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Purpose: The purpose of this work was to identify potential tear-film based proteins expressed in keratoconus.
Methods: Recruited subjects were normal gas permeable (GP) contact lens wearers, keratoconus subjects wearing GP
contact lenses, and keratoconus subjects without contact lenses. Subjects wearing soft lenses or having previous ocular
surgeries were excluded from participating. Approximately 5 µl of tears were sampled from both eye of each subject using
glass microcapillaries. Additional testing included a brief history, visual acuity, slit lamp examination, and topography.
Proteomic analyses used to compare samples included Bradford assays, cytokine arrays, SDS–PAGE, and mass
spectrometry.
Results: Forty-four subjects were enrolled in the study including 20 normals (GP wearers), 18 with keratoconus and
wearing GPs, and six with keratoconus (non-lens wearers). Across all proteomic approaches, several proteins were
identified as possibly being unique to keratoconus. Increased expression of matrix metalloproteinase-1 (MMP-1) was
found in keratoconus subjects with and without gas permeable contact lenses (p=0.02). Unique proteins more associated
with keratoconus included several keratins, immunoglobulins alpha and kappa, precursors to prolactin, lysozyme C, and
lipocalin.
Conclusions: Initial analyses indicate that keratoconus may be associated with the differential expression of several
proteins. Further testing is needed to determine any causal relationship or correlation with the etiology of this condition.

Keratoconus is an asymmetric condition of corneal
ectasia and thinning with onset usually in early teens to early
twenties, with an incidence of about 1/2,000 [1]. The
condition can lead to significant visual impairment with high
amounts of irregular astigmatism and myopia. Classic
objective signs seen by biomicroscopy include corneal
stromal thinning, central corneal scarring, vertical lines in the
posterior cornea (Vogt’s striae), and prominent corneal
nerves; quite often a brownish or olive green colored ring of
iron deposition (Fleischer’s ring) is seen at the base of the
“cone” or apex of the protrusion [2]. Although improved with
pinhole, the best corrected visual acuity in keratoconus
subjects is often reduced with spectacle correction; therefore,
most subjects are managed with rigid gas permeable (GP)
contact lenses in a wide range of specifications. Some subjects
may require penetrating keratoplasty if contact lenses are no
longer a management option [2].

Keratoconus is historically defined as a non-
inflammatory condition [2]. The exact etiology is unknown,
however, recent literature suggests that inflammatory
molecules and abnormal levels of enzymes are present in
subjects with keratoconus [3,4]. Other research indicates that
keratoconus may also have genetic components [5]. Frequent
associations include history of allergies, atopy (asthma, hay
fever, eczema), eye rubbing, eye injuries, rigid or hard contact
lens wear, and family history of keratoconus [6]. The
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condition seems to cease progression with increasing age [7,
8].

Extensive tear protein work in subjects without ocular
disease performed by de Souza and coworkers [9] has resulted
in the identification of 491 proteins, both extracellular and
intracellular, the latter of which may result from normal cell
death in the epithelium of the cornea. Many proteins are
contained in the aqueous layer of the tears and are secreted by
the lacrimal and accessory glands in addition to the ocular
surface epithilia. The majority of these proteins in the normal
tear film consist of lysozyme, lactoferrin, secretory
immunoglobulin A, serum albumin, lipocalin, and lipophilin
[10]. In addition, these proteins are in a relatively high
concentration (8 µg/µl), and easily accessed in tear collection
methods, making the tear film very promising for extensive
protein analysis.

It is clearly evident that keratoconus is a multifactoral
condition. Although it has been historically defined as a
noninflammatory condition, recent literature supports a
possible role of inflammatory agents in the course of the
disease. The aims for this study were to detect tear-film based
protein expression differences between keratoconus and
normal subjects. This should ultimately start to help further
determine the roles of these proteins in the etiology of
keratoconus.

METHODS
This study was approved by The Ohio State University
Institutional Biomedical Review Board in accordance with the
tenets of the Declaration of Helsinki. Written informed
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consent was obtained by each person before performing the
study visit and related procedures.

Subjects: The subjects recruited were in one of three
categories: 1) subjects without a diagnosis of keratoconus
wearing GP contact lenses (normals); 2) subjects with a prior
diagnosis of keratoconus wearing GP contact lenses; and 3)
subjects with a prior diagnosis of keratoconus who did not
wear GP or soft contact lenses. Subjects were excluded if they
were under 18 years of age, pregnant, currently wearing soft
contact lenses, or if there was a history of ocular surgery.

