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Tearing mode analysis in tokamaks, revisited
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A new A’ shooting code has been developed to investigate tokamak plasma tearing mode stability
in a cylinder and large aspect ratigz<0.25) toroidal geometries, neglecting toroidal mode
coupling. A different computational algorithm is usé¢shooting out from the singular surface
instead of into it to resolve the strong singularities at the mode rational surface, particularly in the
presence of the finite pressure term. Numerical results compare favorably withefalthH. P.
Furthet al, Phys. Fluidsl6, 1054(1973] results. The effects of finite pressure, which are shown

to decreas@\’, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov
shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even
in a low-B regime before the toroidal magnetic curvature effects come into playl9€8 American
Institute of Physicq.S1070-664X98)02812-2

I. INTRODUCTION clarify the nature of the numerical procedures that correctly

. - ) relateA’ to the current profile.
Understanding resistive magnetohydrodynariD) A shooting-type codfor determining the perturbed he-

stability is important for long pulse tokamak operations,|ic4| flux profile and henceA’ is compact, intuitively

since tearing modes form magnetic islands, and if islands °§traightforward and has fast convergence. Obtaininy’ a
incommensurate helicity overlap, they can induce plasmggye for a single helicity case takes less than a second of
disruptions: Also, the existence of a single helicity magnetic cp(j time on nominal workstation computers. This fast con-

island can deteriorate plasma gonfi”e_m_e”t due to the changg,yence is tractable for developing a feedback stabilization
in magnetic field line topolog¥?2 In resistive MHD, tearing scheme for controlling tearing modes in tokamak
mode stability is determined by a parameter delta primedischarge§

' i ; ; 4 " 1 :
(A7), which was first defined by Furét al.” a positiveA Finite pressure effects were ignored in the previous
implies instability. RecentlyA’ was measured in the Toka- analyses by Furtiet al® and WessoR? This is due to the
mak Test Fusion ReactdTFTR) supershot plasma experi- fractional power-like singularity that arises at the mode ra-

ments through an analysis of electron temperaturgjons| syrface when pressure gradient effects are present.
fluctuations’ It has been shown that when'n=2/1 modes £ rthermore, difficulties arise in separating the large and the
are presentA’>0. This can be explained by classical tearing gy solutions near the rational surfdéen this work, a
mode theory. On the other hanti; is observed to be nega- gitterent type of numerical algorithm was employédte-
tive for cases withm/n=3/2 andm/n=4/3 modes, which  4-5te4 out from the singular surface rather than intoTibe
indicates the presence of destabilizing neoclassical eﬁeCtSalgorithm converges correctly in a high(8=7%) regime

The qualitative framework of tearing mode theory seems 1q,, cyjindrical geometry(3 represents the ratio between the

be well established. plasma and magnetic pressuro check the validity of our

In toroidal tokamak plasmas, Fourier harmonics of tear'computational results, we stafgee Sec. I)l by comparing

ing modes are correlated to each other, both through thg, resuits with the Furtret al® results for zero pressure

poloidal mode coupling and nonlinear effects. These Coug,geg

plings can play an important role in destabilizing the modes  tha effects of toroidal geometry are considered in this

on magnetic surfaces of incommensurate helicity. The finalyqk The effects can be separated ity distortion of the

goal of our research is to investigate such a muItir7nodenux surfaces due to the Shafranov shift) the existence of
coupled system, for example, as pursued inFib&F3 code. an averaged magnetic well; arid) mode coupling effects

However, the quantitative determination of the tearing modey ;o to the 1R dependence of the magnetic field, which is
stability parameteA’ still remains an essential issue: a pre- neglected here. We have includér) and (2), and o,btained
cise prediction of stability becomes important, especially, ' "53¢ 5 function of3.12 The Shafranov sh,ift appears as a
when the tearing modes are marginally stalgA’[<1,  giophal effect that enters through changes in the geometry

wherer is the mode rational surface radiughe value of  eyric elements. The second effect appears as a localized
A’ is sensitive to the local current gradient, even in the

