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Abstract

Coordination between large teams of highly hetero-
geneous entities will change the way complex goals
are pursued in real world environments. One ap-
proach to achieving the required coordination in such
teams is to give each team member a proxy that as-
sumes routine coordination activities on behalf of its
team member. Despite that approach’s success, as
we attempt to apply this first generation of proxy ar-
chitecture to larger teams in more challenging envi-
ronments some limitations become clear. In this pa-
per, we present initial efforts on the next generation
of Team Oriented Programming (TOP) and proxy
archiecture, called Machinetta. Machinetta aims to
overcome the limitations of the previous generation
of proxies and allow effective coordination between
very large teams of highly heterogeneous agents. We
describe the principles underlying the design of the
Machinetta proxies and present initial results from
two domains.

1 Introduction

Despite their successes, the first generation proxy ar-
chitectures suffer from three key limitations when
handling: scale, dynamism, and effective integration
of humans in agent teamwork. First, in small-scale
teams, agents can be allocated to roles by hand prior

to starting up team activities; although limited re-
allocation can occur at run-time. Unfortunately, in
large-scale teams, off-line allocation of agents to roles
by hand is difficult. Second, a high level of dynamism
in the environment requires that agents’ role allo-
cation and reallocation strategy must often be inte-
grated into one unified fluid algorithm, rather than
as two separate phases (allocation vs reallocation) as
seen in existing architectures. Furthermore, agents
must consider role reallocation not only under catas-
trophic failures (as was done previously), but must
be willing to give up current roles to take up new
precious opportunities. Third, as we build increas-
ingly heterogeneous teams, and particularly include
humans in the loop, we must enable the proxies to
tap into human expertise in coordination in key sit-
uations. Previous research on teamwork has allowed
agents and humans to work together, but the human
participation was limited to domain level activities.
In this work, we propose to go beyond, to enable
humans to provide their valuable expertise in team
coordination activities as well.

In this paper, we present initial efforts on the next
generation of TOP and proxy archiecture, called Ma-
chinetta. Machinetta aims to overcome the limita-
tions of the previous generation of proxy and allow
effective coordination between very large teams of
highly heterogeneous agents. To achieve this Ma-
chinetta embodies several new design principles, fo-
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cused on overcoming the limitations of the previ-
ous proxies. To address the first two limitations
discussed above, Machinetta has a fluid, integrated
role allocation and reallocation algorithm. Within
this algorithm, agents attempt to continually allocate
and reallocate themselves to new tasks. When new
tasks/opportunities arise, or when agents’ capabili-
ties decline substantially, agents reconsider their cur-
rent commitments to roles; thus, agents may change
roles even without catastrophic failures. This new in-
tegrated algorithm enables a much more flexible re-
sponse to dynamic environments. However, the an-
swer is not simply to replace current coordination al-
gorithms with new ones. If a big enough team is put
into a complex enough environment there are, despite
our best efforts, bound to be situations where any co-
ordination algorithms perform very poorly or breaks
altogether. A key idea in Machinetta is to acknowl-
edge that such problems are going to occur and build
in mechanisms for meta-reasoning to handle those sit-
uations. This is achieved by making as much of the
cooridnation process as possible explicit, thus making
it easier to monitor the coordination and understand
when problems occur. For example, we use a role
allocation algorithm[11] that represents each role to
be allocated as an explicit role. If the role of allocat-
ing the role goes unachieved for some period of time,
i.e., because the standard role allocation algorithm
does not suceed in allocating it, the team can detect
this situation and recursively invoke meta-reasoning
about ”role allocation role”.

With respect to involving humans in coordina-
tion (and not just in domain-level tasks), the meta-
reasoning capability provides a helpful mechanism.
In particular, when meta-reasoning about coordina-
tion, agents can appeal to human input. However,
humans could provide input that may not necessarily
be in agreement with choices made by the coordina-
tion algorithm. Thus, given the possibility of such
arbitrary changes by humans to coordination algo-
rithms, the algorithms must be robust to decisions
that are “wrong” according the algorithm. For ex-
ample, a human may arbitrarily (so far as the prox-
ies are concerned) decide to terminate a plan and the
proxies must implement this decision.

