(2), · · · , p(v)}.

In the FWER controlling, we only need the maximum test value
of each permutation. To control the FDR, all test values need to be
computed to estimate thep-value of the original tests. The existing
algorithms, such as FastChi (Zhanget al., PSB2009) and COE
(Zhanget al., RECOMB2009), prune the SNP-pairs having weak
associations. Thus they cannot be used to control the FDR. Our

algorithm, TEAM, exhaustively computes the test values of all SNP-
pairs for every permutation. It can be used for both the FWER
and the FDR controlling. In this paper, we mainly focus on the
problem of permutation test, since it is the most computationally
intensive procedure. Testing SNP-pairs using original phenotype
can be treated as a special case of permutation test.

3 FREE VARIABLES IN THE CONTINGENCY
TABLE OF TWO-LOCUS TEST

Let Eevent andOevent denote the expected frequency and observed
frequency of an event in Table 2. Note that each event represents a
subset of individuals. For example, eventD is a subset of individuals
satisfying(Xi = 1 ∧ Yk = 1), andOD represents its observed
frequency, i.e.,OD = |D|. Using the dataset in Table 1, consider
X3 andY4 (i.e., i = 3 andk = 4), we haveD = {S10, S13, S19},
andOD = 3.

Many statistics, such as chi-square test and likelihood ratio test
are defined as functions of the observed frequencies in contingency
tables. For any testT based on the contingency table, to calculate
the two-locus test valueT (XiXj , Yk), one needs all eighteen
observed frequencies for the events in the two-locus contingency
table shown in Table 2(d). The following theorem shows that we
only need four of the eighteen values to calculate the two-locus test
value given the three contingency tables in Tables 2(a), (b), and (c).

THEOREM 3.1. For SNPsXi, Xj , and permutationYk, given
the observed frequencies in Tables 2(a), (b), and (c), specifically, the
values of{OD, OF , OJ , OL, OO, OS , OP , OV , OT , OQ, OW , OR,
OU , OZ}, all of the observed frequencies in Table 2(d) can be
determined if the values of{Od2

, Od3
, Of2

, Of3
} are known.

PROOF. See Appendix.

Suppose that we have all the single-locus contingency tables,
i.e., Tables 2(a) and (b). Given a SNP-pair(Xi, Xj), Table 2(c)
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Fig. 1. The minimum spanning tree built on the SNPs in the example
dataset shown in Table 1

is fixed. Thus, from Theorem 3.1, for permutationYk, once we
have the values of{Od2

, Od3
, Of2

, Of3
}, T (XiXj , Yk) can be

calculated accordingly. In the following, we show that these values
can be computed incrementally utilizing a minimum spanning tree
built on SNPs. We focus on the incremental process forOd2

. The
same process can be applied to updateOd3

, Of2
, andOf3

. We first
discuss how to updateOd2

for a specific permutation. Then we show
that the procedure can also handle all the permutations in a batch
mode.

4 BUILDING THE MINIMUM SPANNING TREE ON
THE SNPS

To build a minimum spanning tree (Cormenet al., 2001) on the
SNPs, let the SNPs{X1, X2, · · · , XN} be the nodes and SNP-
pairs (XiXj) (i 6= j) be the (undirected) edges. For each edge
(XiXj), we denote its weight (the number of individuals having
different genotypes in the two SNPs) asw(XiXj). A spanning tree
T is a tree that spans (connects) all SNPs. LetV (T ) be its node set
andE(T ) be its edge set. Aminimum spanning treeis a spanning
tree whose weightWT =

P

w(XiXj), where(XiXj) ∈ E(T ),
is no greater than any other spanning tree. Figure 1 shows the
minimum spanning tree built using the example dataset in Table 1.
The number on each edge represents its weight. For example, in
X3 andX2, there are 6 individuals,{S2, S8, S10, S12, S15, S20},
having different genotypes.

