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Abstract
Autonomous drones are a powerful new breed of mo-

bile sensing platform that can greatly extend the capabili-
ties of traditional sensing systems. Unfortunately, it is still
non-trivial to coordinate multiple drones to perform a task
collaboratively. We present a novel programming model
called team-level programming that can express collabora-
tive sensing tasks without exposing the complexity of man-
aging multiple drones, such as concurrent programming, par-
allel execution, scaling, and failure recovering. We create
the VOLTRON programming system to explore the concept
of team-level programming in active sensing applications.
VOLTRON offers programming constructs to create the il-
lusion of a simple sequential execution model while still
maximizing opportunities to dynamically re-task the drones
as needed. We implement VOLTRON by targeting a pop-
ular aerial drone platform, and evaluate the resulting sys-
tem using a combination of real deployments, user stud-
ies, and emulation. Our results indicate that VOLTRON en-
ables simpler code and produces marginal overhead in terms
of CPU, memory, and network utilization. In addition, it
greatly facilitates implementing correct and complete collab-
orative drone applications, compared to existing drone pro-
gramming systems.

Categories and Subject Descriptors
D.3.2 [Programming languages]: Language classifica-

tions—Concurrent, distributed, and parallel languages; C.3
[Special-purpose and application-based systems]: [Real-
time and embedded systems]
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1 Introduction
Autonomous drones are emerging as a powerful new

breed of mobile sensing system: small embedded com-
puters that move autonomously while carrying rich sensor
payloads, such as cameras and microphones [13]. Aerial,
ground, and aquatic drones are available off-the-shelf to-
day and often come with a simple abstraction for naviga-
tion [1, 15, 22]. Many drones can be controlled by set-
ting waypoints or by manually steering using a graphical in-
terface through a tablet or a smartphone. As new designs
emerge, drones continue to achieve higher speeds, carry
larger payloads, and travel longer distances on batteries.

Drones can greatly extend the capabilities of tradi-
tional sensing systems while simultaneously reducing cost.
They can monitor a farmer’s crops [46], manage parking
spaces [16], or monitor underwater telecommunication sys-
tems [15] more practically and/or more cheaply than station-
ary sensors. Compared to other kinds of mobile sensing,
such as opportunistic sensing that piggybacks on the mobil-
ity of phones or vehicles, drones offer directly control over
where to sample the environment: the application can ex-
plicitly instruct them on where to move. Thanks to this, they
can even perform sensing tasks that had previously been be-
yond reach, such as collecting high-resolution imagery of
civil infrastructures or inside forests where neither satellites
nor vehicle-mounted cameras can reach [8, 33].

Problem. We aim to enable the coordination of multiple
drones with a specific focus on active sensing applications,
where the goals of the system evolve on-the-fly as new data is
collected, and so the drones must be dynamically re-tasked.
For example, active sensing may be used to follow moving
environmental phenomena, such as a pollution cloud, or to
sample more densely where specific conditions occur, such
as where the pollution levels are highest [45]. Because the
lifetime of most drone platforms is dictated by the execution
speed, such tasks must be completed as quickly as possible.

Although deploying multiple drones may, in principle,
improve the execution speed in many applications [28], co-
ordinating multiple drones to complete some sensing tasks
collaboratively is still non-trivial. There are currently two
ways to achieve this: i) drone-level programming; and ii)
swarm programming. Drone-level programming requires
each drone to be given a sequence of actions to perform,
including navigation, communication, and sensing. This ap-
proach can express almost any collaborative behavior, but re-
quires programmers to individually address each drone, and



to explicitly deal with concurrency and parallelism, drone
failures, navigational error, and the possibility of drones be-
ing added or removed. These issues greatly complicate the
programming task.

On the other hand, swarm programming [11] explicitly
forbids shared or global state: all drones execute a single set
of basic rules and operate only on their own local state. This
approach is easy to program and trivial to scale up to multi-
ple drones, but can only express emergent swarm properties
such as dispersion or flocking; it cannot achieve tasks that re-
quire explicit drone coordination, such as sampling a sensor
at multiple locations simultaneously.

Contribution. We present a new drone programming
model called team-level programming, whose conceptual
novelty lies in creating a middle-ground between drone-level
and swarm programming. In team-level programming, users
express sophisticated collaborative sensing tasks without re-
sorting to individual addressing and without being exposed
to the complexity of concurrent programming, parallel exe-
cution, scaling, and failure recovery.

The basic approach is to allow the user to define the set of
sensing tasks that must be completed, subject to constraints
in space and time. Under the hood, the “team” run-time sys-
tem automatically chooses the actions for each drone that
will collaboratively accomplish the sensing tasks. Because
the “team” does not choose individual drone actions until
run-time, the system can easily scale to an arbitrary num-
ber of drones without requiring code modifications. It can
also automatically adapt the execution plan as drones crash
or deviate from their flight paths, perhaps due to obstacles or
environmental effects, such as wind or water currents.

The main benefits of this approach are enabled by the fact
that the user only specifies the sensing tasks without express-
ing the details of how individual drones execute the tasks;
these details are chosen by the run-time system. However,
this is also the source of the approach’s main limitation:
since the user cannot address individual drones, she can-
not express actions that involve direct interactions between
drones, such as those to pass a ball between drones [43].

The team-level abstraction is thus most suitable for col-
laboratively achieving a set of independent actions that
could, in principle, be achieved even by a single drone, but
for constraints on battery life, speed, and sensing range are
more effectively achieved by deploying multiple drones. We
argue that this is a useful layer of abstraction because the vast
majority of mobile sensing applications where drones may
be employed fall in this category. We return to this subject
in Sec. 2 when we contrast our work with the state of the art,
and in Sec. 3 where we describe a representative application.

To explore the concept of team-level programming, we
create a programming system called VOLTRON, described
in Sec. 4. In contrast to most distributed systems where
communication is the parallism bottleneck, the bottleneck
in collaborative drone applications is physical navigation.
VOLTRON offers several programming constructs to offer the
illusion of a simple sequential execution model while still
maximizing opportunities to dynamically re-task drones to
meet programmer-provided spatio/temporal constraints. The
constructs include a notion of abstract drone used as a sin-
gle entry-point to the functionality of the entire team, and

variables enriched with spatial semantics. In addition, pro-
grammers define time assertions to state temporal constraints
on sensed data that the run-time system must meet when
scheduling the drone operation. As described in Sec. 5, the
VOLTRON programming constructs can be translated to exe-
cutable code in mainstream languages.

To concretely experiment with VOLTRON, we implement
a system prototype running on the AR.Drone 2.0 quadcopter
drones, as illustrated in Sec. 6. We choose the AR.Drone 2.0
merely because it is both cheap and easily accessible, also
when it comes to spare parts, which facilitates the experi-
mental activities. While the team-level programming model
and its realization in VOLTRON remain independent of the
specific type of drone—being it aerial, ground, or aquatic,
for example—our current implementation could be extended
to the latter platforms by swapping in the appropriate navi-
gation engine. On the other hand, the navigational tools for
aquatic and land-based drones are often not as market-ready
as the aerial drone ones.

We report in Sec. 7 on the evaluation of VOLTRON based
on three representative applications: aerial photogramme-
try [33], building 3D maps of pollution concentration, and
aerial surveillance. We perform a user study with 24 junior
programmers to compare drone-level, swarm, and team-level
programming. The results indicate that the latter is the only
method that allows junior programmers to create both cor-
rect and complete collaborative drone programs. Their opin-
ions, collected through a dedicated questionnaire, also point
to the ease of use of VOLTRON compared to the alternatives.
We also implement all three applications using drone-level,
swarm, and team-level programming. We evaluate their per-
formance using real-world experiments and an emulation
testbed that can scale up to 100 drones. Our analysis indi-
cates that VOLTRON produces marginal overhead in terms of
CPU, memory, and network utilization, while transparently
and dynamically scaling to different numbers of drones.

