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Tearing mode analysis in tokamaks, revisited
Y. Nishimura,a) J. D. Callen, and C. C. Hegna
Department of Engineering Physics, University of Wisconsin—Madison, Wisconsin 53706-1687

~Received 26 May 1998; accepted 8 September 1998!

A new D8 shooting code has been developed to investigate tokamak plasma tearing mode stability
in a cylinder and large aspect ratio (e<0.25) toroidal geometries, neglecting toroidal mode
coupling. A different computational algorithm is used~shooting out from the singular surface
instead of into it! to resolve the strong singularities at the mode rational surface, particularly in the
presence of the finite pressure term. Numerical results compare favorably with Furthet al. @H. P.
Furth et al., Phys. Fluids16, 1054~1973!# results. The effects of finite pressure, which are shown
to decreaseD8, are discussed. It is shown that the distortion of the flux surfaces by the Shafranov
shift, which modifies the geometry metric elements, stabilizes the tearing mode significantly, even
in a low-b regime before the toroidal magnetic curvature effects come into play. ©1998 American
Institute of Physics.@S1070-664X~98!02812-2#
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I. INTRODUCTION

Understanding resistive magnetohydrodynamic~MHD!
stability is important for long pulse tokamak operation
since tearing modes form magnetic islands, and if island
incommensurate helicity overlap, they can induce plas
disruptions.1 Also, the existence of a single helicity magne
island can deteriorate plasma confinement due to the ch
in magnetic field line topology.2,3 In resistive MHD, tearing
mode stability is determined by a parameter delta pri
(D8), which was first defined by Furthet al.;4 a positiveD8
implies instability. Recently,D8 was measured in the Toka
mak Test Fusion Reactor~TFTR! supershot plasma exper
ments through an analysis of electron temperat
fluctuations.5 It has been shown that whenm/n52/1 modes
are present,D8.0. This can be explained by classical teari
mode theory. On the other hand,D8 is observed to be nega
tive for cases withm/n53/2 andm/n54/3 modes, which
indicates the presence of destabilizing neoclassical effe6

The qualitative framework of tearing mode theory seems
be well established.

In toroidal tokamak plasmas, Fourier harmonics of te
ing modes are correlated to each other, both through
poloidal mode coupling and nonlinear effects. These c
plings can play an important role in destabilizing the mod
on magnetic surfaces of incommensurate helicity. The fi
goal of our research is to investigate such a multimo
coupled system, for example, as pursued in thePEST-3 code.7

However, the quantitative determination of the tearing mo
stability parameterD8 still remains an essential issue: a pr
cise prediction of stability becomes important, especia
when the tearing modes are marginally stable~ur sD8u&1,
wherer s is the mode rational surface radius!. The value of
D8 is sensitive to the local current gradient, even in t
single helicity case. For the purpose of seeking optimiz
discharge current profiles for the experiments and simu
neous feedback control,8 it is important to understand an

a!Electronic mail: nishimya@jove.colorado.edu
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clarify the nature of the numerical procedures that correc
relateD8 to the current profile.

A shooting-type code9 for determining the perturbed he
lical flux profile and henceD8 is compact, intuitively
straightforward, and has fast convergence. Obtaining aD8
value for a single helicity case takes less than a secon
CPU time on nominal workstation computers. This fast co
vergence is tractable for developing a feedback stabiliza
scheme for controlling tearing modes in tokam
discharges.8

Finite pressure effects were ignored in the previo
analyses by Furthet al.9 and Wesson.10 This is due to the
fractional power-like singularity that arises at the mode
tional surface when pressure gradient effects are pres
Furthermore, difficulties arise in separating the large and
small solutions near the rational surface.11 In this work, a
different type of numerical algorithm was employed~inte-
grated out from the singular surface rather than into it!. The
algorithm converges correctly in a highb (b>7%) regime
for cylindrical geometry~b represents the ratio between th
plasma and magnetic pressure!. To check the validity of our
computational results, we start~see Sec. III! by comparing
our results with the Furthet al.9 results for zero pressur
cases.