) A ] o roperty near the mode rational surface; we have included
single helicity case. For the purpose of seeking Optlm'Ze‘foroidal curvaturgthe Mercier indeX) in the analysis, but
discharge current profiles for the experiments and simult

Bl is 8have not included resistive layer effeéfsThe mode cou-
neous feedback contrdlijt is important to understand and pling effect can be neglected in the case of a rotating toka-

mak plasma, where shear flows are large and modes at dif-
aElectronic mail: nishimya@jove.colorado.edu ferent surfaces decoupte.
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This paper is organized as follows. In Sec. Il the originalwhere
definition and the physical significance &f is discussed. In B
Sec. Il the basic model of Furtat al® for the exterior re- F=k-B=kB,+(m/r)B,=— (1—m/q),
gion is presented and oux’ calculation is compared with R
their results. The logarithmic singularity at the resistive 3
layer, as well as the algorithm for solving the boundary value  H

r

. . . . . = k2r2+m?2’
problem, is discussed in detail. Finite pressure effects are
discussed in Sec. IV. The effects of toroidal geometry are (m2—1)rF2 Kk2r2
introduced in Sec. V. Finally, we summarize in Sec. VI. g= 2 me + I
II. THE DEFINITION OF A’ o[ g2y g 2KrBz=mBy) dpP

_ | KT PRogr)
The physical significance of the sign &f can be un- _ _
derstood intuitively from the one-dimensional magnetic fieldNote that the toroidal mode number is taken to rbel

line diffusion equation given by Faraday's law and thethroughout this paper. After normalization usirgr/rg (rs

ohm’s law® is the mode rational surface radiud=B,/B,, and p
=P/Py=2uoP/B2B (B=2uoP,/B2 is a figure of merit
B, 7 = n B, that represents _the ratio between the plasma and magnetic
=—VB,~——, (1)  pressure, an® is the peak pressureEq. (3) reduces to
gt o Mo Or
where n and i stand for the plasma resistivity and vacuum '+ 9,(X) ¢’ —g1(X) =0, (4)

magnetic permeability, respectively. According to Ref. 16, it
can be seen that i#°B, /dr2<0, then B, /dt<0 and the
perturbation damps in the initial phase. On the other hand, if 1
3B, /19r?>0, thendB, /9t>0 and the perturbation grows. 0:1(x) =13
The plasma column is divided into two “exterior
regions”* by a resistive layer of widtts. The mode rational
surface wherej=m/n resides in this thin layer. Eigenmode
profiles forEr: —i(m/r) ¢ are connected from one exterior

region to the other via resistive layer properties, whefie  |n Eq.(4), the prime denotes differentiation with respeckto

the flux function. Thus, there are jump discontinuities in theHere, the po|oida| magnetic field prof"e’ and safety factor
slope between the two exterior regions. If the eigenfunctioryre taken to be the peaked profile of Ref. 9:

is locally convex(concave, the mode is stabléunstable.
Furthet al? definedA’ as the difference of the slopes for the

where we have further defined

g 1 r\’
gzt (HED],

!

g2(x)= "

X
flux function ¢ inside and outside the mode rational surface  b(x)= 1+x3)" ()
X!
' ' =0o(1+X3).
(Xt &) — YL (Xs— O) q(X)=do(1+x7) (6)
A= P(Xs) ' @ The plasma boundary is located »gi=2, while the mode

e . , rational surface is varied by changing tipgvalue. The pres-
where a positiveA’ implies instability. Note that the\ sure profile was taken to be=0 for the zerog case and

value indicates the relative jump By across the inner layer, p(x)=1— (x/x,)? for the finite B case, which we discuss in
and hence corresponds to the existence of a current sheetdac. |v.