For any individual, the genotype difference fromXi to Xj can
be any one of the six combinations, i.e.,0 → 1 (indicating
that the genotype inXi is 0, and the genotype inXj is 1),
1 → 0, 0 → 2, 2 → 0, 1 → 2, and 2 → 1. Using the
example dataset in Table 1, Table 3 shows the genotype differences
between the connected two SNPs in the minimum spanning tree in
Figure 1. We use(XiXj){u→v} (u, v ∈ {0, 1, 2}) to represent
the set of individuals whose genotype inXi is u and genotype
in Xj is v. For example, (X3X2){1→2} = {S8, S10}, and
(X3X2){1→2}∪{0→2} = {S2, S8, S10}.

5 INCREMENTALLY UPDATING OBSERVED
FREQUENCY Od2

In this section, we discuss how to updateOd2
by utilizing

the minimum spanning tree. For clarity, from now on, we use
d2(XiXj , Yk) to denote the specific eventd2 for the SNP-pair
(XiXj) and permutationYk, i.e., the subsets of individuals
satisfying(Xi = 1 ∧ Xj = 1 ∧ Yk = 1). We useOd2

(XiXj , Yk)

to represent its observed frequency, i.e.,Od2
(XiXj , Yk) =

|d2(XiXj , Yk)|. This notation also applies to other events in the
contingency tables shown in Table 2. For example,D(Xi, Yk)
represents the subset of individuals satisfying(Xi = 1 ∧ Yk = 1),
andOD(Xi, Yk) = |D(Xi, Yk)|.

Next we show that for any SNP-pair(XiXj) and an edge
(XjX

′
j) ∈ E(T ), givenOd2

(XiXj , Yk), how to update the value
for Od2

(XiX
′
j , Yk). From the contingency tables in Table 2, it is

easy to see that

Od2
(XiXj , Yk) = |D(Xi, Yk) ∩ Q(Xi, Xj)|,

and
Od2

(XiX
′
j , Yk) = |D(Xi, Yk) ∩ Q(Xi, X

′
j)|.

The following theorem shows that, givenOd2
(XiXj , Yk) and

D(Xi, Yk), using the genotype difference associated with edge
(XjX

′
j), we can get the value ofOd2

(XiX
′
j , Yk).

THEOREM 5.1. For any SNP-pair (XiXj) and an edge
(XjX

′
j) ∈ E(T ), we haveOd2

(XiX
′
j , Yk) = Od2

(XiXj , Yk) +
|D(Xi, Yk)∩(XjX

′
j){0→1}∪{2→1}|- |D(Xi, Yk)∩(XjX

′
j){1→0}∪{1→2}|.

PROOF. See Appendix.

EXAMPLE 5.2. Using the example dataset in Table 1, let
i = 3, j = 2, j′ = 5, and k = 4, i.e., we
consider SNP-pair(X3X2), permutation Y4, and the edge
(X2X5) in Figure 1. Suppose that we already know that
Od2

(X3X2, Y4) = 2, and eventD(X3, Y4) = {S10, S13, S19}.
From Table 3, we have(X2X5){0→1}∪{2→1} = {S7, S8, S10}, and
(X2X5){1→0}∪{1→2} = {S13}. Thus according to Theorem 5.1,
we haveOd2

(X3X5, Y4) = Od2
(X3X2, Y4)+|{S10}|−|{S13}| =

2. Note that by this way, we get the value ofOd2
(X3X5, Y4) from

Od2
(X3X2, Y4)without scanning all individuals.

So far, we have discussed the procedure to update the value
of Od2

(XiX
′
j , Yk) from Od2

(XiXj , Yk) for a specific phenotype
permutationYk. This procedure can be easily extended to handle
all the permutations. From Theorem 5.1, for any permutationYk, to
update the value ofOd2

(XiX
′
j , Yk) from Od2

(XiXj , Yk), we need
the value ofD(Xi, Yk) and the genotype difference associated with
edge(XjX

′
j). Note that the genotype difference is fixed once the

minimum spanning tree is built. Next, we discuss how to compute
D(Xi, Yk) for all permutations{Y1, Y2, · · · , YK} in a batch mode
in detail.