The final change in direction for the new genera-

tion of proxy is the properties that we aim to prove
for the key algorithms. With relatively small teams,
establishing properties such as optimality is impor-
tant. However, typically proofs of such algorithm
properties rely on assumptions such as the underly-
ing situation not changing while the algorithm is ex-
ecuting. While such assumptions are very reasonable
for small teams, they are not so interesting for very
large teams where the assumptions will never be met.
The critical point is that large enough teams in com-
plex enough environemts will be in a constant state of
change. For example, in a large team for disaster re-
covery in a large city, some team member will always
be completing, abandoning or beginning a task. The
inherent, continuous dynamics makes other algorith-
mic properties interesting. For example, the ”stabil-
ity” of the system – will one team member’s failure
to complete a role lead to many role reallocations or
will the effects be limited. Another interesting prop-
erty would be to show that certain events will never
happen or happened only with a very low probabil-
ity. For example, we may be able to prove that some
team member will always eventually accept a role, if
its priority is above some threshold. Our current ap-
proach is to use the theory of dynamic patterns [6] to
model and understand the system’s properties.

In the remainder of this paper we present Ma-
chinetta in detail, showing how it embodies the prin-
ciples discussed above. We also present a graphical
development environment for specifying Machinetta
plans. We show preliminary results from using Ma-
chinetta in two domains, a fire fighting domain and
a battery recharge domain.

2 Proxies

Machinetta proxies are lightweight, domain-
independent software, capable of performing the
activities required to work cooperatively within a
larger team on TOPs. The proxies are implemented
in Java and are designed to run on a number of
platforms including laptops and handheld devices.
A proxy’s software is made up of five components
(see Figure 1):

Communication: communication with other prox-
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Figure 1: Proxy software architecture.

ies

Coordination: reasoning about team plans and
communication

State: the working memory of the proxy

Adjustable Autonomy: reasoning about whether
to act autonomously or pass control to the RAP

RAP Interface: communication with the RAP

Each component abstracts away details allowing
other components to work without considering those
details. For example, the RAP interface component
is aware of what type of RAP it is connected to and
the methods of interacting with the RAP, while the
adjustable autonomy component deals with the RAP
as an abstract entity having particular capabilities.
Likewise, the communication component will be tai-
lored to the RAP communication abilities, e.g., wire-
less or wired, but the coordination component will
only be told available bandwidth and cost of commu-
nication.

A critical component in deploying the proxies is the
mechanism by which they interact with their RAPs.
The adjustable autonomy component is responsible
for deciding what interaction should happen with
the RAP, but the RAP interface component man-
ages that interaction. The RAP interface component
is the only part of the proxy that needs to be designed
for a specific type of RAP. These components are very
diverse, matching the very diverse RAPs. For exam-
ple, the RAP interface for a person playing the role
of fire chief in the disaster rescue domain is a large
graphical interface, while for the fire brigades a sim-
ple socket communicating a small, fixed set of mes-
sages is sufficient. Since the proxies interact closely
with their RAPs, it is desirable to have them in close

physical proximity. For mobile RAPs, the proxies
can be run on handheld devices that communicate
wirelessly with robots or, in the case of a person in
the field, via a graphical interface on the handheld
device.

2.1 Proxy Algorithms

The proxy’s overall execution is message driven.
When a message comes in from its RAP or from an-
other proxy, a new belief is added to the proxy’s state.
The beliefs in the state constitute the proxy’s knowl-
edge of the status of the team and the environment.
The state is a blackboard, with components writing
information to the blackboard and others reacting to
information posted on the blackboard. Any change
to the state triggers two reasoning algorithms: Coor-
dination and Adjustable Autonomy. Either of these
algorithms may in turn change the belief state, which
will once again trigger the algorithms.

Algorithm 1 shows the Coordination algorithm,
which instantiates the theory of joint commitments [2]
as operationalized by STEAM. The functions, estab-
lishJointCommitment and endJointCommitment es-
tablish or terminate commitments by communicat-
ing with other proxies when a new belief triggers the
start or end of a team plan. In the algorithm, the
function communicate? returns true if the capability
or role progress information should be communicated
to others. This function encapsulates previous work
on determining policies for communicating such in-
formation with team members[8].