the inner layer. The numerical algorithm of the shooting method will

now be explained. In the vicinity of the rational surface and
lll. REVIEW OF CYLINDRICAL FORMULATION AND in the absence of plasma pressyée<0), Eq.(4) reduces to
COMPUTATION the form

In this section, the basic model equati@the exterior 2y«
equation and the results of Ref. 9 are reviewed. A cylindri-  —— — y=0, 7
cal coordinate system is employed in the calculation, where dz= 2
is the minor radiusg is the poloidal angle, andis in the  where .2'=x—x, and k=g;(Xs). Two inner limits of the
toroidal direction. Combining the momentum balance equaexterior asymptotic solutions fap= i, or 4, ,
tion, Faraday’s law, Ohm’s law, and plasma incompressibil-
ity in a cylindrical geometry, we obtain the Newcomb

equatiort't’ y=|1+k2 In

1 3
21+ 3 k222 In|.21— 7 K222+

d’¢ 1dHdy 1

+ //g+£ K%’Z_l’_i sz,/‘3+...
dr’ Hdr dr H ‘ 277 127"

, ®

1 dF) _
F2+Edr HW #=0, (3 + A
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are matched to the numerical solutions’at= + 5. Here, the  and . Defining Y=(Y1,Y2,Y3.Ya) = (.0 Ol 0A
subscripts “1” and “lll” denote the two exterior regions aQ/;’/aAH”)' Eg. (4) reduces to a system of simultaneous
inside and outside the mode rational surfage We solve  ordinary differential equations,

Eq. (4) by numericallyshootingaway from the singular sur-
face with an arbitrary boundary condition toward the other

ends ax=0 andx=X;,, and iterate the constams andA; dy y} _ yi

until the boundary conditions there are satisfi€khis is in ar_ yg | —92¥)y2+01(X)y1 | ©
the opposite way from Furtht al.® where the shooting was dx Y3 Ya

done from the boundaries inward and numerical solutions Ya —02(X)Y2+g1(X)y1

nearx, were fit to the asymptotic solutignWe solve Eq(4)
in the two regions &x=<Xg and X;:<x<Xx,,, obtaining ¢, with boundary conditions at=xs*+ §:

(14 k3 In| 8]+ 3x28% In| 8] — 3x28%) + A ( 8+ 3k 8%+ £5K2 %)

Y1

Yo k(In 5+ 1)+ «%(8 In|8|— &)+ Ay (L+ k 5+ 5.25%) (10
Ya | S5+ 3k 8%+ H5K26° '

Ya 1+ K+ 1287

A fourth-order Runge—Kutta—Gill meth&lis used for the the zero pressure case. As in the0 case, the asymptotic
numerical integration. One changes the unknown constarsiolutions Eqgs.(12) and (13) at the resonant surface are
A, until the valuesA'"1—Al=—(y)/(ay/dA) at the matched to the numerical solution.

boundaries convergé represents the iteration sjeprhe Defining Y=(y1.Y2,Y3:Ya,Y5,Ys) = (¢, ", bl IA,
value of A’ is calculated by AY'19A, dylIB,dy'19B),

A'= Y (Xt jj)(x l)M 79 =An—A. (11 y? Y2

° Y2 —Y292(X) +91(X)y1

For a comparison with Furtretal.® we take the dy v} Va
poloidal/toroidal mode numbers to ba/n=2/1, while a —= = , (14)
large aspect ratio is represented kgy=0.05. Figure (a) dx \ —Y492(X) +91(X)y3
shows the eigenmode profile, while Fighlshows the value ye Ve

of A’ as a function of mode rational surfaces Figure 1b)
implies that the tearing modes are relatively stable when the
mode rational surfaces are closer to the plasma boundarye shoot with a boundary condition &t x¢=* 5,
The results match exactly with Fig. 1 of Ref. @ote that