Finally, using our prototype we perform a real deploy-
ment of aerial photogrammetry [33] at a 32,000 m2 archaeo-
logical site in Aquileia (Italy), as we describe in Sec. 8. The
team of drones was able to produce maps of the site with
distortion levels within 3.3% by dynamically adapting to the
number of drones, changing sunlight levels and cloud move-
ments, and varying wind forces from 0-8 knots. In terms of
scaling, it automatically decreased total execution time by 3-
3.5x as it ran with 1 drone to 7 drones, completing the task
in a fraction of the time needed by current practices.

2 Background & Related Work
Mobile sensing is quickly expanding to a diverse set of

applications and platforms. Popular examples are found in
applications that leverage the mobility of phones [23] and
vehicles [27], or in scenarios where sensors are hooked to
entities that move autonomously, such as animals [29, 38].
A characteristic common to these examples is the fact that
sensor movements are outside of the programmers’ control.
These instruct the devices to sample sensor data in an oppor-
tunistic manner, while mobility can only be passively moni-
tored by the application. Several systems aim at simplifying
programming in these scenarios [23, 25, 29]. When using
autonomous drones, on the other hand, a device mobility be-
comes part of the application logic, and must be explicitly



encoded. This requires to address completely different chal-
lenges, such as how to specify the device movements and
how to split the sensing tasks among multiple devices sub-
ject to spatio/temporal constraints.

The landscape of current drone platforms is a diverse one.
Existing devices often contain quite powerful computing re-
sources. Many inexpensive ($200 to 1K$) platforms today
are built around variants of the PX4 autopilot boards [39],
which applies to aerial, ground, and aquatic drones. These
platforms typically feature ARM Cortex MCUs with FPU
acceleration and megabytes of RAM, combined with high-
speed networking via WiFi or cellular. Although a signif-
icant part of the computing power is consumed by the au-
topilot functionality, the remaining capacity can be used for
application-level functionality via a POSIX-like RTOS.

The dominant practice in programming drones is to cre-
ate a set of pre-defined commands combined into a single
script and programmed onto each drone. For example, the
ground drone iRobot Create [22] offers a low-level inter-
face to control the drone movements with bindings avail-
able for several programming systems such as Player [21].
Based on this, software packages are built to offer basic func-
tionality such as waypoint navigation [24, 36]. However,
this approach quickly becomes unmanageable as the number
of simultaneously-deployed drones increases. Programmers
must manually decompose the goal into a set of single-drone
parallel tasks. Moreover, to fully exploit parallelism, they
must estimate the duration of each task and balance the load
between drones, while taking temporal constraints into ac-
count. This analysis is complicated because the timing of
a drone’s actions depends on unpredictable factors, such as
obstacles and crashes.

Real-time communication among drones can be used to
collaboratively adapt and respond to these conditions. Inter-
robot communication libraries do exist [28, 42], but moving
from independent parallel operation to system-wide coordi-
nation is also difficult, because it requires parallel program-
ming mechanisms such as data sharing, synchronization, and
deadlock avoidance. As a result, most drone applications to-
day use only a small number of drones at a time even when
more drones would improve performance, or evaluate larger-
scale cooperative strategies only in simulation [12, 40].

Differently, in robot swarms, the drones operate only on
node-local state [11, 28]. In these systems, the programmers’
commands are translated into a sequence of primitive in-
structions deployed onto all drones. Simple drone behaviors
are shown to produce emergent swarm properties, such as
dispersion or flocking, but cannot achieve tasks that require
explicit coordination, such as sampling a sensor at different
locations within time constraints. Several programming sys-
tems are applicable in this area. The Robot Operating Sys-
tem (ROS) [42] provides a Publish/Subscribe coordination
layer for decentralized computations; Karma [17] lets pro-
grammers specify modes of operation for the swarm, such
as “Monitor” or “Pollinate”; and Proto [6] lets programmers
specify actions in space and time. Meld [4] provides simi-
lar concepts for modular robotics. In contrast to reasoning
in terms of decentralized computations based on local states,
we wish to provide a holistic perspective that allows to ex-
plicitly encode actions for the entire ensemble of drones.

Compared to macroprogramming sensor networks, our
work considers a form of mobility that existing systems do
not typically address [31]. This impacts both the program-
ming model and the distributed execution. As for the for-
mer, being a drone’s movements part of the application logic,
they need to be explicitly encoded rather than passively ob-
served, as it happens in many mobile sensor network appli-
cations [29]. In addition, the use of location information
is not limited to reconstruct environmental phenomena [34],
but are used to proactively instruct the system on where the
sensing operation must take place.

On the other hand, during execution, communication
among drones may happen in real-time rather than in a delay-
tolerant manner [47]. Moreover, the run-time system needs
to consider each drone individually instead of treating all
sensor nodes equally because each drone requires individ-
ual, but coordinated path planning. Finally, dealing with
parallelism and concurrency is markedly different. In main-
stream sensor networks, it is network communication and
input/output operations that need to occur in parallel with
data processing. In our context, it is the drones’ movements,
combined with the inherent unpredictability of the naviga-
tion time, that makes the concurrency problem complex.

Finally, in the specific field of aerial drones, demonstra-
tions exist that do show drones performing sophisticated col-
laborative tasks, but only for a handful of one-off applica-
tions created by skilled developers. For example, collaborat-
ing quadcopters are able to throw and catch balls [43] and
carry large payloads [30]. In these settings, a centralized
computer system communicates with the drones 100 times
per second or more, and the goal is mainly to explore new
approaches for mechanical motion control. The code to ex-
ecute these tasks is indeed written by experts and custom-
tailored to the specific application from the low-level drone
control up to the necessary inter-drone coordination.

3 Example Application
In contrast to existing literature, in this work we provide

a generic coordination substrate usable as-is for a large set
of multi-drone applications. These generally show some dis-
tinctive traits: i) they require the drones to sample the en-
vironment subject to variable spatio/temporal constraints; ii)
the workload, which in principle only one device may carry
out, can be split among multiple drones; iii) as a result, the
total execution time can be reduced by deploying additional
drones; and iv) direct interactions between drones that would
require individual addressing are not needed. In scenarios
with these characteristics, our work spares much of the ef-
fort required by building upon the low-level drone APIs, and
automatically and transparently manages parallelism as the
number of drones is scaled up or down.

An illustrative example is that of aerial mapping of ar-
chaeological sites using photogrammetry techniques [33].
Aerial drones are increasingly employed in these scenarios
because physically walking on or near the site can cause ir-
reparable damage. In this field, we are collaborating with
archaeologists at the university of Trieste (Italy) to survey a
site called Domus dei Putti Danzanti [19]. The 32,000 m2

area, partly shown in Fig. 1, hosts the ruins of an ancient
Roman house dating to the fourth century BC. The excava-
tions are bringing back to life the layout of the house and its



Figure 1. Domus dei Putti Danzanti archaeological site in
Aquileia (Italy)—NE corner.

surroundings. Archaeologists rely on this information to re-
construct the social interactions of the era; for example, how
the owners—conjectured to be wealthy businessmen—used
to treat their servants. This can be determined by conjectur-
ing about the usage of the different spaces in a house based
on shape and size.

We use VOLTRON to support this study and present the
results as part of our deployment experience. Specifically, to
provide the geometric layout of the Domus dei Putti Dan-
zanti, we use a team of aerial drones to derive orthopho-
tos of the site [35]. An orthophoto is an aerial photo that
is geometrically-corrected so that distances between pixels
are proportional to true distances, such that the photo can be
used as a map. A series of small aerial pictures is stitched
together to derive a single orthophoto by correcting for dis-
tortion effects [35]. The resulting accuracy is mainly deter-
mined by the amount of overlap between the single pictures.

Currently, drone operators run the orthophoto software
once a drone has completed a full scan of the area [33]. If
the individual pictures do not have sufficient overlap, how-
ever, the resulting orthophoto will show excessive aberra-
tions. The drone is then sent out again to gather pictures
at a finer granularity. The more pictures a drone needs to ac-
quire, the more time it takes to complete the full scan. At the
same time, the scan must be completed within a limited time
because the scene may change; for example, due to varying
lighting conditions caused by shadows or moving clouds. If
the time lag between any two pictures is excessive, the infor-
mation will be inconsistent and will affect the accuracy.