LetDK(Xi) be a list ofM entries, with each entry corresponding
to an individual. For each individualSm, we record inDK(Xi)[m]
the set of phenotypes satisfying(Xi = 1 ∧ Yk = 1). For example,
consider the dataset in Table 1, we have thatDK(X3)[8] =
{Y2, Y3}. Table 4(a) shows the entries ofDK(X3). Only non-empty
entries, i.e.,DK(Xi)[m] 6= ∅, are shown in the table. It is easy to
see that, for anyXi andYk, we can getD(Xi, Yk) from DK(Xi)
as follows:D(Xi, Yk) is the set of individuals whose corresponding
entries inDK(Xi) containYk as an element, i.e.,

D(Xi, Yk) = {Sm|Yk ∈ DK(Xi)[m]}. (1)

For example, using the example dataset in Table 1, from Table 4(a),
we know thatD(X3, Y4) = {S10, S13, S19}.

For SNP-pair(XiXj), let Od2
(XiXj) = [Od2

(XiXj , Y1),
Od2

(XiXj , Y2), · · · , Od2
(XiXj , YK)]. From Theorem 5.1 and
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0 → 1 1 → 0 0 → 2 2 → 0 1 → 2 2 → 1

(X3X2) ∅ ∅ {S2} {S12, S15, S20} {S8, S10} ∅

(X2X5) {S7} {S13} {S3} {S1, S4, S6, S16, S23} ∅ {S8, S10}

(X5X6) ∅ ∅ {S16} {S9, S24} {S7} ∅

(X6X1) {S4} {S8, S10} {S5, S9, S12, S23} {S2, S3, S11, S21} ∅ ∅

(X6X4) ∅ ∅ ∅ {S16, S18} {S10} {S21}

Table 3. Genotype difference between the connected SNPs in the minimum spanning tree shown in Figure 1

individual id. phenotype permutations
S8 {Y2, Y3}

S10 {Y2, Y3, Y4, Y5}

S13 {Y1, Y2, Y4, Y5}

S19 {Y3, Y4}

(a)DK(X3) with empty entries omitted

Y1 Y2 Y3 Y4 Y5

Od2
(X3X5) after initializing 1 1 1 2 1

Od2
(X3X5) after updating forS7 1 1 1 2 1

Od2
(X3X5) after updating forS8 1 2 2 2 1

Od2
(X3X5) after updating forS10 1 3 3 3 2

Od2
(X3X5) after updating forS13 0 2 3 2 1

(b) UpdatingOd2
(X3X5) from Od2

(X3X2)

Table 4. UpdatingOd2
(X3X5) from Od2

(X3X2) for all permutations in a batch mode

Equation (1), for any SNP-pair(XiXj) and an edge(XjX
′
j) ∈

E(T ), we can getOd2
(XiX

′
j) from Od2

(XiXj) usingDK(Xi)
and the genotype difference information associated with edge
(XjX

′
j). First, initialize Od2

(XiX
′
j) = Od2

(XiXj). Next, for
every m (1 ≤ m ≤ M), if Yk ∈ DK(Xi)[m], we update
Od2

(XiX
′
j) as follows:



increaseOd2
(XjX

′
j , Yk) if Sm ∈ (XjX

′
j){0→1}∪{2→1};

decreaseOd2
(XjX

′
j , Yk) if Sm ∈ (XjX

′
j){1→0}∪{1→2}.