The effects of toroidal geometry are considered in t
work. The effects can be separated into~1! distortion of the
flux surfaces due to the Shafranov shift;~2! the existence of
an averaged magnetic well; and~3! mode coupling effects
due to the 1/R dependence of the magnetic field, which
neglected here. We have included~1! and ~2!, and obtained
D8 as a function ofb.12 The Shafranov shift appears as
global effect that enters through changes in the geom
metric elements. The second effect appears as a loca
property near the mode rational surface; we have inclu
toroidal curvature~the Mercier index13! in the analysis, but
have not included resistive layer effects.14 The mode cou-
pling effect can be neglected in the case of a rotating to
mak plasma, where shear flows are large and modes at
ferent surfaces decouple.15
2 © 1998 American Institute of Physics

P license or copyright, see http://pop.aip.org/pop/copyright.jsp



a

ve
lu
a
ar

ld
he

m
, i

d,

r

e
r

he
io

e
ce

,
e

ri-
re

ua
bi
b

netic

tor

ill
nd
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This paper is organized as follows. In Sec. II the origin
definition and the physical significance ofD8 is discussed. In
Sec. III the basic model of Furthet al.9 for the exterior re-
gion is presented and ourD8 calculation is compared with
their results. The logarithmic singularity at the resisti
layer, as well as the algorithm for solving the boundary va
problem, is discussed in detail. Finite pressure effects
discussed in Sec. IV. The effects of toroidal geometry
introduced in Sec. V. Finally, we summarize in Sec. VI.

II. THE DEFINITION OF D8

The physical significance of the sign ofD8 can be un-
derstood intuitively from the one-dimensional magnetic fie
line diffusion equation given by Faraday’s law and t
Ohm’s law:16

]B̃r

]t
5

h

m0
¹2B̃r;

h

m0

]2B̃r

]r 2 , ~1!

whereh andm0 stand for the plasma resistivity and vacuu
magnetic permeability, respectively. According to Ref. 16
can be seen that if]2B̃r /]r 2,0, then ]B̃r /]t,0 and the
perturbation damps in the initial phase. On the other han
]2B̃r /]r 2.0, then]B̃r /]t.0 and the perturbation grows.

The plasma column is divided into two ‘‘exterio
regions’’ 4 by a resistive layer of widthd. The mode rational
surface whereq5m/n resides in this thin layer. Eigenmod
profiles for B̃r52 i (m/r )c are connected from one exterio
region to the other via resistive layer properties, wherec is
the flux function. Thus, there are jump discontinuities in t
slope between the two exterior regions. If the eigenfunct
is locally convex~concave!, the mode is stable~unstable!.
Furthet al.4 definedD8 as the difference of the slopes for th
flux function c inside and outside the mode rational surfa
xs :

D8[
c18 ~xs1d!2c28 ~xs2d!

c~xs!
, ~2!

where a positiveD8 implies instability. Note that theD8

value indicates the relative jump inB̃r across the inner layer
and hence corresponds to the existence of a current she
the inner layer.

III. REVIEW OF CYLINDRICAL FORMULATION AND
COMPUTATION

In this section, the basic model equation~the exterior
equation! and the results of Ref. 9 are reviewed. A cylind
cal coordinate system is employed in the calculation, wher
is the minor radius,u is the poloidal angle, andz is in the
toroidal direction. Combining the momentum balance eq
tion, Faraday’s law, Ohm’s law, and plasma incompressi
ity in a cylindrical geometry, we obtain the Newcom
equation,9,17

d2c

dr2 1
1

H

dH

dr

dc

dr
2

1

H F g

F2 1
1

F

d

dr S H
dF

dr D Gc50, ~3!
Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AI
l

e
re
e

t

if

n

t in

-
l-

where

F[k–B5kBz1~m/r !Bu5
Bz

R
~12m/q!,

H[
r 3

k2r 21m2 ,

g[
~m221!rF 2

k2r 21m2 1
k2r 2

k2r 21m2

3S rF 21F
2~krBz2mBu!

k2r 21m2 12m0

dP

dr D .

Note that the toroidal mode number is taken to ben51
throughout this paper. After normalization usingx[r /r s ~r s

is the mode rational surface radius!, b[Bu /Bz , and p
[P/P052m0P/Bz

2b ~b[2m0P0 /Bz
2 is a figure of merit

that represents the ratio between the plasma and mag
pressure, andP0 is the peak pressure!, Eq. ~3! reduces to

c91g2~x!c82g1~x!c50, ~4!

where we have further defined

g1~x![
1

H S g

F2 1
1

F
~HF8!8D ,

g2~x![
H8

H
.

In Eq. ~4!, the prime denotes differentiation with respect tox.
Here, the poloidal magnetic field profile, and safety fac
are taken to be the peaked profile of Ref. 9:

b~x!5
x

~11x2!
, ~5!

q~x!5q0~11x2!. ~6!