Archaeologists thus need a simple way to program a team
of drones to scan an area, to continuously evaluate the aber-
ration levels of the orthophoto based on the obtained over-
lapping, and to accordingly adapt the drone operation at run-
time. The team of drones should automatically deal with
challenges such as wind and collisions among them. Also,
if the archaeologists are unable to produce an adequate or-
thophoto within the allowed time, they should be able to add
more drones and the system will automatically re-balance the
scanning tasks to achieve a higher quality orthophoto.

We choose this application as a running example because
the requirements for active sensing, scalability, and ease of
programming are representative of the applications we tar-
get. Indeed, even though a single drone may carry out the en-
tire scanning of the site subject to the above spatio-temporal
constraints, multiple coordinating drones may split the work
to reduce the execution time and/or obtain more accurate or-
thophotos.

4 Programming Constructs
We describe the design of VOLTRON: a set of program-

ming constructs to explore the notion of team-level drone
programming. In a nutshell, we introduce: i) a notion of
abstract drone that allows the code to remain unchanged in-
dependent of the number of deployed drones; ii) spatial se-
mantics for variables and a foreachlocation loop to
enable parallel and independent actions to be requested for
a given set of locations; iii) a custom system of futures and
promises [20] to facilitate dynamic (re)scheduling of drone
operation; and iv) time assertions to state constraints on
sensed data.

Unlike sensor network macroprogramming, the notions
i) and ii) above are required to explicitly encode the drone
movements as part of the application logic. Moreover, iii)
is required because, in contrast to other kinds of distributed
computing, the drone movements represent the main fac-
tor potentially hampering parallelism. Finally, iv) allows
programmers to declaratively control the time evolution of
drone operations, which is typically not required in other
kinds of mobile sensing.

We use the application from Sec. 3 for illustration, but the
abstractions are more generally applicable. In Sec. 7, we
describe several other applications that we implement with
VOLTRON. Our design assumes that: i) drones have access
to their own location; for example, from an on-board GPS
module; ii) drones have access to a common time base; for
example, through a time synchronization protocol; and iii)
drones can wirelessly communicate with each other and with
any ground-station that might exist. The vast majority of ex-
isting drone platforms can or do meet these assumptions.

4.1 Abstract Drone
We define an abstract device with custom APIs that pro-

grammers can use to task the drones without individual ad-
dressing. This device is called Drones. As the abstract
drone is the only entry point to the system’s functionality, an
application’s code can remain unaltered no matter how many
real devices are deployed.

Fig. 2 shows the API of the abstract drone. It mainly of-
fers a do command that accepts as inputs: i) the name of
an action; for example, "pic" to take a picture; ii) a set
of physical locations where to perform the action; for ex-
ample, the points of a (possibly time-varying) spatial grid;
iii) optional parameters to customize the execution; for ex-
ample, what sensor the drone needs to use to carry out ac-
tion "pic"; and iv) a handle to retrieve a reference to the
executing action. Based on these inputs, the abstract drone
transparently coordinates the real devices so that the given
action is eventually performed at every input location. The
abstract drone can achieve this as it sees fit; for example, if
there are more locations than drones, it can freely schedule
the drones to rotate through the different locations.

The output of the do command is a multiset of values of
the same data type, each representing the result of perform-
ing the given action at a specific location. For example, the
output of performing action "pic" over a 3 x 3 x 3 grid is
eventually going to be a multiset of 27 values of type Image,
each associated with a different location among the 27 in the
grid. The multi-set is progressively constructed as the drones
perform the given action at the desired locations.





Operation Inputs Description

do action (singleton) Perform an action at specific
locations, customized by
parameters, linked to
handle.

locations (set 6= /0)
parameters (set)
handle (singleton)

stop handle (singleton) Stop the running action linked to
handle.

set key (singleton) Set a hkey,valuei pair in the
registry.value (singleton)

get key (singleton) Read the value of key from the reg-
istry.

Figure 2. Abstract drone API.

The abstract drone additionally offers a stop operation
to cancel previous do commands, and get/set operations
to read or write from a registry of hkey,valuei pairs that
stores application parameters and system information. The
API is intentionally kept generic to be platform-independent.
We acknowledge that this design decision makes it harder to
manage heterogeneous systems of drones with different ca-
pabilities or roles. Different teams can be separately con-
trolled with independent abstract drones, but parallelism and
coordination between teams would be left to the program-
mer. This should still be easier than programming each drone
individually, and it remains an opportunity for future work.

4.2 Reasoning with Space
The role taken by space information in VOLTRON is dif-

ferent than in other sensing scenarios. Indeed, location in-
formation are not opportunistically acquired and later used
to process sensor data, but directly determine where the sen-
sors are going to be sampled. Because of this, we give vari-
ables a spatial semantics both to specify where drones are to
move to sample the environment, and to encode the mapping
between the results of actions and the associated locations.

Spatial variables. Fig. 3 reports a fragment of VOLTRON

code implementing the core functionality in the archaeolog-
ical site application. The VOLTRON constructs are added as
extensions to an existing “host” language, Java in this case.
We discuss this choice in Sec. 7. The drones inspect the site
at increasingly higher granularity based on an estimate of the
aberration in the resulting orthophoto. This is computed at

run-time using available orthophoto libraries [32]1.
Line 1 in Fig. 3 declares a spatial variable tiles whose

data type is Image. The spatial qualifier indicates that
the variable can store one or more Image values each as-
sociated to a different location. These values are going to
be the individual aerial pictures that we eventually assemble
in a single orthophoto. Generally, spatial information act as
an additional facet in variable declarations, orthogonal to the
data type. This allows VOLTRON to retain the type system of
the host language.

Lines 2 to 15 implement the active sensing loop. Line 4
assigns to tiles the spatially-associated values resulting
from the execution of the abstract drone over a set of loca-
tions arranged as a grid of a given granularity. The action
is to take a picture at every input location. The grid is input
to the abstract drone to specify where to carry out the action,
and is separately specified as explained next. The @ operator
in variable assignments thus only permits the write of values

1These kind of estimations do not require to compose the actual or-
thophoto, and so are generally sufficiently lightweight to run also on em-
bedded platforms.

1 spatial Image tiles;

2 do {

3 tilesOK=true;

4 tiles@grid=Drones.do("pic",Drones.cam,handleCam);
5 foreachlocation (Location loc in tiles){

6 float aberr=abberationEstimate(tiles@loc);

7 if (aberr > MAX_ABR && !sceneChanged) {

8 Drones.stop(handleCam);
9 int newStep=tune(Drones.get("gridStep"),aberr);

10 Drones.set("gridStep",newStep);
11 tilesOK=false;

12 break;
13 }

14 }

15 } while (!tilesOK);

Figure 3. Adaptive sampling of aerial pictures for or-
thophoto processing.

1 boolean grid(Location location) {

2 if (location.x % Drones.get("gridStep")==0
3 && location.y % Drones.get("gridStep")==0)
4 return true;

5 else return false;

6 }

Figure 4. Specification of a grid geometry. Location is
a built-in data type, customized depending on the specific
localization system.

associated to the given specific location(s).
The location(s) used as parameter for the @ operator can

be single locations or specified in a functional manner within
a finite coordinate system. Fig. 4 shows an example of the
latter for the grid geometry. When executing an assign-
ment with a space geometry, the system enumerates all pos-
sible locations—based on a platform-specific unit metric—
and checks the return value of the space geometry for each
of them. If this is true, the location is given as input to the
abstract drone2.

Concurrency and loops. Calls to the abstract drone may
simply be blocking. However, drone operations take time.
Moreover, as our application illustrates, the data the drones
harvest rarely needs to be processed at once. For example, to
compute the expected aberration of the resulting orthophoto,
we can process the pictures as they come. Based on this,
programmers can dynamically adapt the grid granularity.

To enable higher concurrency between drone operations
and data processing, one may straightforwardly employ par-
allel threads with proper synchronization. However, parallel
programming is challenging in general and, as we demon-
strate in Sec. 7, it likely leads to programming errors in our
context. Based on this, to enable higher concurrency and
yet retain the sequential semantics programmers are most
familiar with, we adopt a custom system of futures and
promises [7, 20] for spatial variables.