EXAMPLE 5.3. Following Example 5.2, we consider the two
SNP-pairs(X3X2) and (X3X5), with (X2X5) being an edge
of the tree in Figure 1. Assume thatDK(X3) is as shown in
Table 4(a), andOd2

(X3X2) = [1, 1, 1, 2, 1]. From Table 3, the
genotype difference on edge(X2X5) is (X2X5){0→1}∪{2→1} =
{S7, S8, S10}, and(X2X5){1→0}∪{1→2} = {S13}. For individual
Sm ∈ {S7, S8, S10} (Sm ∈ {S13}), we need to increase
(decrease) the corresponding values inOd2

(X3X2) according to
DK(X3). Table 4(b) shows the updating process forOd2

(X3X5).
Initially, Od2

(X3X5) = Od2
(X3X2). For individualS7, since its

corresponding entry inDK(X3), DK(X3)[7] = ∅, Od2
(X3X5)

remains unchanged. For individualS8, DK(X3)[8] = {Y2, Y3},
we increase the values ofOd2

(X3X5, Y2) andOd2
(X3X5, Y3) by

1. Similarly, we increase and decrease the values inOd2
(X3X5)

according toDK(X3) for S10 and S13. For individual S19, we
do not have any update becauseS19 /∈ {S7, S8, S10} and S19 /∈
{S13}. The final result isOd2

(X3X5) = [0, 2, 3, 2, 1].

Note that to get the value ofOd2
(XiXj), using a brute force

approach, we need to scan a(2 + K) × M matrix consisting
of the genotype of(XiXj) and permutations{Y1, Y2, · · · , YK}
for the M individuals. In the previous example, to compute the
value of Od2

(X3X5), the cost of the brute force approach is
(3 + 5) × 24 = 192. Using our approach, the total number of
updates is|DK(X3)[8]| + |DK(X3)[10]| + |DK(X3)[13]| = 10,
which is significantly less than the cost of the brute force approach.
More formally, givenDK(Xi), the time complexity of updating
Od2

(XiX
′
j) from Od2

(XiXj) is O(w(XjX
′
j)K).

The procedure of updatingOd2
(XiX

′
j) from Od2

(XiXj) can
also be applied to update the remaining free variablesOd3

(XiXj),
Of2

(XiXj), Of3
(XiXj). Note that, to updateOf2

(XiXj),
Of3

(XiXj), we will needFK(Xi), which can be defined in a
similar way to that ofDK(Xi): for each individualSm, we record
in FK(Xi)[m] the set of phenotypes satisfying(Xi = 2∧Yk = 1).

Algorithm 1 : The TEAM Algorithm

Input : SNPsX ′ = {X1, X2, · · · , XN}, phenotype
permutationsY ′ = {Y1, Y2, · · · , YK}

Output : T (XiXj , Yk) for all possible two-locus tests

compute and store all single-locus contingency tables;
build minimum spanning treeT ;
for everyXi ∈ L(T ), do

computeDK(Xi) andFK(Xi);
computeOd2d3f2f3

(XiXa);
computeT (XiXa, Yk) (1 ≤ k ≤ K) and output;
EnumStack.push(Od2d3f2f3

(XiXa));
while EnumStack 6= ∅ do

Od2d3f2f3
(XiXj) = EnumStack.pop();

for everyX ′
j = adj(Xj) do

updateOd2d3f2f3
(XiX

′
j) from Od2d3f2f3

(XiXj);
computeT (XiX

′
j , Yk) (1 ≤ k ≤ K) and output;

EnumStack.push(Od2d3f2f3
(XiX

′
j));

end
end
deleteXi from T ;

end

6 THE TEAM ALGORITHM
TEAM examines SNP pairs through a double loop, where the
outer loop visits a leaf node at a time, and the inner loop traverse
the rest of the tree, starting from the parent node of the leaf.
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Let Od2d3f2f3
(XiXj) = [Od2

(XiXj), Od3
(XiXj), Of2

(XiXj),
Of3

(XiXj)]. Let L(T ) ∈ V (T ) be the set of leaf nodes of the
minimum spanning treeT . For any leaf nodeXi ∈ L(T ), let
AP (Xi) = {(XiXj)|i 6= j, Xj ∈ V (T )}. Let Xa be the parent
node ofXi. Since all SNPs are connected inT , once we have
Od2d3f2f3

(XiXa), we can update allOd2
(XiXj) ∈ AP (Xi) by

enumerating the edges inE(T ) in a breath-first traversal starting
from Xa.