Clinical exam sequence: The study visit began with a
brief history including current age, confirmation of
keratoconus condition (or lack thereof), number of years with
the diagnosis, and any known family history of keratoconus.
Subjects were asked about the length of time wearing GP
contact lenses, if applicable, and number of hours the lenses
were worn on average per day. Other ocular conditions were
noted, along with any systemic conditions and medications
being taken.

Best-corrected, high-illumination, high contrast Bailey-
Lovie visual acuity was measured independently in each eye,
and the number of letters correct was recorded. A tear sample
was taken from the inferior tear meniscus of each eye at a
biomicroscope while the subject was wearing GP contact
lenses (if applicable). A 5-µl glass capillary tube was used
(Microcaps; Drummonda Scientfic Co., Broomall, PA.), 2-
and 1- μl tubes were used in cases of decreased amount of tears
present, which was infrequent. Subjects were instructed to
blink normally while obtaining the tear sample, and care was
taken by the examiner not to touch the globe to prevent reflex
tearing. The volume of the tubes in microliters and the length
of the sample in the tube (in millimeters) were recorded so
that the approximate volume of the tear samples could be
calculated.

Following tear sampling, an assessment of the GP contact
lens fit was performed with sodium flourescein and a written
filter. Aspects of both the central and peripheral fit were noted,
using guidelines associated with the Collaborative
Longitudinal Evaluation of Keratoconus (CLEK) Study [6].
The lenses were removed, and slit lamp signs were noted on
each subject’s cornea following the removal of contact lenses.
The presence or absence of each of the following was noted:
Fleisher’s ring, scarring, staining, and Vogt’s Striae. In
addition, if any scarring or staining was present on the cornea,
grading scales adapted from the CLEK study [6] of density,
size and shape were used for quantification in the central,
inferior, nasal, temporal, and superior areas. Lastly,
topographical maps of each eye were captured using the
Orbscan I (Orbtek, Salt Lake City, UT). The steepest and
flattest meridians of the simulated keratometry readings were
recorded as well as apical radius.

Following the completion of the exam sequence, all tear
samples were pushed out from the microcapillaries into

microcentrifuge tubes and combined with 20 μl of a reagent
consisting of 150 mM NaCl with 50 mM Tris-cl (pH 7.4) and
1 mM EDTA in distilled water. These diluted tear samples
were frozen at −80 °C for later analyses.

Before proceeding with testing of the actual samples, a
worse-eye classification of the two keratoconus groups was
performed based on a variation of the Gold Standard Grading
Scheme [11]. This classification method used visual acuity,
topography, and presence of slit lamp signs to determine the
eye most affected by keratoconus. The worst eye for each
keratoconus subject and the right eye of all normal subjects
was chosen for tear analyses described below.
Protein analyses:

Bradford protein assay—Tear samples were thawed on
ice for 15 min and briefly centrifuged to ensure the contents
were at the bottom of the tube. A Bradford assay (Quick Start
1×; Bio-Rad Laboratories, Hercules, CA) was run to
determine the amount of protein present in individual tear
samples. A spectrophotometer (Biomate 3; Thermo Fischer
Scientific, Waltham, MA) was use to obtain absorbances as
read at 595 nm. Results are reported in μg/μl.

RayBio human cytokine antibody array G series—
Groups of three samples each were pooled within the three
categories of subjects based on similar protein amounts (in
μg) for each total volume. The normal subjects consisted of
six pooled samples, as did the keratoconus group with gas
permeable contact lenses, while the keratoconus group
without contact lenses had two pooled samples (due to the
limited number of these subjects). The samples were thawed
on ice for 15 min and pooled into new microcentrifuge tubes.
Twenty microliters from the pooled samples were used for
each array. The protocol recommended by the manufacturer
was used for the custom RayBio Human Cytokine Antibody
Array G Series (Ray-Biotech, Inc., Norcross, GA) with the
following modifications: slides were incubated in the
blocking buffer for 60 min at room temperature and the Alexa
Flour 555-conjugated streptavadin was incubated on the slides
overnight at 4 °C before detection.