Whenever a spatial variable is assigned to the result of a
do() operation, we create a future for every location even-
tually holding the action’s result. The future acts as a “place-
holder” waiting for the drones to provide the concrete value,
that is, to “complete” the promise. Intuitively, the do() call
on line 4 in Fig. 3 creates a “grid of futures”, one for every

2The format of location information is, in general, platform specific, and
here specified as hx,yi coordinates merely for simplicity. The system also
allows one to configure a tolerance margin whereby a location is considered
reached anyways.



location that function grid in Fig. 4 considers. This allows
the execution to continue until the value becomes necessary.
Only then, the execution blocks waiting for the promise.

We complement this design with a custom
foreachlocation loop that allows the program-
mer to iterate over the results of the abstract drone as they
come, using the associated locations as an index, as in line 5
of Fig. 3. A foreachlocation loop can process the data
independently of the order these data is stored in memory.
Specifically, whenever concrete values are available in a
spatial variable, the loop iterates over those locations first.
The loop blocks when every concrete value is already
processed, but more futures are set for the spatial variable.
It then unblocks as some of these futures are replaced by the
corresponding promises, until no more futures are set.

In Fig. 3, the foreachlocation in line 5 likely blocks
initially until the first pictures arrive. As this happens, the
loop unblocks. Next, we pass the obtained pictures to an or-
thophoto library to compute the estimate of the final aber-
ration. The execution proceeds differently depending on
whether the estimate exceeds a predefined threshold and
the scene has hitherto not changed (line 7). The latter re-
quirement is a function of temporal aspects; we illustrate in
Sec. 4.3 how we check this situation. If either of the condi-
tions is not met, the loop rewinds until it blocks again waiting
for the drones to provide more pictures.

Differently, we stop the abstract drone (line 8), adapt the
grid granularity based on current step and expected aberra-
tion (line 9 and 10) and set a flag (line 11) that causes the ab-
stract drone to reschedule operations with the new grid. We
intentionally do not reinitialize the tiles variable. Some
locations in the new grid might be the same as in the ear-
lier one. The abstract drone may not need to re-do the
work for those locations. By not re-initializing the variable,
the abstract drone finds some already-completed promises in
tiles that it can simply skip.

Uncompleted promises. Drones are failure-prone [13].
Moreover, even a fully-functional system may trivially fail
because of environment constraints; for example, obstacles
preventing the drones to reach the desired locations. These
situations entail that the drones may be unable to complete
some promises, eventually bringing the execution to a halt.

To cope with these situations, we provide an await con-
struct to unblock waiting for a promise, as in:

foreachlocation (Location loc

in tiles await 10MIN){//...}

where the execution blocks at the loop for at most ten min-
utes before continuing anyways. Should the timeout fire be-
fore the drones complete any of the promises in tiles,
the loop unblocks anyways. Programmers can determine
whether the timeout fired for a future, or simply a future at
a given location does not exist, using the isfuture key-
word, as in:

if (isfuture tiles@arbitraryLoc)

System.out.println("The timeout fired.");

else if (tiles@arbitraryLoc == null)
System.out.println("No future at " + arbitraryLoc);

Note that programmer can attach the await constructs to
any read operation of spatial variables.

1 time_assert maxLag(spatial Image tiles) {

2 forall locA:Location in tiles ,

3 forall locB:Location in tiles |

4 Math.abs(T?tiles@locA - T?tiles@locB) >10MIN
5 on violate { sceneChanged=true; }

6 }

Figure 5. Time assertion to stop adapting the grid gran-
ularity if the scene should be considered as changed.

4.3 Reasoning with Time
Many drone applications are time-sensitive, especially

when the data the drones harvest need to be obtained within
given temporal bounds, as in our example application. This
contrasts other kinds of mobile sensing where the processing
is often delay-tolerant. VOLTRON deals with such require-
ments by giving programmers ways to express time asser-
tions. We opt for a declarative approach in that the temporal
requirements at stake are most naturally expressed this way,
and yet it is practically possible to transform such declarative
specifications in the necessary procedural code.

In our example application, should the time interval be-
tween any two pictures cross a threshold, programmers must
consider the scene as changed and stop adapting the grid
granularity. It is now more important to complete the inspec-
tion, because the changes in the scene will anyways mainly
affect the accuracy of the resulting orthophoto. The spec-
ification in Fig. 5 implements the relevant time constraint.
Programmers access temporal information via a T? operator
to state the actual constraint in line 4. The fragment of code
within the on violate (line 5) clause is executed as soon
as a violation to the time assertion is detected.

VOLTRON time assertions are, in essence, predicates de-
fined over the timestamps of at least one quantified spatial
variable. Thus, their general form is:

(forall | exists) location_name:Location

in spatial_variable_name

(,(forall | exists) location_name:Location

in spatial_variable_name)+ |

time_predicate

on violate {\\...}

which arguably covers most of the expected temporal re-
quirements in the applications we target.

The assertions may refer to arbitrary spatial variables
identified based on their name. The parameter tiles in
line 1 of Fig. 5 refers to a variable with this name visible from
where the time assertion is defined. Our translator converts
the time assertions in a side effect-free functional equivalent,
scheduled in parallel with the main program. In addition,
it reserves a special handling to time assertions whenever
they can be considered to further optimize the drones’ move-
ments, as we describe in Sec. 6.

Programmers can use the T? operator also outside of time
assertions. For example, in the application of Sec. 3, we use
it to compute the average time elapsed between consecutive
pictures, useful to obtain a run-time estimate of the total ex-
ecution time.

5 Compile-time Code Translation
We implement two source-to-source translators for

VOLTRON programs, using Java or C++ as host language.
Both translators convert VOLTRON code into programs writ-
ten solely in the host language. These are handed over to



standard tool-chains for compilation.
Both translators are based on ANTLR and proceed the

same way. First, they parse the input program to con-
struct an abstract syntax tree (AST). Next, some nodes in
the AST are converted using predefined translation rules.
These procedures happen off-line and automatically. We
define translation rules for every constructs we hitherto in-
troduced. These are, in most cases, straightforward. Due
to the impact they have on concurrency semantics, however,
we briefly illustrate the translation for spatial variables and
foreachlocation loops.

Spatial variables. We convert every spatial variable into a
collection of structured data types. One instance of the struc-
ture includes a field of the original data type; for example, of
type Image for the tiles variable in Fig. 3. It additionally
includes a Location field representing the associated lo-
cation, a flag indicating whether the variable holds a future,
and an identifier pointing to the corresponding promise.

Every instance of these structured data types is inserted
in a shared data repository that mediates read and write op-
erations to spatial variables. Whenever the original program
requires to read a spatial variable, the data repository looks
up the specific value based on variable name and location.
If the value is still a future, the read operation on the data
repository blocks.

We translate every call to do() on the abstract drone to
a specific sequence of operations. In case of a space geom-
etry, the locations of interest are first collected by repeat-
edly querying its functional specification, such as grid in
Fig. 4. Next, the locations are input to the abstract drone
with the indication of the actions to take. Whenever the ab-
stract drone completes a promise, we write the value to the
shared data repository and every blocked process is sched-
uled again. This allows the original program to unblock on
a previous read operation. An exception to this processing
occurs when a future can be directly transferred to another
spatial variable, as it happens in an assignment between spa-
tial variables. In this case, we can copy the future to the
assigned variable and continue.

Loops with foreachlocation. To provide the seman-
tics described in Sec. 4.2, the order of visit of data refer-
enced in the loop condition matters. In the example of Fig. 3,
depending on the order the foreachlocation loop in-
spects the locations for variable tiles in the data repos-
itory, a read operation may block immediately on a future
although concrete values exist somewhere else in the same
collection.

To address this issue, the read operations of spatial vari-
ables in a foreachlocation loop are translated into
a form of “conditionally-blocking” read through a circular
buffer. Rather than blocking on the first future encountered,
a read operation skips every future in the collection until it
finds a concrete value yet to process. Conversely, the opera-
tion blocks if every concrete value is already processed and
more futures are set in the same collection. At this point, the
first promise that completes on this collection unblocks the
process, and processing resumes from the value just written3.