The plasma boundary is located atxb52, while the mode
rational surface is varied by changing theq0 value. The pres-
sure profile was taken to bep50 for the zerob case and
p(x)512(x/xb)2 for the finiteb case, which we discuss in
Sec. IV.

The numerical algorithm of the shooting method w
now be explained. In the vicinity of the rational surface a
in the absence of plasma pressure (b50), Eq.~4! reduces to
the form

d2c

dX 22
k

X
c50, ~7!

where X 5x2xs and k5g1(xs). Two inner limits of the
exterior asymptotic solutions forc[c I or c III ,

c5S 11kX lnuX u1
1

2
k2X 2 lnuX u2

3

4
k2X 21¯ D

1AI,III S X 1
1

2
kX 21

1

12
k2X 31¯ D , ~8!
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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are matched to the numerical solutions atX 56d. Here, the
subscripts ‘‘I’’ and ‘‘III’’ denote the two exterior regions
inside and outside the mode rational surfacexs . We solve
Eq. ~4! by numericallyshootingaway from the singular sur
face with an arbitrary boundary condition toward the oth
ends atx50 andx5xb , and iterate the constantsAI andAIII

until the boundary conditions there are satisfied.~This is in
the opposite way from Furthet al.,9 where the shooting wa
done from the boundaries inward and numerical soluti
nearxs were fit to the asymptotic solution.! We solve Eq.~4!
in the two regions 0<x<xs and xs<x<xb , obtaining c I
ta

th
a

is
e

s
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and c III . Defining Y5(y1 ,y2 ,y3 ,y4)5(c,c8,]c/]AI,III ,
]c8/]AI,III ), Eq. ~4! reduces to a system of simultaneo
ordinary differential equations,

dY

dx
5S y18

y28

y38

y48

D 5S y2

2g2~x!y21g1~x!y1

y4

2g2~x!y21g1~x!y1

D , ~9!

with boundary conditions atx5xs6d:
S y1

y2

y3

y4

D 5S ~11kd lnudu1 1
2k

2d2 lnudu2 3
4k

2d2!1AI,III ~d1 1
2kd21 1

12k
2d3!

k~ ln d11!1k2~d lnudu2d!1AI,III ~11kd1 1
4k

2d2!

d1 1
2kd21 1

12k
2d3

11kd1 1
4k

2d2

D . ~10!
e

A fourth-order Runge–Kutta–Gill method18 is used for the
numerical integration. One changes the unknown cons
AI,III until the values Al 112Al52(c)/(]c/]A) at the
boundaries converge~l represents the iteration step!. The
value ofD8 is calculated by

D85
c III8 ~xs1d!2c I8~xs2d!

c~xs!
5AIII 2AI . ~11!

For a comparison with Furthet al.,9 we take the
poloidal/toroidal mode numbers to bem/n52/1, while a
large aspect ratio is represented bykr050.05. Figure 1~a!
shows the eigenmode profile, while Fig. 1~b! shows the value
of D8 as a function of mode rational surfacesxs . Figure 1~b!
implies that the tearing modes are relatively stable when
mode rational surfaces are closer to the plasma bound
The results match exactly with Fig. 1 of Ref. 9.~Note that
the numerical algorithm we employed is quite different.! We
have also reproduced the numerical results by Wesson10 ~see
the Appendix!.

IV. EIGENMODE SOLUTIONS IN THE PRESENCE OF
FINITE PRESSURE

An algorithm for cases with the pressure term is d
cussed in this section. In the presence of finite pressure
fects, the exterior equation, Eq.~4!, has strong singularities
with two independent solutions called the large~dominant!
and the small~subdominant!,11 exhibiting different fractional
power-like asymptotic behaviors:

c5AIuX uh112BIuX u2h, ~12!

in region I, and

c5AIII uX uh111BIII uX u2h, ~13!

in region III. Here h52 1
21 1

2A124Ds, Ds[b
(22q2/q82Bz

2x)(dp/dx)ux5xs
,11 and X 5x2xs , as before.

Note that in theh50 limit, this reduces to the same form a
nt

e
ry.

-
f-

the zero pressure case. As in theb50 case, the asymptotic
solutions Eqs.~12! and ~13! at the resonant surface ar
matched to the numerical solution.