SDS–PAGE gels—Protein samples were mixed with
SDS–PAGE loading buffer containing β-mercaptoethanol,
heated to 95 °C for 5 min, and subjected to SDS–PAGE
analysis. All gels used (18%, 10%, and 6%) were cast in-
laboratory. The 18% and 10% gels were run at 175 V for 1.5
h, while the 6% gel was run at 150 V for 1.5 h. After the gels
were run, they were removed from the glass plates and fixed
in a 40% methanol (MeOH), 10% acetic acid (AcCOOH)
solution for 30 min at room termpature on a rocker.

The gels were stained with a 0.2% Coomassie brilliant
blue solution (Bio-Rad Laboratories, Hercules, CA) in
45:45:10% MeOH:H2O:AcCOOH for 3 h at room
temperature on a rocker. The gels were then destained in a
25:65:10 MeOH:H2O:AcCOOH solution overnight at room
temperature to ensure removal of all the background staining,
so that only protein bands would appear. Following
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destaining, the gels were imaged on the Kodak 4000 MM
(Carestream Molecular Imaging, Woodbridge, CT), and
analyzed using Kodak Molecular Imaging Software (v.4.5.0;
Carestream Molecular Imaging) to obtain densitometry
readings for all bands.

Nano-LC-MS/MS—Capillary-liquid chromatography-
nanospray tandem mass spectrometry (nano-LC/MS/MS) was
completed for the bands in the 10% gel analysis which
displayed evident differences in lane profiling. The 18% and
16% gels exhibited no evidence of difference in bands. A
Thermo Finnigan LTQ mass spectrometer (Thermo Fisher
Scientific, Inc, Waltham, MA) furnished with a nanospray
source was run in positive ion mode. The LC arrangement was
an UltiMate™ Plus system from LC-Packings A Dionex Co.
(Sunnyvale, CA) equipped with a Famos autosampler and
Switchos column switcher (Dionex Co, Sunnyvale, CA). The
two solvents used were water with 50 mM acetic acid (Solvent
A) and acetonitrile (Solvent B). Each tear sample of five
microliters was first instilled on to the trapping column (LC-
Packings A Dionex Co, Sunnyvale, CA) and washed with
50 mM acetic acid. The injector port was switched to inject,
and the peptides were extracted from the trap onto the column.
Chromatographic separations were performed using a 5 cm
75 µm ID ProteoPep II C18 column (New Objective, Inc.,
Woburn, MA) set directly in the nanospray tip. A gradient of
2%–80%B over 50 min with a flow rate of 300 nl/min was
used to extract the peptides from the column into the LTQ
system. The total run time was 60 min. The mass spectrometer
was programmed for a full scan, using a zoom scan to
determine the charge of the peptide, and a MS/MS scan of the
most abundant peak in the spectrum. To eliminate multiple
MS/MS of the same peptide, dynamic exclusion was used. The
MS/MS sequence data was processed using Mascot Distiller
to form a peaklist (.mgf file) and by using Mascot MS/MS
search engine. Established proteomic guidelines were
followed in data processing using a minimum of two
sequenced tryptic peptides with a minimum string of five
amino acids [12,13]. In addition, assigned peaks had a
minimum of 10 counts (signal:noise of three). A 1.5 Da mass
accuracy of the precursor ions was set to adjust for
unintentional collection of the C13 ion and the fragment mass
accuracy was set to 0.5 Da.

Statistical methods: Variables were first identified as
either categorical or continuous and analyzed using
frequencies or averages and standard deviations for each of
the three groups of subjects, respectively. All continuous
variables were then analyzed using the Kruskal–Wallis test
for non-parametric data for three-way comparisons, while all
two-way comparisons of continuous variables were analyzed
using the Mann–Whitney non-parametric test. The Mann–
Whitney test was also used as post-hoc testing to confirm
significance of findings for the densitometry data from the
SDS–PAGE gels.