3Note that this implementation does not protect from concurrent modifi-
cations of other processes. As in standard Java, we expect programmers to

Figure 6. Custom AR.Drone with auxiliary embedded
board.

6 Run-time System
The run-time performance of teams of drones is mostly

determined by their execution time, that is, how much time
it takes to complete the assigned tasks. Due to energy is-
sues, the quicker a drone can complete a task, the fewer bat-
tery changes are needed, and thus the system becomes more
practical.

Rationale. In VOLTRON, the implementation of the abstract
drone encapsulates the mechanisms to drive the real devices.
Crucially, we must determine the drones’ movements at run-
time. Off-line approaches whereby the sensing locations are
divided beforehand among the available drones are unlikely
to be sufficiently general and/or to work efficiently, as the
a priori knowledge of the sensing locations may be limited.
For example, it is generally impossible to pre-compute all
locations returned by space geometries, as some information
may only be available at run-time.

Perhaps the only general solution in this respect might be
to split the field in non-overlapping sub-areas, and to assign
all sensing tasks in a sub-area to a given drone. However, in
general one cannot predict how such subsets of tasks would
evolve based on sensed data. For example, sensor readings in
one sub-area may cause the assigned drone to perform much
more work than all others, leading to a non-optimal usage of
resources.

Differently, using our prototypes, we achieve a form of
inter-drone coordination that continuously balances the work
among the available drones, adapting to the changes in the
program state and to the dynamics of the environment. We
do so in a centralized or state-replicated manner, as we de-
scribe next, with no changes required to the VOLTRON pro-
gram in case it is to run using either execution model.

Target platform. We implement two prototypes in Java and
C++, targeting customized AR.Drone 2.0 quadcopters [37],
shown in Fig. 6. The AR.Drone is a cheap commercially-
available quadcopter, equipped with an ARM Cortex A8
CPU, 128 Mb of RAM, a WiFi interface, two cameras, and a
range of sensors for navigation. It runs an embedded version
of Linux and comes with its own libraries for remote con-
trol. The team-level programming model and the language
constructs of VOLTRON are independent of the specific type
of drone and may be applied to other kinds of drones, such as
ground or aquatic ones, by replacing the navigation engine.
We choose the aerial drones because, among existing drone
platforms, they arguably are the most-market ready, and are
instrumental to the deployment effort we describe in Sec. 3.

We customize the AR.Drone by shaving off unnecessary

take care of these situations explicitly.



payload, by adding another vertical camera, by replacing
the battery with a higher-density one, and by interfacing an
additional embedded board, shown in Fig. 6 mounted atop
the drone. The board features an MSP430 MCU and an
802.15.4-compliant 2.4 Ghz CC2420 low-power radio. We
use this board for integrating a LocoSys LS20031 GPS re-
ceiver (not shown) and for communication among drones.

6.1 Centralized Execution
A ground-station connected to the drones via WiFi cen-

trally executes the VOLTRON program and stores the cor-
responding data repository. Hence, the drones store no ap-
plication state, and every read/write operation happens at a
single copy of the data. The ground-station orchestrates the
drone’s movements using platform-specific libraries for re-
mote control [2]. The drones report their GPS location to the
ground-station. Based on this and the inputs to the abstract
drone, the ground-station decides how to move the drones.

Centralized executions are likely to be very efficient in
terms of execution time, in that the ground-station deter-
mines the drones’ movements based on global knowledge.
On the other hand, the ground-station requires constant WiFi
connectivity with the drones, which prevents them to oper-
ate outside of the ground-station WiFi range. Moreover, the
ground-station is a single point of failure.

Despite these limitations, the centralized approach is use-
ful in practice, as we discuss in Sec. 8, which illustrates
our real-world experiences. Indeed, if needed, extending
the ground-station WiFi range is practically quite simple: a
cheap amplified directional antenna is sufficient to reach an
AR.Drone more than 1 km away. Most importantly, being
the fastest to execute, centralized executions require the least
number of battery changes, as we show in Sec. 7, rendering
the whole system much more practical.

Drone orchestration First, we must plan the drone move-
ments w.r.t. each other. We must do so whenever a new
do() call occurs, while also considering currently execut-
ing do() calls that may have not completed. As this occurs
at run-time, we need a mechanism that quickly returns a so-
lution, although sub-optimal.

We map the problem to a multiple traveling salesman
problem (MTSP) [9], which generalizes the TSP in case of a
finite number of salesmen (drones). This requires identifying
a heuristic to split the input locations among the drones, then
considering each subset of locations as input to a smaller
TSP whose objective is the minimization of the traveled dis-
tance. For aerial drones, this is largely proportional to the
execution time.

To split the target locations, one may apply some form
of geographic balancing. For example, we may assign ev-
ery drone to a subset of nearby locations. However, such a
solution works efficiently only as long as the different sub-
sets of locations can be covered in roughly equal time. This
does not hold in general, because the environment may affect
given portions of space more than others; for example, when
an area is more exposed to the wind. If a drone is assigned
such an “unlucky” portion of space, it may take longer to
operate, while all other drones may have completed earlier
and remain idle, again resulting in a non-optimal resource
usage. This makes this kind of solution not sufficiently gen-
eral. Therefore, we apply a different heuristic proven to work

reasonably in practice [9], and randomly split the input loca-
tions in as many subsets as the number of drones. In the ab-
sence of further information, a random split is probably the
only choice that evenly distributes the “unlucky” locations.

We solve the single TSP problems using the nearest
neighbor greedy algorithm [9]. Next, we approximately eval-
uate each drone’s traveling time based on distances between
locations, the drone maximum speed, and the expected time
for carrying out the action at every location. Provided a
drone completes a promise at every location, we check every
relevant time assertion. In case of violations, we discard this
solution to the MTSP problem, and the process starts over
with a different random division of the input locations. When
a maximum number of iterations is reached, the program-
mer is notified that the system cannot find a navigation plan
compliant with the time assertion. The programmer can then
decide to interrupt the execution or to continue anyways.

Navigation. Once the navigation plan is determined for
each drone, their concrete movements are driven by the Pa-
parazzi [36] autopilot, running on the ground-station along-
side the VOLTRON program. Potential collisions between
drones are recognized at the ground-station based on the
drones’ positions. The ground-station prevents the collision
by moving every drone only when at a safe distance to any
other drone, or by making a drone hover until the surround-
ings are clear. We need to perform these checks at run-time,
because merely identifying trajectory intersections does not
suffice: the drones may unpredictably drift off the expected
trajectories because of environmental phenomena such as
wind gusts.

6.2 State-replicated Execution
To remove the single point of failure, every drone inde-

pendently executes a separate copy of the program. To over-
come the limitations of 1-hop WiFi connectivity, every drone
directly communicates with others via the CC2420 radio,
possibly across multiple hops, extending the overall range of
operation. Compared to centralized executions, these advan-
tages come at the price of sub-optimal decisions about the
drones’ movements, as each of them autonomously decides
where to move.

State consistency. In this setting, the data repository is
also replicated across the drones, and an obvious consis-
tency problem arises: different drones may complete dif-
ferent promises at different times, so the program execution
may differ across drones.

We employ a virtual synchrony replication model [10] to
ensure that every copy of the program proceeds between the
same sequence of states, and thus eventually produces the
same output. Virtual synchrony is used for building repli-
cated systems by totally ordering the inputs to different repli-
cas. If the replicas behave deterministically, this ensures con-
sistency of their outputs. Moreover, virtual synchrony can
also deal with node failures, allowing the system to safely
resume from failures occurring to some of the replicas.

Virtual synchrony ensures state consistency in our setting
based on the observation that the only inputs to VOLTRON

programs are the promises. Therefore, ensuring totally or-
dered updates to the shared data repository suffices to pro-
vide program consistency. When executing in this manner,
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Figure 7. In the archaeological site, the CC2420 RSSI
tends to follow the log-normal path loss model when
drones are in flight.

calls to the data repository are negotiated by a virtual syn-
chrony component. This component tags every call with a
totally ordered sequence number. The operations are then
executed according to their sequence number.