Yo ~Y¥692(X) +91(X)Ys

the numerical algorithm we employed is quite differgite Y1 Al t=Blg "
have also reproduced the numerical results by WeSgsae Yo A(h+1)|8/"=Bh|s "2
the Appendix.
pp X Vs BE
N (h+1)|3]" ' A9
IV. EIGENMODE SOLUTIONS IN THE PRESENCE OF Ya
FINITE PRESSURE Vs +|oh
An algorithm for cases with the pressure term is dis- Ye +h|s| ™"t
cussed in this §ectlon. I_n the presence of flnltg pressure eE’)ne changes the unknown constaftand B until
fects, the exterior equation, E¢}), has strong singularities
with two independent solutions called the lar@®minany Al+D A ay,19A  dy,loB\ 1
and the_smal(subdor_nmar)t _exhl.bmng different fractional g(+1)_g(h 0y ldA  3y,ldB
power-like asymptotic behaviors:
y=A|2{" 18|21, (12) x(yl_yl(x:o o X:Xb)), (16)
in region I, and Y2~ Y2(x=0 0r X=x)
y=Ay |21 148y [ 217N, (13) E())/nverges ax=0 andx=X,. The value ofA’ is calculated
in region ll. Here h=-3+3/1-4D,, Ds=p8
(—20%q"?BIx)(dp/dx)|y=y,'* and.2'=x—x, as before. A B A 17
Note that in theh=0 limit, this reduces to the same form as B B/
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FIG. 1. (a) The eigenmode profile for am/n=2/1 mode. The position of
the mode rational surface;, indicated by dashed lines, is varied. These 1.0 f
results correspond to Fig. 2 of Ref. @) Values of A’ as a function ok, 05 |
which corresponds to the=2, x,=2 case of Fig. 1 of Ref. 9.

“ 00
-05
Since we have two unknowrsandB atx=Xx;* §, we need -1.0 |
additional boundary conditions at=0 andx=x for . 15|

However, the value oA’ is independent of these additional 0
boundary conditions, since only the raf@B in each region . ‘ ‘ : . ;

I and Il is required to obtaim’'. Note that by settind3 0.00 005 010 0.15 020 0.25
=1 andh=0, the system of Eq$14) and(15) reduces to the B

form .Of Egs.(9) and (10). . . FIG. 2. (a) The eigenmode profile for am/n=2/1 mode.(b) Expansion of
Figure 2a shows the resultant eigenfunction of an the eigenfunction behavior in the vicinity of . Both analytical solutions

m/n=2/1 mode withB=7% (h=—0.076), which has sin- (solid line) and the numerical solutior{gashed lingare shown(c) HereA’

gular behavior in the vicinity of the mode rational surface.vs gin the highg(8=7%) regime. The dashed line signifies regions where

Here,xs=1 andx,=2 were taken. Figure(B) expands the layer widths wider than physical ones-e'") are imposed.

singular behavior in the vicinity okg; the analytical solu-

tions(solid line) given by Egs(12) and(13) are successfully

matched to the numerical solutiofdashed ling Figure Zc)  while D;<0 (h=0) for a q>1 surface in a toroidal

shows the value oA’ vs B with the layer width set to  geometryt*

=10"'. The effect of the finite pressure term decreases the In a 83— 0 limit, the A’ value reduces to the zero pres-

A’ value, and thus stabilizes the tearing mode, even in aure case\’=1.54[see Fig. 1b)]. In this 8—0 limit (but

cylindrical tokamak. Note thab,=0(h=<0) in a cylinder, with the pressure termthe second terms in Eq&l2) and
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TABLE I. The relation betweerB, h, and 8. Here,D4= 3 with a peaked (a)
profile.
1.0
B (%) h Layer width &
1 —-0.010 3.x1074
5 —0.053 6.% 10°°
7 -0.076 1.% 10°° 05+t
10 -0.11 1.1x 1074
20 -0.27 2.1X 1072
N 00
(13) become constants and reduce to the form of (Bg.In