RESULTS
Clinical examination results: The normal group with GP
lenses (normals) was 65% female, while the keratoconus
group with gas permeable (KCGP) lenses was 16.7% female,
and the KC group without GP lenses (KC) had no females.
The average age of the normals was 48.3±12.0 years, while it
35.5±13.4 years for the KCGP group, and 37.3±11.5 years for
the KC group (p=0.005). The average number of years with a
diagnosis of the keratoconus was 8.2±7.5 and 6.7±11.5 years
for the KCGP and KC groups, respectively. A family history
of keratoconus occurred in 16.7% and 33.3% of the KCGP
and KC groups, respectively. The average number of years of
wearing time was 26.0±9.8 in the normals and 7.2±7.9 in the
KCGP group (p<0.0001). The average number of daily hours
of contact lens wearing time in those two groups was 15.2±5.3
(normals) and 12.7±3.3 (KC subjects). With respect to
flourescein patterns of contact lenses, nearly 40% of KCGP
subjects displayed central touch of some nature, and no
normals had central touch. A Fleischer’s ring was present in
at least 50% in the two keratoconus groups. The KCGP group
had 100% of subjects with striae present, while the KC group
had 50% of subjects with striae present. Corneal staining was
present in 45% of normal subjects and in over 61% of KCGP
group, while none was seen in the KC group. Lastly, the
average apical radius found with topography was 43.9±2.7 D
in the normals, 52.9±7.3 D in the KCGP group, and 48.6±6.7
D in the KC group (p<0.0001).
Bradford protein assay results: The tear volume collected at
the study visit for normals was 3.13±1.65 µl, 4.30±1.04 µl for
the KCGP group, and 4.42±0.69 µl for the KC group (χ2=8.20,
p=0.02). The total concentration of protein found with the
Bradford assay was 7.45±8.28 µg/total volume in the normals,
8.70±4.47 ųg/total volume in the KCGP group, and
9.93±2.80 µg/total volume in the KC group (χ2=6.60, p=0.04).
Cytokine antibody array results: Table 1 displays findings
from the cytokine array. As show, matrix metalloproteinase 1
(MMP-1) was not observed in the normal group, but had an
average expression level of 34.4±84.4 in the KCGP group and
3,483.4±3,881.0 in the KC group (p=0.02). Although
statistically significant results were found for only one of the
40 cytokines tested (at p<0.05), some trends are worth noting.
Interleukin-11 (IL-11) had an average expression level of
2,538.9±1,207.1 in the normal group, 1,437.7±840.0 for the
KCGP group and 404.1±571.4 for the KC group (p=0.07).
Tissue inhibitor of metalloproteinase 1 (TIMP-1) had an
average expression level of 7,153.1±2,227.9 in the normal
group, 15,579.0±8,213.9 in the KCGP group and
11,898.4±287.5 in the KC group (p=0.06). Tissue inhibitor of
metalloproteinase 2 (TIMP-2) also had an average expression
level of 22,041.1±5,614.6 in the normal group,
39,824.9±13,027.4 in the KCGP group, and 28,488.2±7,128.8
in the KC group (p=0.10). Lastly, tumor necrosis factor-
related apoptosis-inducing ligand receptor 1 (TRAIL R1) had
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an average expression level of 899.2±992.8 in the normal
group, 148.6±301.3 in the KCGP group, and 3,671.7±4,576.3
in the KC group (p=0.09).
SDS–PAGE gel results: No bands of interest or difference
were found in the 6% gel (Figure 1, Table 2). As summarized
in Figure 2 and Table 3, band 4 of the 10% gel showed
significant results with post hoc testing; density averages of
4,267,008±926,704 were seen in the normal group,
2,712,487±1,214,430 was seen in the KC group with lenses,
and 3,143,803±1,068,539 in the KC group without lenses
(Kruskal–Wallis [KW] p=0.06, Mann–Whitney [MW]
p=0.03). Because bands 7, 9, and 10 in the 6% gel had
unreliable data, no results are shown for these bands. The 10%
gel revealed statistically significant densitometries in three
different bands. The reading in band 6 for the normals was
2,432,324±520,023, 3,195,882±631,948 in the KC group with

lenses and 3,731,696±2,191,853 in the KC group without
lenses. Results in band 8 in the normals showed an average of
2,378,994±476,567 in the normals, 4,338,343±942,065 in the
KC group with lenses, and 4616,313±2,598,085 in the KC
group without lenses (KW p=0.017, MW p=0.010). Band 10
density averages were 2,981,027±669,225 in normals,
4,172,691±672,334 in the KC group with lenses, and
3,895,599±2,279,192 in the KC group without lenses (KW
p=0.074, MW p=0.037). Bands 8 and 10 in the 10% gel were
further analyzed with mass spectrometry given the level of
significance in difference in band intensities across the three
groups. In the 18% gels (Figure 3 and Table 4), band 2 had
significant readings after post-hoc testing. The normals had
an average reading of 5,092,928±1,766,856, while the KC
group with lenses read 2,465,169±1,653,506, and the KC

TABLE 1. CYTOKINE ARRAY DENSITOMETRY FINDINGS.