Defining Y5(y1 ,y2 ,y3 ,y4 ,y5 ,y6)5(c,c8,]c/]A,
]c8/]A, ]c/]B,]c8/]B),

dY

dx
5S y18

y28

y38

y48

y58

y68

D 5S y2

2y2g2~x!1g1~x!y1

y4

2y4g2~x!1g1~x!y3

y6

2y6g2~x!1g1~x!y5

D , ~14!

we shoot with a boundary condition atx5xs6d,

S y1

y2

y3

y4

y5

y6

D 5S Auduh116Budu2h

A~h11!uduh6Bhudu2h21

uduh11

~h11!uduh

6udu2h

6hudu2h21

D . ~15!

One changes the unknown constantsA andB until

S A~ l 11!2A~ l !

B~ l 11!2B~ l !D 5S ]y1 /]A

]y2 /]A

]y1 /]B

]y2 /]BD 21

3S y12y1~x50 or x5xb!

y22y2~x50 or x5xb!
D , ~16!

converges atx50 andx5xb . The value ofD8 is calculated
by

D8[
AIII

BIII
2

AI

BI
. ~17!
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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Since we have two unknownsA andB at x5xs6d, we need
additional boundary conditions atx50 and x5xb for c8.
However, the value ofD8 is independent of these addition
boundary conditions, since only the ratioA/B in each region
I and III is required to obtainD8. Note that by settingB
51 andh50, the system of Eqs.~14! and~15! reduces to the
form of Eqs.~9! and ~10!.

Figure 2~a! shows the resultant eigenfunction of a
m/n52/1 mode withb57% (h520.076), which has sin-
gular behavior in the vicinity of the mode rational surfac
Here,xs51 andxb52 were taken. Figure 2~b! expands the
singular behavior in the vicinity ofxs ; the analytical solu-
tions ~solid line! given by Eqs.~12! and~13! are successfully
matched to the numerical solutions~dashed line!. Figure 2~c!
shows the value ofD8 vs b with the layer width set tod
51027. The effect of the finite pressure term decreases
D8 value, and thus stabilizes the tearing mode, even i
cylindrical tokamak. Note thatDs>0(h<0) in a cylinder,

FIG. 1. ~a! The eigenmode profile for anm/n52/1 mode. The position of
the mode rational surfacexs , indicated by dashed lines, is varied. The
results correspond to Fig. 2 of Ref. 9.~b! Values ofD8 as a function ofxs ,
which corresponds to them52, xb52 case of Fig. 1 of Ref. 9.
Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AI
.

e
a

while Ds<0 (h>0) for a q.1 surface in a toroidal
geometry.14

In a b→0 limit, the D8 value reduces to the zero pre
sure caseD851.54 @see Fig. 1~b!#. In this b→0 limit ~but
with the pressure term!, the second terms in Eqs.~12! and

FIG. 2. ~a! The eigenmode profile for anm/n52/1 mode.~b! Expansion of
the eigenfunction behavior in the vicinity ofxs . Both analytical solutions
~solid line! and the numerical solutions~dashed line! are shown.~c! HereD8
vs b in the highb(b>7%) regime. The dashed line signifies regions whe
layer widths wider than physical ones (d;e1/h) are imposed.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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~13! become constants and reduce to the form of Eq.~8!. In
Fig. 2~c!, the D8 value in a relatively highb regime (b
>7%) is calculated correctly.~See Table I for the estimate
scale lengthd as function ofb.! Note that the value ofD8
approaches22 asDs approaches14, where the large and th
small solutions become comparable. This feature can be
dicted analytically from Eq.~17!; AIII /BIII 2AI /BI52121
522. These results guarantee that the algorithm is m
ematically appropriate.

Whend<1028, the numerical method becomes troub
some. The limit of the numerical method depends on
ratio of the coefficients]Ay1,2 and ]By1,2 in Eq. ~16!. For
extremely small layer widthd, numerical truncations in cal
culating the right side of Eq.~16! obscure the mathematica
separation between the large and the small solutions.

In a b→0 limit, the characteristic layer scale width fo
pressure effectd;e1/h becomes literally infinitesimal~for
example,d;10244 for b51% andd;1026 for b57%;
see Table I!. However, needless to say, at the same time,
pressure effect becomes negligible. Furthermore, in the ra
0%<b<7%, one can conjecture thatD8 takes on values
that smoothly match withD851.54 atb50, and the curve of
Fig. 2~c! in theb>7% regime. Physically, a layer must hav
a finite width: a layer widthd smaller than the ion Larmo
radius~on the order of 1025, even in a plasma of a tempera
ture as low as 100 eV! is only a metaphysical consideratio
In short, we see that the shooting method presented
extracts the finite pressure effects onD8, within a reasonable
parametric regime for tokamak plasmas. Finite pressure
fects in toroidal geometry are discussed in the next sect