Algorithm 1: Coordination

Coordination(Bin)
(1) foreach b ∈ Bin

(2) if b

is CapabilityInformation or Role Progress

(3) if communicate?(b)
(4) sendToOthers(b)
(5) else if startTeamPlan α?(b)
(6) establishJointCommitment(α)
(7) AllocateRolerole(α)
(8) else if endTeamPlan α?(b)
(9) endJointCommitment(α)
(10) return Bout
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The Adjustable Autonomy algorithm (Algorithm
2) is responsible for managing the interactions be-
tween the proxy and the RAP. In the algorithm,
the function tellRAP? determines if there is value
in sending this particular piece of information,
received from another proxy, to the RAP. The
shouldRAPbeAsked? is the “core” of adjustable au-
tonomy reasoning and is responsible for deciding
whether or not this particular coordination decision
should be handled autonomously by the proxy or by
the RAP. The if statement beginning on Line 2 shows
the basic processing that the proxy performs when its
RAP is offered a new role. First, it decides whether
to act autonomously. If so, it decides whether or not
to accept the role on behalf of the RAP (see next
section for more detail).

Algorithm 2: Adjustable Autonomy
AdjustableAutonomy(Bin)
(1) foreach b ∈ Bin

(2) if b is role offer

(3) if RAP is capable of role
(4) if

shouldRAPbeAsked?
(5) Ask RAP
(6) else if accept au-

tonomously?
(7) Bout ← role ac-

cepted

(8) else

(9) Bout ← role re-

jected

(10) else if b is a new role
(11) send role to RAP
(12) return Bout

3 Specifying Team Oriented

Plans

As a step towards realizing Team Oriented Program-
ming paradigm, we have built a JAVA based GUI to
facilitate Domain Experts to specify these TOPs. We
view a TOP consisting of three parts viz. hierarchi-
cal reactive plans, team organization hierarchy and
descriptions of individual agents and their capabili-

ties. These are specified using the tool in form of dia-
grams and are finally converted to beliefs each agent
should hold to start with. These beliefs are described
in XML. We have designed a XML schema that can
specify reactive plans and constraints between them,
also different roles and capabilities of agents. Current
Machinetta, work has focused on developing proxies
capable of executing simple team plans and we are in
the process of extending the capabilities of the prox-
ies to incorporate all the aforementioned features.

TOP Specification has 3 views; the first is plan
hierarchy where user can draw reactive plans with
plans/subplans as nodes and links showing hierar-
chy between them. Each subplan can have precondi-
tions and postconditions and plan body. The agents
will instantiate a team plan when precondition match
with the environment. One can specify what infor-
mation will be passed to the instantiated team plan
while specifying preconditions. Fig. 1 shows the use
of tool to specify TOP for a Robocup Rescue sce-
nario. By using hierarchy in plans we can break down
a complex plan in parts as in this case fightFire can
have to subplans evacuate civilians, secure the area,
extinguish the fire. When a particular subplan’s suc-
cess depends on coordination with other activity we
can specify co-ordination constraints between them,
for e.g. such constraints can be useful in specify-
ing that activities of transport of civilians and se-
curing the route for transport vehicles must be coor-
dinated. Also and/or constraints between subplans
can be specified, for e.g. While fighting a fire evacu-
ating people, securing area and extinguishing fire all
actions should be done, failure in any subplan can
result in failure of fightFire plan.

A subplan can be chosen by double-clicking it and
pre/post conditions for it can be specified in the right
subpanel. Preconditions are a set of conditions which
are in conjunction. Conditions themselves have a set
of keys and values of those keys which will trigger
the plans. These keys are attributes of the Domain
Specific Beliefs. The GUI has facilities to specify
such preconditions. Multiple Preconditions can be
specified which then are thought to be in disjunc-
tion. Postconditions are very similar and have a type
associated with them for differentiating in achieved,
unachievable and irrelevant cases. Returning param-

4



Figure 2: Snapshot of tool showing team plan and
user entering the preconditions and postconditions
for ExtinguishFire subplan.

eters are the output keys passed to the instantiated
team plan which have further information about the
event that caused that plan to trigger. For example,
FightFire plan is passed back information about loca-
tion of firePresent after the precondition is matched.
It is assumed that interface between proxies and
agents will take care of invoking actions in agents
corresponding to the plans to be executed. Hence
the knowledge of plan-body is coded into agents and
not needed to be specified while TOP specification.

The second view is team organization hierarchy.
The team hierarchy defines sub teams such that these
teams get specialized down the tree. Thus the sub-
team fireEngines consists of engines that can fight
chemical fire and engines that can fight electrical
fires. The plan hierarchy nodes can be associated
with a particular sub team via its name. As in this
case only fireEngines subteam will be assigned to
extinguish-fire subplan. In current Machinetta, the
tasks are associated to agents with using role allo-
cation mechanisms based on the team’s goals and
agents’ capabilities. Sometimes though Domain Ex-
pert may want to assign specific agents to specific
tasks in such case this type of specification of teams
and subteams can be useful. These can be used either
as hints or constraints for role allocation.