Cytokine Normal group KCGP group KC group χ2 test statistic p-value
EGF 17,306.6±14,098.7 26,900.0±9,397.3 26,926.9±2,395.8 1.68 0.43
EGF-R 586.3±782.2 337.5±666.2 1,957.2±1,825.7 3.11 0.21
FGF-4 0.0±0.0 0.0±0.0 0.0±0.0 N/A N/A
FGF-6 724.3±1,069.0 1,128.5±1,881.5 688.4±866.8 0.63 0.73
FGF-9 4,074.6±2,401.4 3,879.5±1,405.4 1,542.9±593.9 3.51 0.17
GRO 19,819.8±8,130.2 27,525.7±13,393.4 22,983.2±13,473.3 1.07 0.59
HB-EGF 18.3±44.9 316.3±774.8 1,301.2±1,840.2 1.62 0.44
HGF 1,788.3±1,068.6 1,298.2±744.3 486.4±382.8 2.82 0.24
IL-1 alpha 2,454.5±2,103.1 2,169.2±1,880.8 519.4±734.6 1.23 0.54
IL-1 beta 529.1±545.7 111.6±273.5 382.9±541.6 2.79 0.25
IL-2 3,216.0±2,497.4 1,921.6±1,552.0 4,020.4±5,673.7 1.21 0.55
IL-2 alpha 2,854.8±2,658.6 1,415.3±1,474.0 404.9±572.7 3.38 0.18
IL-2 R beta 2,202.3±1,183.9 1,417.7±873.2 1,039.7±1,023.4 2.21 0.33
IL-2 R gamma 2,090.0±758.3 1,145.7±646.0 1,203.7±1,312.7 4.42 0.11
IL-6 2,683.5±1,527.3 1,228.6±1,337.5 2,508.4±2,004.2 3.28 0.19
IL-6 s R 3,115.7±1,283.0 2,701.8±1,440.6 1,315.2±1,059.2 2.44 0.30
IL-8 3,778.1±1,459.4 8,428.3±14,404.7 1,313.7±1,066.9 3.09 0.21
IL-9 903.9±623.2 2,608.5±4,732.6 774.2±739.0 0.53 0.77
IL-11 2,538.9±1201.7 1,437.7±840.0 404.1±571.4 5.43 0.07
MMP-1 0.0±0.0 34.4±84.4 3,483.4±3,881.0 Z=-2.3* 0.02
MMP-2 1,240.9±1,304.3 778.2±1,309.1 6,325.9±8,019.2 1.99 0.37
MMP-3 1,721.1±946.2 820.3±553.2 1,353.7±1,581.7 2.55 0.28
MMP-9 5,614.4±6504.9 7,513.4±9,602.5 4,415.7±2,622.2 1.37 0.50
MMP-10 629.0±665.1 819.0±1,318.2 2,382.2±2,904.4 1.71 0.43
MMP-13 2,634.6±2,694.4 2,425.1±4,621.1 2,378.4±1,146.8 1.76 0.42
TGF alpha 1,746.7±1,232.0 1,008.2±1,168.0 1,263.9±1,129.2 1.58 0.45
TGF beta 3,164.3±1,402.2 2,118.2±1,275.3 1,506.9±1,645.3 3.35 0.19
TGF beta 2 2,056.1±1,220.5 1,493.1±1,200.3 3,503.4±4,954.6 0.75 0.69
TGF beta 3 1,982.6±1,230.8 1,654.2±1,167.4 2,437.9±2,077.4 0.61 0.74
TIMP-1 7,153.1±2,227.9 15,579.0±8,213.9 11,898.4±287.5 5.64 0.06
TIMP-2 22,041.1±5,614.6 39,824.9±13,027.4 28,488.2±7,128.8 4.61 0.10
TIMP-4 1,470.8±1,043.0 539.2±749.9 1,643.9±1,618.1 2.58 0.28
TNF alpha 3,493.7±3,123.4 1,737.8±1,766.9 1,795.4±531.7 1.09 0.58
TNF beta 4,650.1±3,291.8 2,263.2±1,418.8 1,140.7±1,276.6 2.42 0.30
TNFRSF6/Fas 386.7±401.4 97.6±109.7 1,139.3±1,611.2 1.42 0.49
TRAIL R1 899.2±992.8 148.6±301.3 3,671.7±4,576.3 4.82 0.09
uPAR 3,057.3±1,648.1 2,219.0±1,062.6 1,184.4±906.8 3.07 0.22
VEGF 1,957.7±1,129.1 1,054.3±1,157.0 1,063.4±1,503.9 1.77 0.41
VEGF-D 1,257.4±2,014.7 176.2±302.2 1,442.2±1,782.5 3.51 0.17
VEGF R2 3,062.1±1,109.8 2,160.0±1,366.4 2,981.9 ±2,889.9 1.11 0.58
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group without lenses read 1,653,506±139,621 (KW p=0.074,
MW p=0.037).