EXAMPLE 6.1. Consider the tree in Figure 1. LetXi = X3

and Xa = X2. We haveAP (X3) = {(X3X2), (X3X5),
(X3X6), (X3X1), (X3X4)}. Starting fromX3, a breadth first
search will enumerate edges{(X2X5), (X5X6), (X6X1), (X6X4)},
which can be utilized to updateOd2d3f2f3

(XiXj) for the SNP-pairs
in AP (X3).

Once the SNP-pairs inAP (Xi) have been processed, we delete
Xi from L(T ), and repeat the same process for another leaf node.
The overall algorithm is summarized in Algorithm 1. Given the
SNPsX ′ = {X1, X2, · · · , XN}, phenotype permutationsY ′ =
{Y1, Y2, · · · , YK}, we first enumerate and store all single-locus
contingency tables. We then build the minimum spanning treeT ,
with genotype difference associated with each edge. For leaf node
Xi, we computeDK(Xi), FK(Xi), andOd2d3f2f3

(XiXa). This
information is then used to incrementally updateOd2d3f2f3

(XiX
′
j)

for all SNP-pairs inAP (Xi). After processingAP (Xi), we delete
Xi from T and repeat the procedure for the remaining leaf nodes.

Time Complexity: The time complexity on generating all single-
locus contingency tables and building the minimum spanning tree
is O(MNK) andO(MN2) respectively. The time complexity to
computeDK(Xi) and FK(Xi) for all SNPs isO(MNK). The
total updating cost for allAP (Xi) is O(WT NK). Thus the overall
time complexity of TEAM isO(MNK +MN2 +WT NK). Note
that the complexity of the brute force approach isO(MN2K). The
number of SNPsN is the dominant factor.

Space Complexity: The dataset size isO(M(N + K)). The
space needed to store all single-locus contingency tables isO(NK).
The size of treeT is O(WT ). The size ofDK(Xi) andFK(Xi) is
O(MK). Thus the total space complexity of TEAM isO(M(N +
K) + K(N + M) + WT ).

Note that we can do incremental computation using any
exploration order. TEAM utilizes minimum spanning tree to update
the contingency tables. The reason is that the cost of such update
depends on the difference between the SNPs. The more similar
they are, the lower the cost. Since minimum spanning tree has the
minimum weightWT over all spanning trees, using it to guide
the computation leads to optimal efficiency. It is not absolutely
necessary to use a minimum spanning tree. As long as the tree
is close to a minimum spanning tree, we should expect good
performance. An implementation issue in building the minimum
spanning tree is that we needO(N2) space to store all pair-wise
differences between the SNPs. In practise, we divide the SNPs into
sub-groups of equal size. A minimum spanning tree is built for each
group. Then the sub-trees are merged to a larger tree by randomly
connecting leave nodes. The tree built in this way is an approximate
minimum spanning tree. Our focus in this paper is not to build an
optimal minimum spanning tree, but to use the tree structure for
efficient updating. Please refer to Eisner (1997); Graham and Hell
(1985) for surveys on minimum spanning tree construction. In the

experiments, we show the performance evaluation using different
spanning trees.

7 EXPERIMENTAL RESULTS
In this section, we present extensive experimental results on the
performance of the TEAM algorithm. TEAM is implemented in
C++. We first evaluate the efficiency of TEAM. Then we present
the findings of epistasis detection in simulated human genome-wide
study.

7.1 Efficiency Evaluation
We use both simulated human datasets and real mouse datasets
for the efficiency evaluation experiments. The experiments are
performed on a 2.6 GHz PC with 8G memory running Linux system.