Figure 3: Snapshot showing team organization hier-
archy

The third view is a list of available domain agents
and their capabilities. Capabilities are matched
against requirements before agents are assigned to
specific subteams. The last panel allows the user to
specify the domain specific beliefs. We represent a
domain specific belief as a key-value pair. For exam-
ple, in the Robocup Rescue domain, firePresent belief
has keys location and extinguished and correspond-
ing values of where the fire is and its status, which
agent believes in.

The last step is to save the TOPs specified graph-
ically in XML documents as individual beliefs of
agents. These beliefs consist of the team plans and
agents own capabilities. Along with these hints
or constraints for forming teams/subteams can be
stored. Throughout the interface users are not al-
lowed to input invalid specifications, such as speci-
fying preconditions on non-existing keys. This sim-
plifies validation procedure. Most of the XML gen-
eration is straight-forward. Currently the tool can
handle the plan graphs which are tree-structured,,
although it can be easily extended to any arbitrary
plan graph.
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4 Executing Team Oriented

Plans

Within Machinetta, team plans provide an explicit
representation of the joint goals held by all team
members. As such, they allow the team members
to scope their reasoning and concentrate on only
those tasks that are directly relevant to the team’s
currently active goals. Due to its intended use
as a domain-independent coordination architecture,
Teamcore makes minimal assumptions about the na-
ture of team plans. In other words, the team plans
provided by the architecture are a skeleton of execu-
tion that the system designer then fleshes out with
the intended domain-specific behavior (e.g., as part
of a specific RAP behavior that triggers off of team
plans).

As in the original STEAM-based Teamcore archi-
tecture [9], we implement the joint goals of the team-
oriented program via reactive team plans. Active
team plans take the form of beliefs within the proxies’
memories. This explicit representation enables the
underlying architecture to reason about the means
of ensuring coherent plan execution. Because each
proxy maintains separate beliefs about these joint
goals, the architecture can detect (in a distributed
manner) any inconsistencies among team members’
plan beliefs. The architecture’s primary responsibil-
ity regarding coherent team beliefs about active goals
is to synchronize the initiation and termination of
team plans. Perhaps more importantly, the proxy
must also ensure that the team makes progress to-
ward achieving its active joint goals. The proxies
themselves have no ability to achieve goals at the
domain level; instead, they must ensure that all of
the requisite domain-level capabilities are brought to
bear by instantiating the appropriate roles and fill-
ing them with the appropriate RAPs. Section 4.1
describes the initiation of team plans, Section 4.2 de-
scribes the instantiation of the associated roles, and
Section 4.3 describes the termination of team plans.

4.1 Plan Initiation

Teamcore’s proxy-based infrastructure ensures that
the team will synchronize itself appropriately in
initiating a new team plan. Thus, the team
programmer need not program such synchro-
nization actions, because the proxies (through
the establishJointCommitment procedure in Algo-
rithm 1) ensure such synchronization, so all team
members will agree on the set of active team plans.

The most common mechanism for creating team
plans is to write a “team plan template”. Such a
template represents a class of possible plan instan-
tiations. We thus save on specification effort, since
writing one team plan template replaces the speci-
fication of many, many individual plans themselves.
For example, we can write one template to represent
a generic plan of “Fight a fire at building x”, rather
than writing hundreds of plans of the form “Fight a
fire at building 1”, “Fight a fire at building 2”, “Fight
a fire at building 3”, etc.

When the preconditions of a plan template match
the proxy’s current state of beliefs (i.e., when
startTeamPlan α is true), a new plan belief is in-
stantiated with the specific details of the particular
precondition match. This team plan belief can then
trigger domain-specific behavior through the inter-
face with a proxy’s specific RAP. The proxies dynam-
ically instantiate plans when, during the course of ex-
ecution, their current states match a plan’s required
trigger conditions. The preconditions specify those
trigger conditions, templates against which the prox-
ies try to match active belief objects in their proxy
state. Because we cannot anticipate all of the pos-
sible structures that a belief object may take on, we
perform this matching by converting the belief object
into some canonical string representation.