Fig. 2(c), the A’ value in a relatively high8 regime B
=7%) is calculated correctlyfSee Table | for the estimated

scale lengths as function of.) Note that the value oA’ 0571
approaches-2 asD, approacheg, where the large and the
small solutions become comparable. This feature can be pre-
dicted analytically from Eq(17); A, /B, —A,/Bj=—1-1 -1.0 . :
=—2. These results guarantee that the algorithm is math- -1.0 -0.5 0.0 0.5 1.0
ematically appropriate. X

When 6<10 8, the numerical method becomes trouble- (b)
some. The limit of the numerical method depends on the
ratio of the coefficientsiay; , and dgy; , in Eq. (16). For 12 ‘ " T
extremely small layer width, numerical truncations in cal- . — Toroidal
culating the right side of Eq.16) obscure the mathematical 10| /7% —— Cylindrical
separation between the large and the small solutions. 08 | // “

In a B—0 limit, the characteristic layer scale width for /
pressure effec~e!™ becomes literally infinitesimalfor ~06 | / ‘
example,5~10 % for B=1% and §~10 ° for B=7%; / \
see Table)l However, needless to say, at the same time, the 04t / A\
pressure effect becomes negligible. Furthermore, in the range /) : \\
0%=<pB=<7%, one can conjecture that' takes on values 02 Y/ | 2
that smoothly match withh’=1.54 at3=0, and the curve of 0.0 . , .
Fig. 2(c) in the 8=7% regime. Physically, a layer must have 0.0 05 1.0 15 2.0
a finite width: a layer widths smaller than the ion Larmor X

radius(on the order of 10°, even in a plasma of a tempera-

ture as low as 100 eMs only a metaphysical consideration. FIG. 3. (@) The equilibrium flux surfaces and contour lines in a toroidal

In short, we see that the shooting method presented hef§Omel with3=10%, which show geometrical distortiorts) The eigen-
. . mode profile ofy;,. The solid line is for a toroidal geometry witB

extracts the finite pressure effects dh, within a reasonable =10% and the dashed line is for a cylindrical linfibe pressure gradient

parametric regime for tokamak plasmas. Finite pressure efirive term in the eigenmode equation is absent for both Jines

fects in toroidal geometry are discussed in the next section.

V. EIGENMODE IN A TOROIDAL GEOMETRY stands for a flux surface average. The magnetic AVédl
In a toroidal equilibrium, straight magnetic field lifds a@pPproximated by {—x).(d<R2)/dx); as stated in Ref. 12, a
are represented by more careful derivation of the pressure term yields the
“E +F+H" terms of Glasser, Greene, and JohnsbiNote
B=1(p)V{+VIXViedp)=Vihedp)XV[a(p)0—L].  thatin a cylindrical plasma with a monotonically decreasing
(18)  current,d(R?)/dx=0, while d{R?)/dx<0 can occur in a
where{ is the toroidal angle ang is the equilibrium mag- torus, since a good curvature regi@magnetic wejl exists
netic surface label. With a relationje,/dp=1p/q, the flux-  in a tokamak forg>1.%

surface-averaged exterior equation in toroidal geonmetey From a mathematical viewpoint, this second-order ordi-
duces to(small aspect ratie<1 andl =const, assumed for nary differential equation gives a system of first-order equa-
simplicity) tions that are similar to the cylindrical ones, except for the
14 o mq  dj radially dependent fgnctiod@ﬂp>, (g"_”) (metric elements
——X(g°) —— — (9" ——— — and(R?). The toroidicity effects are included in these latter
X X IxX X x(m-nq) dx functions. In this study, radial profiles of the flux-surface-
n2q? dp d(R?) averaged metric elements are obtained from an equilibrium