Human data: The human datasets are generated by the simulator
Hapsample (Wrightet al., 2007), which is publicly accessible
from the websitehttp://www.hapsample.org. We evaluate
the performance of TEAM by comparing it with the brute force
approach since there is no previous algorithm readily applicable
to human datasets. Note that the brute-force approach is very time
consuming, we use a moderate number of SNPs and permutations
in the experiments so that the brute-force approach can finish
in a reasonable amount of time. Unless otherwise specified, the
default experimental setting is the following: #individuals = 400,
#SNPs=10,000, #permutations=100, and the case/control ratio is 1.
These experimental settings are chosen to demonstrate the efficiency
gain offered by TEAM over the brute-force implementation. TEAM
can handle much larger datasets. The performance of TEAM is
expected to follow the same trends presented in this section.

TEAM contains three major components: building the minimum
spanning tree, updating the contingency tables, and calculating the
actual test values. Note that TEAM can be applied to any statistics
defined on the contingency table. With different statistics, the
only difference in runtime would be caused by the last component
calculating the statistics. In the experiments, we choose chi-square
test as our statistic. Figure 2 shows the running time comparison of
TEAM and the brute-force approach using different experimental
settings. The y-axis is in logarithm scale. In these figures, we also
show the detailed runtime of these three components.

Table 5 shows the percentage of individuals pruned by TEAM
under different experimental settings. Since in theory we can update
the contingency tables in any exploration order, in the table, we also
show the pruning effect of using a random spanning tree and a linear
spanning tree to guide the updating process. The random spanning
tree is generated by starting from a randomly picked SNP and
growing edges that connect the remaining SNPs in a random order.
The linear tree is a single path connecting all SNPs sequentially.
From the table, we can see that TEAM prunes more effectively
than the other two updating methods. In the table, we also show
the ratio of the tree weights and the size of the SNP dataset, i.e.,
WT /(M × N), which is a determining factor of the pruning ratio.
Note that varying the number of permutations and the case/control
ratio does not effect the tree being built.

Figures 2(a) depicts the runtime comparison when varying the
number of SNPs. TEAM is more than an order of magnitude faster
than the brute-force approach. Among the three components of
TEAM, the procedures on building the minimum spanning tree
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Fig. 2. Comparison between TEAM and the brute-force approach on human datasets under various experimental settings

TEAM Updating by Random Tree Updating by Linear Tree
Settings Tree weight Pruning ratio Tree weight Pruning ratio Tree weight Pruning ratio

10k 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%
# SNPs 20k 18.692% 93.981% 52.881% 88.895% 52.851% 89.390%

30k 19.314% 93.802% 53.011% 88.823% 52.946% 89.380%

200 16.641% 94.376% 53.358% 88.749% 53.179% 89.205%
# Individuals 300 17.342% 94.209% 53.343% 88.730% 53.142% 89.213%

400 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%

100 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%
# Permutations 300 17.721% 94.105% 53.326% 88.724% 53.158% 89.212%

500 17.721% 94.104% 53.326% 88.724% 53.158% 89.212%

100/300 17.721% 97.049% 53.326% 94.355% 53.158% 94.599%
Case/control ratio 200/200 17.721% 94.104% 53.326% 88.722% 53.158% 89.210%

300/100 17.721% 97.049% 53.326% 94.355% 53.158% 94.599%

Table 5. The tree weight and the proportion of the individuals pruned by TEAM on the human datasets

and calculating test values only take a small portion of the total
runtime of TEAM. The runtime of TEAM is dominated by the cost
of updating the contingency tables. As will be shown later, TEAM
prunes most of the individuals when updating the contingency
tables. In Figures 2(b), 2(c), and 2(d), we can also observe a similar
one to two orders of magnitude speedup of TEAM over the brute
force approach when varying the number of individuals, the number
of permutations, and the case/control ratio.