Mass spectrometry results: The proteins were identified using
nano-liquid chromatography-tandem mass spectrometry
(nano-LC-MS/MS) from two regions of the 10% gel of the

SDS–PAGE gel. Proteins found to be more associated with
the normal group were immunoglubulin (Ig) alpha-1, Ig
lambda, and Ig kappa. Proteins identified in both groups of
keratoconus subjects from pools were keratin types I and II,
neutrophil-defensin 1 precursor, and mammaglobulin-B

Figure 1. 6% 1D-SDS–PAGE results.

TABLE 2. RESULTS OF 6% SDS–PAGE GEL.

Band* Normal group KCGP group KC group χ2 test
statistic

K-W** p-
value

M-W*** p-
value

1 3,575,887±1,424,689 1,806,129±217779 2,591,190±2,831,972 3.35 0.19 0.06
2 2,077,964±286,289 2,181,524±234,306 2,913,398±1,655,816 0.42 0.81 0.52
3 5,872,456±1,330,132 4,859,815±572,571 6,273,139±1,202,384 4.15 0.13 0.11
4 4,267,008±926,704 2,712,487±1,214,430 3,143,803±1,068,539 5.49 0.06 0.04
5 2,649,799±769,856 2,553,806±360,750 3,312,287±1,033,510 1.20 0.55 1.00
6 1,753,659±502,052 1,919,784±520,070 2,462,628±496,940 1.87 0.39 0.63
8 3,032,929±346,532 3,227,170±169,248 3,986,479±736,975 5.73 0.06 0.26

        Bands 7, 9, and 10 had unreliable data. **Kruskal–Wallis non-parametric three-way analysis testing performed. ***Mann–
        Whitney non-parametric two-way analysis performed on normals w/ GPs and KC w/ GPs (pools 1–12).

Figure 2. 10% 1D-SDS–PAGE results.
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precursor. Numerous proteins common to all groups of
subjects included lactotransferrin, lysozyme C presursor,
lacritin, lipocelin, prolactin-inducible protein, and proline-
rich 4.

DISCUSSION
Although keratoconus is classically defined as a
noninflammatory condition, there appears to be growing
evidence suggesting that inflammation is associated with the
condition. For example, elevated serum levels of IgE, IgG,
and IgM have been reported in keratoconus [14,15]. More
recently, Lema and Durán [4] targeted specific cytokines, cell
adhesion molecules, and proteases in patients with

keratoconus, and found levels of IL-6, TNF-α, and MMP-9
higher in keratoconus subjects as compared to normals. Li and
Pflugfelder [16] reported that MMP-9 may be involved in
corneal inflammation. Lema made a compelling remark: “It
can be concluded…that keratoconus cannot be defined any
more as a noninflammatory disorder” [4].

Collier [17] addressed MMPs and their possible role in
keratoconus. He specifically addressed the absence of
upregulation of MMP-9 in prior studies by suggesting that
techniques could be a possible source of conflict [17-20].
Collier additionally notes that MMP-9 can be induced by IL-1,
and others have noted that keratoconus fibroblasts release
fourfold the number of these same IL-1 receptors compared

TABLE 3. RESULTS OF 10% SDS–PAGE GEL.