Supporting virtual synchrony in a highly mobile network
is a challenge per se, and even more so in multi-hop net-
works. We tackle these issues by using Virtus [18]: a virtual
synchrony layer recently developed for 802.15.4-compatible
2.4 Ghz radios. Virtus efficiently works across multiple hops
while not relying on any topology information; hence, it is
apt to operate in such highly mobile environment.

Coordinated navigation. Running the MTSP solver on the
drones might not scale. We thus employ a simplified ver-
sion of an existing multi-robot exploration algorithm [44].
In a nutshell, the algorithm drives the drones by creating
a virtual potential field where the target locations are min-
ima. Every drone autonomously moves towards the closest
minima—identified by its GPS coordinates—by descending
the corresponding gradient. It might then happen that two
or more drones decide to reach the same minima. When the
target location is reached, the minima is cleared. Updates to
the virtual potential field are also propagated using Virtus,
although total ordering for these is not mandatory: stale in-
formation may degrade performance; for example, whenever
a drone moves towards an already cleared minima, but they
do not affect overall consistency.

To prevent collisions, every drone creates virtual repul-
sion forces communicated to other drones using 1-hop bea-
coning from the CC2420 radio, so that far away drones are a
priori excluded from processing. We deem the strength of the
repulsion force proportional to the received signal strength
indicator (RSSI) returned by the CC2420 radio, Because the
drones stay away from ground, in the absence of obstacles
and interference, the RSSI tends to follow known theoretical
models. Fig. 7 exemplifies this based on micro-benchmarks
in our archaeological site, calibrating the log-normal path
loss model using linear regression.

The implementation of the navigation algorithm runs on
the AR.Drone main board next to the VOLTRON program,
interfacing directly with the AR.Drone firmware to issue the
necessary flight commands and with the auxiliary board for
communication with other drones. Our implementation is
thus somewhat tailored to our custom hardware. However,
many commercially-available drones are based on ARM
platforms, as we mentioned in Sec. 2, while integrating the
auxiliary board on a good fraction of them should be straight-
forward: a serial connection is all that is needed.

7 Evaluation
We evaluate VOLTRON in four different ways. In Sec. 7.2,

we measure VOLTRON’s run-time performance in real-world
experiments to quantify its scalability in centralized and
state-replicated executions. Sec. 7.3 reports the results of a
user study involving 24 junior programmers, which demon-
strates that VOLTRON eases the implementation of active
sensing applications using multiple drones. Sec. 7.4 quanti-
tatively corroborates this claim by evaluating the implemen-
tations based on established software metrics. In Sec. 7.5, we
evaluate the cost of using VOLTRON in terms of system over-
head in a large-scale emulated environment, and demonstrate
that it does not appreciably impact the overall scalability.

7.1 Methodology
Applications. We evaluate VOLTRON using three represen-
tative applications. The first is the archaeological site appli-
cation described in Sec. 3, which we call ARCH.

The second application, called PM10, deals with building
3D maps of pollution concentration in the atmosphere [45].
The execution starts with a call to the abstract drone to sam-
ple this quantity along a predefined 3D grid. As this happens,
we build a spatial profile of pollution concentration and pro-
gressively compute gradients towards areas of higher con-
centration. A second call to the abstract drone dispatches
some of the drones to sample the pollution concentration
along such gradients, enriching the spatial profile. The run-
time system takes care of transparently allocating the avail-
able drones between the two concurrently-executing calls.
Moreover, for the obtained spatial profile to be consistent,
we must gather any two consecutive samples within a given
time bound, which we express as a time assertion. In case of
violations, the system adapts the sensor parameters to speed
up the execution.

The third application, named PURSUE, is representative
of surveillance applications [46]. The drones are to find and
follow moving objects by providing an aerial picture of them
whenever they first enter the camera field. The objects may
appear or disappear unpredictably. Where to find an object
is determined by sensor readings. The program includes two
distinct operating modes. When in “patrolling” mode, the
drones regularly inspect a predefined portion of space. When
an object is found, some of the drones switch to “pursuing”
mode. In our setup, the objects may move faster than the
drones. This entails that not any single drone can constantly
follow an object, but the abstract drone needs to dynamically
switch between the real drones to ensure an object is con-
stantly tracked. Time assertions are defined to ensure that
drones meet a temporal upper bound between the detection
of a moving object and when its picture is taken. In case
of violations, every tracked object with at least one acquired
picture is released from tracking to re-gain resources, lower-
ing the acquisition latency for the next object.

Baselines. We compare VOLTRON with three baselines: i)
drone-level programming, ii) swarm programming, and iii) a
library-based version of VOLTRON. To perform the compar-
isons, we implement functionally-equivalent versions of our
applications using the three systems described below.

We use the AR.Drone SDK as a representative of drone-
level programming. Programs written with the AR.Drone



SDK must be executed on the ground-station and remotely
control the drones. We implement the planning of the
drones’ movements using the same centralized planning al-
gorithm described in Sec. 6.1.

We use ROS as a representative of swarm programming.
ROS is established software and was recently ported to the
AR.Drone [5]. The specific AR.Drone port does not sup-
port running all code on the drone itself; nonetheless, we
encode the robot actions based only on local state in accor-
dance with the principles of swarm programming. We imple-
ment the planning of the drones’ movements using the same
distributed planning algorithm described in Sec. 6.2.

Finally, we create a new implementation of VOLTRON

that uses standard libraries instead of extensions to a host
language. We call this implementation VOLTRONLIB. In
library form, the abstract drone takes as additional input a
reference to a listener object used to (asynchronously) pro-
cess the data as it arrives. Spatial data are stored in standard
collection objects. Programmers use concurrent threads to
parallelize data processing and drone operation, with stan-
dard producer-consumer synchronization. Time assertions
are specified in a procedural manner and manually scheduled
concurrently with other threads.

In all three cases, when assessing the programming effort,
we exclude the implementation of the navigation functional-
ity from the analysis even though not all libraries fully pro-
vide it. This creates a worst-case setting for VOLTRON when
it comes to comparing the different programming efforts.

7.2 Real-world Experiments
We conduct experiments for about one week at the archae-

ological site to evaluate how the scanning speed changes as
the number of drones is increased. We compare both central-
ized and state-replicated executions.

Setting and metrics. We run ARCH with one to seven
drones. We measure the application execution time, that
is, the time it takes for a given number of drones to gather
enough pictures within the given time constraint so that the
resulting orthophoto is satisfactory.

Whenever a given number of drones cannot complete the
inspection before the battery dies, the drones come back to
the starting point, we replace the batteries, and we let them
continue from where they left. In computing the execution
time, we do not include the time for such battery replace-
ment. Nonetheless, we also count the number of times this
needs to happen as the number of application rounds. The
drones move at a maximum speed of roughly 5 m/s. We re-
peat each experiment 5 times, and plot averages and standard
deviations.

Results. Fig. 8 indicates that execution times are signifi-
cantly reduced as the number of drones increases. In fact,
only by deploying all seven drones in centralized executions
can the 10-minute constraint in Fig. 5 always be satisfied,
even if by a narrow margin. The speed increases diminish
as more drones are added, as other factors come into play:
i) the time the drones “waste” hovering to avoid collisions
with other drones; and ii) the time necessary for inter-drone
coordination, through either the ground-station or the virtual
synchrony layer.

The diminishing returns could be ameliorated, at least
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ies in centralized executions, seven drones are needed in
distributed executions.

in centralized executions, by employing less conservative
collision-avoidance mechanisms or smarter heuristics to split
the input locations among the drones [9]. However, the
processing times in the latter may render them impractical
at run-time. We expect the execution times for the ROS
and AR.Drone SDK implementations to be comparable to
VOLTRON since they employ the same heuristic MTSP so-
lution. We return in Sec. 8 to the the variability in execution
time shown by the standard deviation in Fig. 8.