Mouse data: The mouse datasets is extracted from a set of
combined SNPs from the 10k GNF (http://www.gnf.org/)

mouse dataset and the 140k Broad/MIT mouse dataset (Wade
and Daly, 2005). This merged dataset has 156,525 SNPs for 71
mouse strains. The missing values in the dataset are imputed using
NPUTE (Robertset al., 2007). We compare TEAM and the recently
proposed COE (Zhanget al., RECOMB2009) algorithm, which
is specifically designed for association study in mouse datasets.
The default experimental setting is as follows: #individuals = 70,
#SNPs=10,000, #permutations=100, and the case/control ratio is 1.

Figure 3 shows the comparison results. In the figure, we also
plot the runtime of the brute force approach. Figure 3(a) shows
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Fig. 3. Comparison between TEAM, COE, and the brute force approach on mouse datasets under various experimental settings

Dataset Significant SNP-Pair Chromosome and Location FDR FWER

(rs768529, rs3804940)∗ (chr1: 51946762, chr3: 7520545) 0.00067 0
(rs768529, rs756084) (chr1: 51946762, chr3: 7536149) 0.00067 0

1 (rs768529, rs779742) (chr1: 51946762, chr3: 7558058) 0.00067 0
(rs768529, rs1872393) (chr1: 51946762, chr3: 7546236) 0.00067 0.004
(rs768529, rs779744) (chr1: 51946762, chr3: 7555121) 0.00067 0.004
(rs768529, rs6764561) (chr1: 51946762, chr3: 7514592) 0.00067 0.004

2 (rs10495728, rs521882)∗ (chr2: 22811773, chr8: 16688797) 0.004 0.004
3 (rs1016836, rs2783130)∗ (chr10: 31935845, chr13: 79068161)0 0
4 (rs648519, rs1012273)∗ (chr11: 98972936, chr16: 58525067)0.002 0.002

Table 6. Identified significant SNP-pairs in the simulated human GWAS datasets

the runtime of the three approaches when varying the number of
SNPs. It is clear that both TEAM and COE are orders of magnitude
faster than the brute force approach. TEAM is about twice faster
than COE. Figure 3(b) shows the runtime comparison when varying
the number of individuals. From the figure, COE is more suitable
for datasets having small number of individual. As the number of
individuals increases, the TEAM algorithm becomes more efficient
than COE. Note that in human study, the number of individuals
usually ranges up to thousands, much larger than that in typical
mouse datasets.

7.2 Epistasis Detection in Simulated Human GWAS
In this section, we report the results of epistasis detection using
simulated human GWAS data generated by Hapsample. In total,
we generate 4 datasets, each of which has 112,036 SNPs for 250
cases and 250 controls. In each dataset, a disease causal interacting
SNP-pair is embedded. The embedded SNP-pairs are: (rs768529,
rs3804940) in dataset 1, (rs10495728, rs521882) in dataset 2,
(rs1016836, rs2783130) in dataset 3, and (rs648519, rs1012273) in
dataset 4. We use standard chi-square test with 500 permutations.
Similar results can be found by using likelihood-ratio test.

With an overall FDR threshold of 0.005, Table 6 shows the
identified significant SNP-pairs using TEAM. TEAM successfully
identified the embedded SNP-pairs in all simulated datasets. The
embedded SNP-pairs are labelled with stars ”*”. The table shows the
SNP loci on the genome. For example, in dataset 1, we embed SNP-
pair rs768529 and rs3804940, which are located on chromosome
1 at position 51946762 base-pair and chromosome 3 at 7520545

base-pair respectively. The FWER for each reported SNP-pair is
also shown. Note that, for a SNP-pair, a FDR (or FWER) value
of 0 indicates that permutation tests do not generate any test value
larger than value of the reported SNP-pair. In dataset 1, except
for the embedded SNP-pair (rs768529, rs3804940), 5 other SNP-
pairs are also reported. One of the embedded SNP, rs768529, is
involved in all the 5 pairs. A closer look at the other SNPs in the
reported SNP-pairs shows that they are all adjacent to the embedded
SNP rs3804940. The normalized linkage disequilibrium (Lewontin
and Kojima, 1960) between rs3804940 and the other 5 SNPs are
D′(rs3804940, rs756084)= 1,D′(rs3804940, rs779742)= 0.477,
D′(rs3804940, rs1872393)= 0.442,D′(rs3804940, rs779744)=
0.442, andD′(rs3804940, rs6764561)= 0.454, indicating there is
strong linkage disequilibrium between them.