The preconditions may also include coordination
constraints among team plans. For example, subgoal
relationships translate into an additional precondi-
tion on child plans (e.g., if α1 is a subgoal of α0,
then there is a precondition for α1 requiring a cur-
rent plan belief α0). We can also specify temporal
constraints between parallel subgoals (e.g., if α1 must
complete before α2 begins, then there is a precondi-
tion for α2 requiring a current plan belief α1 that has
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been completed). Thus, the architecture can auto-
matically translate coordination constraints specified
at the abstract plan level into specific preconditions
at the coordination policy level.

Upon successfully triggering a new plan, the prox-
ies perform the establishJointCommitment proce-
dure specified by their coordination policy. For ex-
ample, in the initial stages of development, we used
a naive communication policy that established com-
mitments by requiring communication of all beliefs.
Because all of the proxies are truthful and because
we assume perfect communication, such a policy nec-
essarily achieves mutual belief of active team plans.
We have also implemented the STEAM policy [13]
as a communication policy that is able to more flexi-
bly balance the costs and benefits of communication
during the establishment of a new commitment.

4.2 Role Instantiation

Roles are slots for specialized execution that the team
may potentially fill at run-time. Upon instantiation
of a newly triggered plan, the proxies also instantiate
any associated roles, subject to the specific triggers.
The specification of such roles is domain-specific, and
may include appropriate role relationships, such as
AND, OR, and role-dependency relationships (using
STEAM semantics [13]). The initial plan specifica-
tion may name particular RAPs to fill these roles,
but more typically, the roles are instantiated unfilled.
These unfilled roles are then subject to role alloca-
tion, as specified by the AllocateRole call in Al-
gorithm 1.

4.3 Plan Termination

As in the original Teamcore architecture [9], the
TOP includes each plan’s termination conditions, un-
der which a team plan is achieved, irrelevant or un-
achievable. Such explicit specification ensures com-
mon knowledge of such conditions, so that the team
can terminate the goal coherently. The proxy-based
Teamcore architecture then automatically uses the
termination conditions as the basis for automatically
generating the communication necessary to jointly
terminate a team plan.

Postconditions are roughly identical to precondi-
tions, except for the obvious difference that the con-
ditions contained within a postcondition refer to plan
termination rather than initiation. Furthermore, the
conditions are not matched against arbitrary beliefs,
but rather against only those beliefs stored within the
relevant container belief object (e.g., a plan). There is
another key difference, in that we differentiate among
three different types of termination states. In partic-
ular, we distinguish whether a plan terminated be-
cause it has become achieved, unachievable, or irrel-
evant (following the STEAM semantics [13]).

When a proxy’s current beliefs match the post-
conditions of a currently active team plan (i.e.,
endTeamPlan α is true), the proxy triggers the
plan termination phase of Algorithm 1. Again,
our developmental coordination policy simply com-
municated the terminated plan belief (along with
the domain-specific that triggered the termination)
to all of the team members. We have also
implemented the STEAM policy as an alternate
endJointCommitment procedure that is capable of
communicating only selectively.

5 Experiments

We have performed initial experiments in two do-
mains. Each set of experiments and domain is aimed
at testing one aspect of the Machinetta architecture.

5.1 Fire Fighting

In our first experiment, we used a simulator of a fire
fighting domain[11]. The aim of this experiment was
to include a human fire chief in the loop to help the
team of intelligent agent fire fighters assign them-
selves to fires. The experiment was designed to show
that the basic approach of identifying problems in
team coordination and referring them to an expert
was effective. The key parameter varied in this ex-
periment is when the expert was brought into help.
In particular, the maxAsked parameter controls the
number of team members that should be offered a role
before asking for expert input. If maxAsked= 0%, a
proxy whose team member cannot (or will not) take
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on the role will give up and immediately refer the role
to an expert. If maxAsked= 100%, the algorithm en-
sures that all potentially capable team members are
offered the role once before giving up. At the ex-
treme, a special setting of maxAsked= ∞ means that
proxies repeatedly pass the role amongst themselves
(with each getting offered the role multiple times)
without ever giving up. Varying maxAsked through-
out this range produces distinct algorithms that pro-
duce different loads on role-allocation expert (i.e..,
the fire chief).