- B = > — =0, (19  codeRrsTEQ?? Figure 3a) exhibits the grids of the straight
x“(m—nq)© dx dx . . 0 . o
field line, PEST® coordinate system—both the equilibrium
where 6 is the poloidal anglej(x) stands for the toroidal flux contours and thé contours aj3=10%. In Fig. 3a), the
current, andR=R(p, #) stands for the major radius. Hekg,  absciss&X=(R—1)/e and the ordinat& are horizontal and
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vertical dimensionless minor radius coordinates, respec:
tively. In Fig. 3a), the area of each grids represents the

volume elementVpxV6.-V/=R ?(p,d). Note that the

equation reduces to the cylindrical version of the Newcomb

equation® (see the Appendjxin the (g*?)=(g?%)=1 limit.
The dashed line in Fig.(B) is the eigenmode profile in a
toroidal geometry with3=10%, while the solid line is the
profile in the cylindrical limit.[In Fig. 3(b), 8 has been taken
to be zero in Eqgs(3) and (19) to bring out the Shafranov
shift, geometry effect$.The safety factor was taken to be
q(x)=1+x2, so that then/n=2/1 mode rational surface is
located atx;= 1.0 (the plasma boundary located»a=2.0).
The dashed linéS—Shafranov shijtin Fig. 4(@ shows the
value ofA’ as function ofg [see Table Il for the correspond-
ing Shafranov shifi\g; a magnetic axis shift measured in the
(X,2 coordinate systeinThe distortion of the flux surfaces
(Shafranov shift effecisrom the first and the second term of
Eq. (19) significantly contribute to the decreasefof with 8.
The curvature effeét is now investigated quantitatively
by including theB+# 0 curvature term in Eq(19). As a re-
minder, in toroidal geometry th®, value of Eq.(13) is

O
EE

q/ZX
The last relation is given in the limit of a large aspect ratio.
[The first form of Eq.(20) is employed for computatioh.
Thus, theD4 value in a toroidal system can be negative
can be positivewhenq is above unity. Ifh is positive, the
asymptotic solution given by Egél2) and(13) gives rise to
a 1/2"-like singularity(| | — % at.2"—0). In contrast to the

1 d(R?
(g7?) dx

dp
dx

_q2
q'2x?

X=Xg

(20

X:XS

h<0 case discussed in Sec. IV, the numerical truncation in

Eqg. (16) will be severe in higherd cases rather than for
lower B cases because of the change in the sigb gfind
thus the poweh. Figure 4b) shows an eigenfunction of an
m/n=2/1 mode in a torus witlB= 7%, which has a positive
spike in the vicinity of the mode rational surface. This is
expected analytically from Eq$12) and (13). Figure 4c)
shows the detail of the singular behavior in the vicinity of
Xs; the analytical solutiongsolid line), Egs.(12) and (13),
are successfully matched to the numerical soluti@ashed
line).

The dot—dashed line in Fig(d shows the value oA’
as a function of3 in the presence of the pressure tei@G+—
curvature effegt but without toroidal shape effectte met-
ric elements are set to their cylindrical limit§he solid line
in Fig. 4(a) shows the value oA’ in the presence of both of
the effects. As one can see from the difference of the thre
lines in Fig. 4a), toroidal geometry effect6S) stabilize the
tearing mode significantly, even in a lg8wregime before the
curvature effecfC) comes into play, for the typical tokamak
g profile and a pressure profile we have employsee Fig.
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X

FIG. 4. (a) We seeA’ as function of 3 [S (Shafranoy indicates in the
absence of the pressure gradient drive term, but with toroidal shape, C
(curvature in the presence of the pressure gradient drive term, but without
toroidal geometrical effects(¢”*)=(g?%)=1), and S+C both the toroidal
effects and pressure-drive effects presefi) The eigenmode profile of an
%/n=2/1 mode with8=7%. (c) An expanded eigenfunction in the vicinity

of xs. Analytical solutions(solid line) and the numerical solutioriglashed

line) are both shown.

influential. The line(C) in Fig. 4(a) supports this latter fact

5). More generally, the curvature effect is expected to benumerically. Note that the curvature effect is rather a local-

modest, unless one enters an extremely higregime, or
extremely low shear region where the19 in D becomes

ized layer property, while the Shafranov shift is a global
effect obtained via the metric elements.

Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



4298 Phys. Plasmas, Vol. 5, No. 12, December 1998 Nishimura, Callen, and Hegna

TABLE II. The relation betweer8 and Shafranov shifig in the equilib- comes into play. Thus we believe that, for practical purposes

fium with g(x)=1+x" in estimatingA’ in the linear stage, the pressure term can be
B (%) A, neglected unless one enters an extre_\mely itiglegime, or

1 014 an extremely low shear region. Inclusion of the pressure gra-
> 0.21 dien_t _term merely complicates the prediction of tearing mode
3 0.27 stability.
5 0.36 The analysis of mode coupling of incommensurate helic-
2 248 ity perturbations is beyond th f thi d wil
20 0.60 ity perturbations is beyond the scope of this paper and wi

be a subject for future work.
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The effect of finite pressure on tearing modes has beeROMPUTATION

discussed. For the first time, the! value as a function dD In this Appendix, the results of Ref. 10 will be reviewed.

has been reported. It has been shown that, with the neyy, ihe |arge aspect ratio limit, the Newcomb equation, Eq.
algorithm we employedshooting away from the mode ratio- (4), reduces to

nal surface rather than into itshooting methods resolve the
singularitieS due to the finite pressure effect. The method
guarantees separation of the large and the small solutions in (a)
the vicinity of a resonant surface. It has been demonstrated
that the method is convergent for a relatively higlmegime 10t
(B=7%) for cylinders and lows regime (B=<20%) for to-
roidal geometries. It has been shown that the finite pressure
effects stabilize the constagitiearing mode in a higl8 (8
=7%) cylindrical geometry.

VI. SUMMARY AND DISCUSSION

In toroidal geometries, it is suggested that the distortion § 0.5
of the flux surfaces by large Shafranov shifismacroscopic
effect stabilizes the tearing mode. The magnetic well I
effect® was investigated quantitatively, as well. By compar- |
ing the change iM\’ as a function ofB, it has been shown |
that the distortion of the flux surfac@r Shafranov shijt 0.0 . 1 .
stabilizes the tearing mode significantly, even in a Igw 00 02 04 06 08 10
regime (near theg limit), before the magnetic well effect , X
(b)
1.0 ‘ ‘ , 15.0
0.8 |
10.0
06 | 5
o <
04} 50 |
02
0.0 < ' ' 0.0 | | ‘ ‘
0.0 05 10 15 50 00 02 04 06 08 1.0
X Xs

FIG. 5. The Grad-Shafranov equilibrium pressure profile employed forFIG. 6. (a) The eigenmode profile for am/n=2/1 mode.(b) Here A’ vs
Figs. 4a), (b), and(c). Xs. These results correspond to Fig. 6.7.1 of Ref. 10.
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1
Y+ v —ax)y=0, (A1)
where
m? mq dj n’g®> dp
g()()_7+x(m—nq) ax T2P x(m—nq)Z dx" (A2)

Wessor® used current profiles in the form gf(x)=(1
—x?), and correspondinglyb(x)=x/2—x34 and q(x)
=4¢l(2—x%). Heree=(2—x2) (qmnl/4) stands for the in-

verse aspect ratio. The numerical algorithm applied for Eq.o

(Al) is the same as in Sec. lll. The value®f is calculated
by A’=A,—A,, as before. Figure(8) shows the eigenmode
profile for anm/n=2/1 mode with a mode rational surface
located atx;=0.5. Figure @b) shows the value oA’ as a
function of mode rational surfaces,. The results match
with Fig. 6.7.1 of Ref. 10.
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