Band Normal group KCGP group KC group χ2 test
statistic

K-W* p-
value

M-W* p-
value

1 6,670,481±1,317,847 7,576,569±1,778,475 9,230,756±5,269,558 3.77 0.15 0.34
2 3,168,342±531,197 2,748,752±882,552 3,306,052±1,713,673 1.91 0.39 0.26
3 4979785±1,106,348 4,350,204±979,721 4,951,500±2,808,472 1.47 0.48 0.34
4 3,326,409±617,688 3,362,000±1,716,671 5,329,212±2,554,452 2.15 0.34 1.00
5 2,954,540±691,520 3,462,319±813,563 5,226,575±3,120,471 5.73 0.06 0.26
6 2,432,324±520,023 3,195,882±631,948 3,731,696±2,191,853 6.55 0.04 0.06
7 6,879,351±1,396,260 6,939,410±800,908 7,019,099±4,396,925 0.34 0.84 0.87
8 2,378,994±476,567 4,338,343±942,065 4,616,313±2,598,085 8.15 0.02 0.01
9 8,374,828±1,871,081 9,312,139±303,743 9,651,734±6,610,028 1.20 0.55 0.87

10 2,981,027±669,225 4,172,691±672,334 3,895,599±2,279,192 6.71 0.04 0.03

        **Kruskal–Wallis non-parametric three-way analysis testing performed. ***Mann–Whitney non-parametric two-way analysis
        performed on normals w/ GPs and KC w/ GPs (pools 1–12).

Figure 3. 18% 1D-SDS–PAGE results.

TABLE 4. RESULTS OF 18% SDS–PAGE GEL.

Band Normal group KCGP group KC group χ2 test
statistic

K-W* p-
value

M-W* p-
value

1 4,735,056±3,714,884 2,936,292±2,062,411 2,062,411±731,122 2.46 0.29 0.26
2 5,092,928±1,766,856 2,465,169±1,653,506 1,653,506±139,621 5.22 0.07 0.04
3 5,175,055±1,448,604 7,423,089±1,473,792 1,473,792±478,052 5.87 0.05 0.06
4 6,929,268±2,110,943 8,659,253±1,024,358 1,024,358 ±1,200,761 5.41 0.07 0.20
5 3,738,795±2,209,871 5,101,108±1,482,155 1,482,155±261,301 5.73 0.06 0.26

        **Kruskal–Wallis non-parametric three-way analysis testing performed. ***Mann–Whitney non-parametric two-way analysis
        performed on normals w/ GPs and KC w/ GPs (pools 1–12).
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to normal corneas [17,21]. It would stand to reason that
MMP-9 could indeed be overexpressed in keratoconus.

It is important to note that the cornea is 70% collagen by
weight [17]. The ectasia and thinning found in keratoconus is
mostly due to a damaged extracellular matrix and a decrease
in types I and IV collagen [17,22]. Levels of telopeptides, or
collagen degradation products, were studied by Abalian [22]
and found to be 3.5 times higher in keratoconus patients
compared to normals; contact lens wear did not significantly
modify the amounts.

Kenney et al. [3] described a “cascade hypothesis of
keratoconus” in which enzymes could possibly lead to
oxidative damage by altering corneal proteins and ultimately
lead to apoptosis, altered signaling pathways, increased
enzyme activities and fibrosis. These cytotoxic agents in
keratoconus corneas may lead to corneal thinning and loss of
vision [3,23]. This hypothesis is supported by evidence
showing that the inhibitors of destructive enzymes are
decreased in keratoconus corneas; they are alpha one (α1
proteinase inhibitor, alpha two (α2) macroglobulin, and tissue
inhibitor metalloproteinase one (TIMP-1); the latter of which
can inhibit cell apoptosis [3,20,24,25]. Kenney et al. [3,23]
surmised that reactive oxygen species may lead to large
amounts of cytotoxic by products in keratoconus corneas
eventually leading to corneal thinning and loss of vision.

Corneal scarring is significant in keratoconus because it
leads to a reduction in transparency and visual impairment
[26]. In a normal cornea, the epithelium is constantly renewed
and the stroma is in a state of deturgescence; however, layers
such as the endothelium or basement membrane are
compromised, a repair response is initiated by various growth
factors and cytokines which contribute to fibrotic tissue [26,
27]. Transforming growth factor beta (TGFβ) is important in
ocular scar development in activating macrophages, corneal
fibroblasts, and other fibrosis-related growth factors [26].
This repair response causes the cornea to lose transparency
due to the disorganization of the fibrotic repair tissue [27].

Cytokine antibody array: The results of the cytokine
antibody arrays revealed a statistically significant increase in
matrix metalloproteinase-one (MMP-1) in the tears of both
KC groups. No MMP-1 was found in the normal group.
MMP-1 is a member of a family of enzymes which break
down components of the extracellular matrix, and its specific
substrates are corneal collagens type I and III [16.28]. MMP-1
should have minimal to no expression in healthy tissue and is
involved in vascularization, wound healing, and inflammatory
processes [16,28]. MMP-1 was found to be increased in the
corneas of keratoconus subjects by Seppälä et al. [29]. Our
study may be one of the first to show the presence of MMP-1
in the tears of keratoconus subjects.