The fire chief interface consists of two frames. One
frame shows a map of the city, displaying labeled
markers for all of the fires that have been found, the
positions of each fire brigade, and the location of the
role each fire brigade is assigned to. The fire chief
does not have direct access to the simulation state
through the simulator itself, but is instead updated
according to only the messages received by the fire
chief’s proxy. Therefore, the fire chief may be viewing
a delayed picture of the simulation’s progress. The
other frame displays a list of all of the role-allocation
tasks that have been allocated to the fire chief. By
clicking on a task, the relevant capability informa-
tion about each fire brigade is shown. The right-side
window lists the fire brigades’ distances to the fire,
their water levels, and the roles they are currently
performing. The fire chief can then view this data
and find an appropriate agent to fulfill the role.

We conducted tests with three different fire chiefs.
Each completed several practice runs with the sim-
ulation prior to experiments in order minimize any
learning effects. Each scenario was run for 100 time
steps, with each step taking 30 seconds. The total
data presented here represents 20 hours of run-time
with a human in the loop.

Table 1 shows the team’s domain-level performance
across each experimental configuration. The scoring
function measures how much of the city was destroyed
by fire, with higher scores representing worse perfor-
mance. The table shows the mean scores achieved,
with the standard deviations in parentheses. Ex-
amining our two dimensions of interest, we can first
compare the two rows to examine the effect of in-
creasing the complexity of the coordination problem.
In this case, increasing the number of fire brigades

improves performance, as one might expect when
adding resources while keeping the number of initial
tasks fixed.

However, we can dig a little deeper and examine
the effect of increasing complexity on the fire chief’s
performance. In the simpler configuration, asking the
fire chief earlier (i.e., maxAsked= 0) improves perfor-
mance, as the team gets a head start on exploiting
the person’s capabilities. On the other hand, in the
more complex configuration, asking the fire chief ear-
lier has the opposite effect. To better understand the
effect of varying the point at which we assign roles to
people, Table 2 presents some of the other statistics
we gathered from these runs (mean values, with stan-
dard deviations in parentheses). With 3 brigades, if
we count the mean number of roles taken on by the
fire chief, we see that it stays roughly the same (401
vs. 407) across the two maxAsked settings. In this
case, asking the fire chief sooner, allows the team to
exploit the person’s capabilities earlier, without much
increase in his/her workload. On the other hand,
with 10 brigades, the fire chief’s mean role count
increases from 563 to 716, so although the proxies
ask the fire chief sooner, we are imposing a signifi-
cant increase in the person’s workload. Judging by
the decreased average score in the bottom row of Ta-
ble 1, the increased workload more than offsets the
earlier exploitation of the person’s capabilities. Thus,
our experiments provide some evidence that increas-
ing domain-level scale has significant consequences
for the appropriate style of interaction with human
team members.

Regardless of the variation of human behavior
across scale, the data demonstrates that exploiting
human capabilities can, in fact, improve overall team
performance. We see this most clearly by examin-
ing the rightmost column of Table 1, which repre-
sents the results when the agents make all of the de-
cisions. These scores are significantly worse than the
leftmost data column, where the person is handed
role-allocation roles immediately. Thus, the ability
of our role-allocation algorithm to exploit the spe-
cial coordination capabilities of people has provided
a dramatic improvement in the performance of our
team.

We can draw some additional conclusions about

8



# Brigades maxAsked= 0% maxAsked= 100% maxAsked= ∞
3 58(3.56) 73(16.97) 74(0.71)

10 52(19.09) 42(14.00) 73(4.24)

Table 1: Domain-level performance scores.

# max Domain Fire Chief Tasks % Tasks
Brigs. Asked Roles Roles Performed Performed

3 0% 116 (7.12) 401 (51.81) 27 (6.55) 23.29 (6.51)
100% 146 (33.94) 407 (54.45) 24 (6.36) 16.02 (0.63)

10 0% 103 (38.18) 864 (79.90) 67 (2.83) 14.49 (2.13)
100% 98 (42.40) 563 (182.95) 41 (8.38) 48.06 (19.32)

Table 2: Role and fire-chief task metrics.

the heterogeneity introduced by people by clustering
our statistics by person rather than by configuration.
Each row in Table 3 represents the mean statistics
of one of our three different fire chiefs. The “Tasks
Performed” column counts the number of firefight-
ing allocations performed by the fire chief, while the
“% Performed” column measures that count against
the number of total firefighting allocations assigned
to the fire chief by the proxy architecture. Given
the small sample size, we cannot draw any conclu-
sions about a person’s expected behavior. On the
other hand, it is clear that we can expect a great deal
of variance in behavior. For example, although fire
chiefs A and B achieve roughly similar mean scores,
they do so in very different ways. In fact, our prox-
ies can expect fire chief A to be half as likely as fire
chief B to respond to a task request. On the other
hand, fire chief C is about equally likely as A to re-
spond, and C performs roughly the same number of
tasks as B, yet C achieves only half the score as the
other two. Thus, it appears unlikely that we can eas-
ily classify people’s capabilities, since, for even the
relatively few dimensions measured here, our human
fire chiefs show no generalizable characteristics.