The same chart shows that, in general, state-replicated ex-
ecutions take more than twice the time of centralized execu-
tions. This is largely due to the sub-optimal choices of the
exploration algorithm, and corresponds to the overhead for
avoiding a single point of failure and extending the operating
range. The decisions taken by the individual drones during
state-replicated execution are similar to those during central-
ized ones, as long as drones are far apart. When two drones
with overlapping paths come close together, however, the
(virtual) repulsion forces described in Sec. 6.2 take longer
to resolve the path conflict.

We also observe a constant penalty for state-replicated
executions vs. centralized ones, visible even with only one
drone. This appears because of two reasons: i) the ex-
ploration algorithm we use in the former works in discrete
rounds: a drone moves for some time, stops to re-evaluate the
state of the virtual potential field, and then resumes move-
ment; hence, drones move slower than in centralized exe-
cutions, where instead a drone heads directly to the desti-
nation; and ii) the virtual synchrony layer may take some
time to recover lost packets [18]: this adds another source
of latency, in that the exploration algorithm cannot resume
movement until the state of the virtual potential field is up-
dated. In Fig. 8, this penalty is somehow dominating until
three drones are deployed, then part of it is amortized by the
additional drones, but its influence still remains.

Fig. 9 depicts the number of execution rounds in our ex-
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fully complete all programming exercises.

periments. These show minimal variability across different
runs—not visible in the charts—and are almost exclusively
a function of the number of drones. These figures give an in-
tuition about the actual wall-clock time to execute the appli-
cation, that is, including the time to replace the batteries. As
an example, with only one drone, batteries need replacement
three times in centralized executions, for a total of about 1.5
hours to complete a single application run. In centralized
executions, five drones are sufficient to avoid replacing bat-
teries altogether, whereas all seven drones are necessary in
state-replicated executions.

7.3 User Study
We recruit 24 junior programmers and carry out a user

study to compare the ease of use of several methods for pro-
gramming teams of drones.

Settings. The programmers we recruit are M.Sc. students
about to graduate at Politecnico di Milano (Italy). All have
taken several courses in object-oriented programming, soft-
ware engineering, and distributed systems. Because of their
background, they well represent the skills of a junior pro-
grammer. We organize the students in twelve groups of two
students each, balancing competences based on the score the
students obtained from the relevant courses. We assign every
group a system among AR.Drone SDK, ROS, VOLTRON-
LIB, and VOLTRON. We give separate hands-on tutorials, of
roughly two hours, about every such system. We also teach
the students how to use the testbed we built to measure the
run-time overhead, as described in Sec. 7.5. The students use
the testbed to test their programs.

Throughout three half-day sessions, every group is given
three increasingly complex programming exercises derived
from the test applications described in Sec. 7.1. The first ex-
ercise is a relaxed version of the application that does not
include adaptive sampling or time constraints. The second
exercise includes the adaptive sensing aspects. The third
exercise comprises the complete application. For example,
ARCH-1 is the ARCH application without adapting the grid
step based on aberration measurements and without requir-
ing to check if the scan is completed in 10 minutes. ARCH-
2 includes grid step adaptation. ARCH-3 encompasses both
grid step adaptation and a time constraint, and equals ARCH.

At the end of the half-day, we check what every group
produced and determine which groups successfully com-
pleted the exercises. To gather deeper insights, we also in-
struct the build environments to collect a snapshot of each
group’s code with every successful compilation process, and
ask the students to fill an online questionnaire at the end of
the whole study.

Results. Fig. 10 shows the outcome for ARCH, and reveals
that only by using VOLTRON all groups are able to correctly
complete all programming exercises. The results for PM10

and PURSUE are similar.
The reasons why the groups could not complete the ex-

ercises with systems other than VOLTRON are several. For
example, we observe that groups using AR.Drone SDK do
not complete the programming exercises because of lack of
time. It simply takes too long for these groups to obtain a
fully-functional solution for the simplest exercise and too
little remains for the remaining exercises. The groups ei-
ther turn in incomplete or buggy solutions. When explicitly
asked through the questionnaire “What is the most difficult
aspect of programming coordinating drones using the sys-
tem you were assigned?”, the groups using AR.Drone SDK
often complain that the learning curve is very steep and it is
hard to implement even the simplest functionality.

Using ROS, the groups complete most of the exercises
but do not complete them correctly. Those who try to build
global knowledge out of the node-local states often fail to
obtain consistent snapshots, and hence have drones make de-
cisions based on inconsistent information. Those who try
and apply a fully decentralized solution often do not con-
sider some of the parallel executions, and fail to take care
of the corresponding issues. We ask the groups “Based on
your programming experience in other fields, what would
you compare the system you were assigned to?”. One of
the groups using ROS replies: “It feels like programming an
enterprise system using only C and sockets”.

Finally, using VOLTRONLIB, all groups complete all pro-
gramming exercises but the implementations are often defec-
tive due to subtle synchronization issues in handling concur-
rent tasks. When we ask in the questionnaire “What would
you try and improve, and how, of the programming system
you were assigned?”, all replies of groups using VOLTRON-
LIB point, in a way or the other, to concurrency handling.
However, no one makes a concrete proposal about how to
improve this aspect, indicating that the issue might not be
too trivial.

Overall, the result indicate that: i) team-level program-
ming greatly facilitates the programming of adaptive sensing
multi-drone applications, as demonstrated by comparing the
results of VOLTRONLIB and VOLTRON against AR.Drone
SDK and ROS; and ii) the choice to implement the abstrac-
tion as a language extension helps programmers deal with
concurrency issues between the drone operations in the field
and data processing.

7.4 Software Metrics
We leverage established software metrics [26] to corrob-

orate the results of the user study.

Metrics. When using an object-oriented paradigm, the num-
ber of lines of code (LOC), the number of class attributes,
the number of methods, and the number of method invoca-
tions are generally considered as indications of a program’s
complexity [26]. It is also observed that complexity is a
function of the number of states in which a class can find
itself [26], where a state is any possible distinct assignment
of values to a class’ attributes during any possible execution.
To carry out the latter analysis, we use our C++ prototype
and SATABS [14], a verification tool for C/C++ programs.
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VOLTRONLIB 1385 6.7 8.1 61 '8K
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Figure 11. VOLTRON simplifies implementing
multi-drone active-sensing applications compared to
VOLTRONLIB, ROS, and AR.Drone SDK.

SATABS exhaustively verifies C/C++ programs against user-
provided assertions. Using a specific configuration, if the
checking procedure terminates, SATABS returns the number
of different program states it explores.

Results. Fig. 11 illustrates how both VOLTRON and
VOLTRONLIB enable a reduction in all metrics, demonstrat-
ing that, in the applications we consider, team-level program-
ming pays off even in the most straightforward instantiation.
Directly comparing VOLTRON with VOLTRONLIB, we argue
that the improvements of the former in LOC is due to the
spatial semantics of variables and the system of futures and
promises, illustrated in Sec. 4. The former spares the need to
code the mapping between sensor values and the correspond-
ing locations, whereas the latter greatly simplifies concur-
rency handling. The significant penalty of AR.Drone SDK
over ROS in LOC is caused by the lack of support for inter-
drone coordination in the former, hence demanding a great
deal of manual coding of distributed functionality. This is in
line with the results of the user study discussed earlier, where
the groups using AR.Drone SDK often ran out of time.

Besides the LOC, the design of the application also ap-
pears simplified using VOLTRON. The individual classes in-
clude fewer attributes and fewer methods. Moreover, using
VOLTRON the code becomes less entangled: fewer method
invocations bind different classes. As a result, the code is
likely easier to understand and to debug [26]. The average
number of per-class states returned by SATABS also shows
drastic improvements in favor of VOLTRON. Because of
team-level programming and dedicated language extensions,
the processing within the single classes is simplified.

7.5 Run-time Overhead
Accurately measuring system overhead in drone sensor

networks is challenging in both simulation and in real-world
experiments. To this end, we build a dedicated testbed based
on ARM’s developer tools [3] and the QEMU emulator [41].
The overhead measured will not be identical that observed
in the field, but the results should be indicative because our
setting is representative of current drone technology and ac-
tually models the most resource-constrained platforms.