Another trend found was an increase in tissue inhibitor of
metalloproteinase 1 (TIMP-1) in the keratoconus subjects
compared to normals. TIMP-1 exhibits anti-apoptotic

properties and inhibits several MMPs [30,31]. Kenney and
coworkers [31] suggested that lower levels of TIMP-1 may
lead to the corneal degradation found in keratoconus corneas,
and found that 32 keratoconus corneas exhibited a 1.8 fold
decrease in TIMP-1 as detected by western-blot analysis.
Matthews and coworkers [30] found that TIMP-1 protected
against corneal apoptosis in cultured corneal stromal cells
injected with adenoviral vectors and quantified by ELISA.
Another study to note by Smith and coworkers [32] showed a
lack of increase of TIMP-1 in clear keratoconus corneas and
yet an significant increase of TIMP-1 in scarred keratoconus
corneas, and suggested that TIMP-1 may play a role in
“curtailing keratoconus.” The results of our study seem to
indicate that further testing is needed to verify the presence
and function of TIMP-1 in tears in keratoconus patients.

A final trend to be noted in our study from the arrays was
with tumor necrosis-related apoptosis-inducing ligand-R1
(TRAIL-R1).Tumor cell apoptosis is initiated when this
receptor binds the TRAIL ligand, however, it spares normal
cells [33-36](36). In our study, TRAIL-R1 was reduced in the
KC group with GP lenses and increased in the KC group
without lenses as compared to normals. This suggests the
possibility that in keratoconus these receptors are
inappropriately expressed which results in cell death. Because
we measured TRAIL-R1 in tears, several ocular surface
structures could be considered the source of the ligand. There
appears to be no published literature to date linking TRAIL-
R1 to keratoconus, or any related functions in the cornea or
tears. Further testing could explore the potential upregulation
of TRAIL-R1 in the early phases of keratoconus. Although
the trends noted are intriguing, conclusions are tentative given
the sample size and gender distribution.

SDS–PAGE gels and mass spectrometry: The bands of
interest in the 10% SDS–PAGE gels produced curious results
when identified by nano-LC-MS/MS in that cytoskeletal
keratins were found to be present in the tear samples in both
groups of keratoconus subjects. Keratins are normally found
in the outermost layer of the epidermis and not necessarily in
tears (unless contaminated from the eyelids due to eye
rubbing), while the epithelium of the cornea is non-
keratinized. Nakamura and coworkers reported increased
cytokeratins in ocular surface-diseased corneas and found
keratins in diseased conjunctival cells of Sjogrens and ocular
cicatrical pemphigoid subjects by immunohistochemical
studies [37,38]. In related research, Dogru and coworkers
[39] found a relationship between severity of keratoconus and
the degree of conjunctival squamous metaplasia. These
reports plus our findings suggest several ocular surface
disorders are associated with pathologic keratinization. A
protein that was only found by mass spectrometry only in the
keratoconus subjects was a precursor to mammaglobin B.
Mammaglobin B is a gene expressed in tumors of the
esophagus, stomach, colon, pancreas, common bile duct,
cholangioma and gall bladder, and is increased in breast

Molecular Vision 2010; 16:1949-1957 <http://www.molvis.org/molvis/v16/a212> © 2010 Molecular Vision

1955

http://www.molvis.org/molvis/v16/a212


cancer [40,41]. Molloy and coworkers [41] identified a
protein in tears called lacryglobin, whose sequence of amino
acids is identical to 68 of those seen in mammaglobin.
Lacryglobin has been seen in the tears of some cancer subjects
[42]. Mammaglobin B is also known as secretoglobin 2A1
which has expression in many ocular glands. It has been
suggested that it binds hydrophobic ligands and may play a
role in tear film lipid layer formation, as well as androgen-
deficient disorders such as severe dry eye in Sjogrens
Syndrome [43].

Initial analyses in this study shows that tear proteomic
techniques can assist in etiologic studies of keratoconus. The
differential expression of tear film proteins such as MMP-1,
keratins, and mammaglobin B can be found in keratoconus
subjects. These findings suggest that further testing could help
determine if these molecules have a role in the etiology of
keratoconus.
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