8 CONCLUSION AND FUTURE WORK
The large number of SNPs genotyped in the genome-wide
scale poses great computational challenges in two-locus epistasis
detection. The permutation test used for proper error rate controlling
makes the problem computationally even more intensive. In this
paper, we propose an efficient algorithm, TEAM, for epistasis
detection human GWAS. TEAM has the same strength as the
recently developed epistasis detection methods, i.e., it guarantees to
find the optimal solution. Compared to existing methods, TEAM is
more efficient in large sample study, and offers broader applicability.
Existing methods designed for homozygous SNPs cannot be used
for human data where most SNPs are heterozygous. TEAM, on the
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other hand, can handle both homozygous and heterozygous SNPs.
Since it exhaustively enumerate all SNP-pairs, TEAM can be used
to control the FWER and the FDR, both of which are widely used in
controlling error in GWAS; while previous methods only control
the FWER. Existing methods need to exam the formulation of
the statistic. TEAM is focused on efficiently updating contingency
tables rather than any specific statistic. It can therefore be use
for any statistical test based on contingency table regardless of its
formulation.

In this paper, we focus on the disease phenotypes which can be
represented as binary variables. Many association studies involve
phenotypes measured as continuous variables. We will investigate
how to apply the idea of the current algorithm to quantitative
phenotypes in the future study.
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APPENDIX
Proof of Theorem 3.1

PROOF. From the four contingency tables shown in Table 2, it is easy to get the following linear equation system:
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The rank of the above linear system is 14. We thus take 14 rows{4, 6, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21}, which form a full rank
matrix. The row reduced echelon form of this non-redundant linear system is
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0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 OD

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 −1 −1 OR − OF

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 OO

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 OL

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 OF
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C
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C

C

C

C
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C

C
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C

C

C
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C

C
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Thus we have the following solution:
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B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
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Oa1

Oa2

Oa3

Ob1

Ob2

Ob3

Oc1

Oc2

Oc3

Od1

Oe1

Oe2

Oe3

Of1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
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B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
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OS − OW + OD + OF

OP − OV

OG − OU

OT − OD

OQ

OH

OW − OD − OF

OV

OU

OD

OR − OF

OO

OL

OF
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C
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0
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−
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B

B
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B
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B
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B

B

B

B

B

B

B

B

B

B

B

B
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−1
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1
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0
1
1
0
0
0
0
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C
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−

0
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B

B

B

B

B
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B
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B

B

B
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B

B

B

B

B
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0
0
0
0

−1
1
0
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C
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−

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B
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0
0
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0
1
0
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C

C

C
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C
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C
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C
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C

C

C

C

C

A

Of3
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Clearly, only four variables{Od2
, Od3

, Of2
, Of3

} are free. Once the values of these free variables are known, the observed frequencies of
remaining events in the two-locus contingency table are also known.

Proof of Theorem 5.1

PROOF. It suffices to show that

D(Xi, Yk) ∩ Q(Xi, X
′
j) = [D(Xi, Yk) ∩ Q(Xi, Xj)] ∪ [D(Xi, Yk) ∩ ((XjX

′
j){0→1}∪{2→1})] − [D(Xi, Yk) ∩ ((XjX

′
j){1→0}{1→2})].

This is the same as to show that

Q(Xi, X
′
j) = Q(Xi, Xj) ∪ ((XjX

′
j){0→1}∪{2→1}) − ((XjX

′
j){1→0}{1→2}).

This is clearly true, hence completes the proof.
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