Testbed. We employ the ARM Versatile Baseboard within
QEMU to emulate the Cortex A8 processor. Using QEMU,
we create a virtual machine running the same Linux image
as the AR.Drone. We do not emulate the additional embed-
ded board in charge of the virtual synchrony layer, which
already proved to run efficiently in networks of hundreds of
nodes [18]. We replace the virtual synchrony layer with a
stub that implements a “perfect” virtual synchrony, that is,
the total ordering follows the wall clock.

We implement dummy stubs for the AR.Drone navigation
sensors and propellers’ controls. We use a stub for the GPS
sensor to play synthetic position traces generated according
to where the drones are supposed to move. For simplicity,
we let an AR.Drone always move along straight lines and at
constant speed, thereby avoiding the need to generate syn-
thetic traces for the navigation sensors since no corrections
to the routes are ever needed. Thus, the flight control loop,
although still running, bears no influence.

This setup allows us to create scenarios with up to 100
AR.Drones using 10 PCs connected via LAN, each running
10 instances of QEMU. The experiments are driven by one
of the PCs, which generates random traces of sensor data
that drive the execution. The same PC acts as the ground-
station in centralized executions. Each application runs for
about 25 minutes, corresponding to the maximum flight time
of our custom AR.Drones. We repeat each run at least 100
times with different random traces of sensor data.

Metrics. Memory consumption (RAM) and CPU utiliza-
tion on the drones may increase because the translation and
the abstract machine add generic functionality that might
be avoided in a hand-written implementation. Both figures
determine the minimum system requirements. The generic
functionality may also cause additional network traffic that
an implementation using ROS or AR.Drone SDK may save.
This figure affects a system’s scalability, as excessive traffic
may hog the network. Note that, since our GPS stub gives
the location to a drone, these measures mainly depend on the
amount of data to process. In other words, using random
values does not affect the results.

To measure these quantities, we employ a SerialICE [41]
connection to obtain detailed logs of CPU operation and
memory consumption. We measure network traffic by sniff-
ing exchanged packets. We repeat these measures for
ROS, AR.Drone SDK, and VOLTRON running both centrally
and in a state-replicated manner. We do not measure the
VOLTRONLIB overhead because the run-time system is the
same as VOLTRON. The results for state-replicated execu-
tions are to be considered merely as an indication of whether
that execution model is at all feasible, as the numbers are
not directly comparable with centralized executions. Every
result refers to the performance of the single drone.

Results. Fig. 12 indicates that VOLTRON does introduce an
overhead, but that the resource requirements are well within
the capacity of current platforms.

Regardless of the programming system, most of the re-
sources are not consumed by the application logic. As the
bottom row in Fig. 12 demonstrates, merely keeping the
AR.Drone at a fixed position doing nothing takes a signifi-
cant amount of resources due to the tight flight control loop,
which makes the drone hover by “locking” to features in the
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Figure 12. With 100 emulated drones, VOLTRON intro-
duces a modest run-time overhead.
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video feed from the vertical camera.
The measures for network traffic in Fig. 12 indicate that

the throughput is well below the limits of current WiFi net-
works, such as those aboard modern drones [1]. The worse
performance of AR.Drone SDK compared to ROS is caused
by the lack of multicast communication support, so coor-
dination among drones requires 1-to-1 message exchanges
using AR.Drone SDK. In VOLTRON, additional traffic is
caused by bookkeeping information. In state-replicated exe-
cutions, communication among drones occurs through the
(multi-hop) 802.15.4 network enabled by the virtual syn-
chrony layer [18].

Memory consumption and CPU utilization are indepen-
dent of the number of drones, at least for centralized execu-
tions where the nodes only interact with the ground-station.
Similarly, network traffic grows about linearly regardless of
the programming system, as shown in Fig. 13. These obser-
vations, together with the absolute values in Fig. 12, suggest
that VOLTRON would likely scale beyond the 100 drones in
these experiments before reaching resource limits, for these
applications.

8 Deployment Assessment
We perform a preliminary evaluation of the accuracy of

the orthophotos produced by our system at the Domus dei
Putti Danzanti. For ground truth, we use distance measure-
ments taken using professional LIDAR equipment between
five points uniformly chosen. We evaluate the orthophotos
obtained using all seven drones, that is, the only orthophotos
that could be obtained while meeting the aberration require-
ments and quickly enough for the scene not to change. The
same five points were identified in the orthophoto itself us-
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Figure 14. Wind conditions bear an appreciable effect on
execution times.

ing visual makers on the ground. Remarkably, the distances
between the points on the orthophoto are within a 3.3% error
margin of the LIDAR measurements.

Dually, the other key performance metric for the ARCH

application is the time required to obtain the orthophoto. At
the Domus dei Putti Danzanti, current archaeological prac-
tices involve a great deal of manual labor: archaeologists
use measuring tape and hand-made drawings, along with pic-
tures taken with a hand-held camera. Two graduate students
are allocated full-time to these procedures which, needless
to say, are immensely time consuming and error-prone. If
nothing else, one cannot just freely walk around for fear that
one’s foot may irreparably damage something still covered
by a thin layer of dust.

In about five months, we almost completely automated
these procedures using our centralized Java-based VOLTRON

prototype, a laptop PC as ground-station together with
an amplified WiFi directional antenna, and seven custom
AR.Drones. A video showing the drones in action at the
Domus dei Putti Danzanti, against particularly windy con-
ditions, is found at http://youtu.be/PPDGO-jc0It.

However, aerial drones are not completely labor free, even
if they fly autonomously. We learned the hard way that
the time saved by using multiple drones can quickly evap-
orate without proper mechanical maintenance. Archaeologi-
cal sites are particularly dusty environments and, as dust en-
ters a drone’s gears and shafts, their efficiency quickly drops
until the drone fails to operate. We eventually identified
a suitable maintenance schedule but, in the meantime, we
broke four motors, eleven propellers, and uncountable gears.

Additionally, execution times can be highly variable, as
shown in Fig. 8, due to unpredictable wind effects. For a bet-
ter understanding, we deployed a digital anemometer in the
middle of the site. Fig. 14 shows the execution times depend-
ing on the average wind conditions during an experiment. As
the wind increases, the drones invest more effort in counter-
acting its action. This suggests that, in the absence of other
requirements, the drone operation may just be postponed if
the current wind conditions are unfavorable.

We also found that application-level performance of real-
world drone applications depend greatly on hardware design
choices. As an example, the choice of camera creates a
trade-off between image quality and weight/size. The for-
mer affects the grid size requirements while the latter affects
energy consumption and hence the flight times because of
the additional payload. We eventually settled on a Polaroid
XS10 action camera, which provides 3 megapixel pictures at
120� view angle—sufficient for the archaeologists’ needs—



in only 24 grams. It is also small enough to to be hooked
under the AR.Drone with no special mounting, and hence
no further weight. In addition, the low-cost GPS receiver
we chose had accuracy issues even with clear-sky conditions
at the site. More expensive GPS receivers could have pro-
duced better accuracy and therefore could have reduced im-
age aberration and therefore scan time.

All things considered, our system was able to reduce an
entire day of work for two graduate students down to about
half an hour of autonomous drone operation, plus two hours
of image post-processing for a single person and one hour
per week for drone maintenance.

9 Conclusion
We designed the team-level programming model to ease

the implementation of active sensing applications using mul-
tiple coordinating autonomous drones. We implemented
team-level programming in VOLTRON, a system that extends
an existing language with a notion of abstract drone and by
means of variables enriched with spatial and temporal se-
mantics. We assessed VOLTRON based on a real prototype
we built, supporting centralized and state-replicated execu-
tions on custom AR.Drone 2.0 devices. By means of experi-
ments in a real deployment, we studied the improvements in
execution time by using multiple drones. Based on this and
two more representative applications, we identified through
user studies and software metrics significant advantages in
programming multi-drone active sensing applications using
VOLTRON compared to alternative solutions, at the price of a
modest increase in resource consumption. We concluded by
reporting lessons from the real deployment we carried out.
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