5.2 Recharging 100 Robots

In our second domain, we have a large number of
sensor robots (CSRs) distributed in some environ-
ment over and extended period. Over time the bat-
teries on the CSR robots run down and they need

Fire Chief Score Tasks Performed % Performed

A 0.61 25 28%
B 0.59 40 56%
C 0.31 42 32%

Table 3: Statistics for each Fire Chief.

to be collected for recharging by a CHR robot. The
CSR robot is led to the recharging station by the
CHR robot, hence must have some remaining bat-
tery power to be recharged. This scenario is part
of DARPA’s Software for Distributed Robotics pro-
gram. Proxies running on CHR robots must coop-
eratively work out which CHR collects which CSR.
In this set of experiments we aim to better estab-
lish the properties of the autonomous role allocation
algorithm.

We have conducted several experiments in order to
evaluate our approach, using a simulation of the dis-
tributed robotics domain. The simulator represents
the building as a grid and the CHRs are able to move
from grid location to grid location, pick up CSRs and
recharge CSRs by moving them to a recharge station.
While the details of robot control are not simulated,
the uncertainty CHRs have about their position is
modelled using a localization algorithms very similar
to those used on real CHRs. In particular, the lo-
calization algorithm uses a well known markovian lo-
calization method [3], based on simulated landmarks
in the building. Battery level in the CSRs decrease
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with uncertainty, thus it is not possible to predict its
dynamic during the task execution.

We used two different kinds of simulation set up.
In the first one the experiments are conducted with-
out using the proxies for the role assignment. The
role allocation approach is implemented in a soft-
ware module inside the simulator. In the second set-
ting the proxies have been connected to the simula-
tor and execute the same approach for the role as-
signment. While in the first set of experiments we
mainly focused on investigating how different param-
eter settings for the environment affect the perfor-
mance of our approach the second experimental set-
ting is used to validate the obtained results using the
proxies framework.

In the first setting of experiments we tested four
different algorithms: the allocation algorithm de-
scribed in [11], an extension of this algorithm to han-
dle dynamic capability estimation, a mechanism for
the uncertainty handling, and finally the combination
of this two extension. We decided to vary the amount
of CHRs that can have a degradation on their local-
ization capability during the experiments and inves-
tigate how this parameter affects the different algo-
rithms performance.

For the first set of experiments we used an environ-
ment with 24 CHRs and 47 CSRs and each experi-
ment is 6000 simulation steps long. For each different
parameter setting we performed five repetitions. The
result obtained are reported in table 4 and in table
5. Table 4 show the results when five CHR can expe-
rience problem in their localization capability while
table 5 reports the result with ten. In each table
the first column shows the algorithm used, the sec-
ond column shows the average battery level of CSRs
over time. The third column shows the average of
the minimum battery level of all the CSRs over time.
In both the second and third columns, the averages
exclude the battery levels of robots that have failed.
The fourth column of the tables, show the number of
CSR that completely failed, i.e., the number of CSRs
whose battery level falls to 0. Finally the last column
shows the standard deviation computed over the five
repetitions.

The result show that the overall performance of the
team is negatively affected, when more CHRs have

Algorithm Avg B. L. Min B. L. Fail σ

Basic 0.644672 0.195902 13.6 2.8

Ovl Handl. 0.65997 0.223343 11.8 0.97

Unc Handl. 0.693892 0.229101 12.2 0.75

Ovl and Unc 0.684224 0.241805 9.8 1.47

Table 4: Results for five CHR with localization prob-
lems

Algorithm Avg B. L. Min B. L. Fail σ

Basic 0.633321 0.17654 20.6 2.58

Ovl Handl. 0.65293 0.215206 17.6 1.85

Unc Handl. 0.691214 0.221129 15.8 2.64

Ovl and Unc 0.691896 0.219198 16.2 2.79

Table 5: Results for ten CHR with localization prob-
lems

Algorithm Avg B. L. Min B. L. Fail σ

Unc Hnd. 5 0.695983 0.238347 14.6 1.36

Unc Hnd. 10 0.699272 0.237091 17.6 2.87

Table 6: Results for the limited exchange

Algorithm Avg B. L. Min B. L. Fail σ

Unc Handl. 0.699902 0.236674 12.5 1.65

Table 7: Results for the distributed setting
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their localization capability degraded
When comparing results obtained using the over-

load handling algorithm with the basic algorithm the
number of failed CSRs results to be lower while both
the average battery level and the average of the mini-
mum battery level are improved. The improvement is
similar both for the case when five and ten CHRs can
have a degrading localization capability. Moreover
the overload handling algorithm results in a lower
standard deviation from the average failure value,
showing a better adaption to problematic situations.

Also the algorithm for uncertainty handling seems
to improve the performance for the overall team. In
particular for the result reported in table 4 we have a
very low standard deviation, similar to the overload
handling mechanism. However when the number of
CHR that can have localization problems is higher we
have actually a higher standard deviation but still ac-
ceptable results. The results reported in table 4 and 5
for the uncertainty handling algorithm, are obtained
assuming that each CHR can ask and have a respond
at each simulation step from all its team mates when
trying to exchange a role. This is a very strong as-
sumption and it is not likely to be met in the real
application. Therefore we performed an experiments
limiting the number of team mates that can be query
during each time step. In table 6 we report the results
for this set of experiments the first row of the table
refer to the case where five CHR can have their lo-
calization capability degraded, while the second row
report the results for ten. In both the cases the re-
sults are worst if compared with the respective row
of table 4 and 5. This experiments show that the
discussed approach could be not enough effective for
our reference scenario, where the assumption made
in the previous experiments could easily not be met.

In the second experimental setting we connected
the proxies to the simulator. We decided to test
the algorithm for the uncertainty handling, when five
CHRs can have a degradation in their localization ca-
pability. All the parameters described in the previous
set of experiments are used also in this set, except
for the number of repetition that in this case is not
five but two. This experiments have been conducted
in order to see how the overall performance of the
algorithm could be affected using the actual proxy

framework. In particular for our scenario a very im-
portant issue are the conflicts that can possibly arise
among the proxies’ information on the actual world
state, due to the asinchronicity of the message pass-
ing approach. The results reported in table 7 show
that the algorithm performance seems not to be heav-
ily affected by this issue, however the small number
of experiments conducted does not allow to draw a
statistically significant conclusion, and further inves-
tigations need to be done.

6 Related Work

Proxy-based integration architectures are not a new
concept, however no previous architecture has been
explicitly designed to have robots, agents and peo-
ple in the same team. Jennings’s GRATE* [4] uses a
teamwork module, implementing a model of cooper-
ation based on the joint intentions framework. Each
agent has its own cooperation level module that nego-
tiates involvement in a joint task and maintains infor-
mation about its own and other agents’ involvement
in joint goals. Jones [5], Fong [12], Kortenkamp[7]
and others have worked on improving collaboration
between groups of robots and a single person, though
these approaches to robotics teams have not explicitly
used proxies. The Electric Elves project was the first
human-agent collaboration architecture to include
both proxies and adjustable autonomy[1]. COLLA-
GEN [10] uses a proxy architecture for collaboration
between a single agent and user. Payne et al[14] il-
lustrate how variance in an agent’s interaction style
with humans affects performance in domain tasks.
Tidhar [15] used the term “team-oriented program-
ming” to describe a conceptual framework for specify-
ing team behaviors based on mutual beliefs and joint
plans, coupled with organizational structures. His
framework also addressed the issue of team selection
[15] — team selection matches the “skills” required
for executing a team plan against agents that have
those skills.
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7 Conclusion

As seen in both domains, Machinetta shows promise
in allowing complex teams to tackle the challenge of
effective coordination. The main advantages to our
approach become apparent when dealing with teams
that display one or a combination of the character-
istics: large scale, dynamic environment, and inte-
gration of humans. By connecting the Machinetta
proxies with the graphical development tool for con-
structing team plans, the TOP programmer gains a
good idea of what is going on in the plan and how to
make effective changes in it in order to have the team
behave more desirably. In the future, we plan on ex-
tending the features of both the graphical planning
tool and Machinetta itself, while keeping the frame-
work generalizable.
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