V. EIGENMODE IN A TOROIDAL GEOMETRY

In a toroidal equilibrium, straight magnetic field lines19

are represented by

B5I ~r!“z1“z3“ceq~r!5“ceq~r!3“@q~r!u2z#,

~18!
wherez is the toroidal angle andr is the equilibrium mag-
netic surface label. With a relation]ceq/]r5Ir/q, the flux-
surface-averaged exterior equation in toroidal geometry12 re-
duces to~small aspect ratioe!1 andI 5const, assumed fo
simplicity!

1

x

]

]x
x^grr&

]c

]x
2

m2

x2 ^guu&c2
mq

x~m2nq!

d j

dx
c

2b
n2q2

x2~m2nq!2

dp

dx

d^R2&
dx

c50, ~19!

where u is the poloidal angle,j (x) stands for the toroida
current, andR5R(r,u) stands for the major radius. Here,^ &

TABLE I. The relation betweenb, h, and d. Here,Ds5b with a peaked
profile.

b ~%! h Layer widthd

1 20.010 3.7310244

5 20.053 6.33 1029

7 20.076 1.93 1026

10 20.11 1.13 1024

20 20.27 2.13 1022
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stands for a flux surface average. The magnetic well20 is
approximated by (2x)(d^R2&/dx); as stated in Ref. 12, a
more careful derivation of the pressure term yields
‘‘E 1F1H’’ terms of Glasser, Greene, and Johnson.14 Note
that in a cylindrical plasma with a monotonically decreasi
current, d^R2&/dx>0, while d^R2&/dx<0 can occur in a
torus, since a good curvature region~a magnetic well! exists
in a tokamak forq.1.21

From a mathematical viewpoint, this second-order or
nary differential equation gives a system of first-order eq
tions that are similar to the cylindrical ones, except for t
radially dependent functionŝgrr&, ^guu& ~metric elements!,
and^R2&. The toroidicity effects are included in these latt
functions. In this study, radial profiles of the flux-surfac
averaged metric elements are obtained from an equilibr
codeRSTEQ.22 Figure 3~a! exhibits the grids of the straigh
field line, PEST19 coordinate system—both the equilibrium
flux contours and theu contours atb510%. In Fig. 3~a!, the
abscissaX5(R21)/e and the ordinateZ are horizontal and

FIG. 3. ~a! The equilibrium flux surfaces andu contour lines in a toroidal
geometry withb510%, which show geometrical distortions.~b! The eigen-
mode profile ofc2/1 . The solid line is for a toroidal geometry withb
510% and the dashed line is for a cylindrical limit~the pressure gradien
drive term in the eigenmode equation is absent for both lines!.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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vertical dimensionless minor radius coordinates, resp
tively. In Fig. 3~a!, the area of each grids represents t
volume element“r3“u–“z5R22(r,u). Note that the
equation reduces to the cylindrical version of the Newco
equation10 ~see the Appendix! in the ^grr&5^guu&51 limit.

The dashed line in Fig. 3~b! is the eigenmode profile in a
toroidal geometry withb510%, while the solid line is the
profile in the cylindrical limit.@In Fig. 3~b!, b has been taken
to be zero in Eqs.~3! and ~19! to bring out the Shafranov
shift, geometry effects.# The safety factor was taken to b
q(x)511x2, so that them/n52/1 mode rational surface i
located atxs51.0 ~the plasma boundary located atxb52.0).
The dashed line~S—Shafranov shift! in Fig. 4~a! shows the
value ofD8 as function ofb @see Table II for the correspond
ing Shafranov shiftDs ; a magnetic axis shift measured in th
~X,Z! coordinate system#. The distortion of the flux surface
~Shafranov shift effects! from the first and the second term o
Eq. ~19! significantly contribute to the decrease ofD8 with b.

The curvature effect13 is now investigated quantitativel
by including thebÞ0 curvature term in Eq.~19!. As a re-
minder, in toroidal geometry theDs value of Eq. ~13! is
replaced by14

Ds[bS 2q2

q82x2D S dp

dxD S 1

^grr&

d^R2&
dx D U

x5xs

.bS 22q2

q82x D S dp

dxD ~12q2!U
x5xs

. ~20!

The last relation is given in the limit of a large aspect ratio21

@The first form of Eq.~20! is employed for computation.#
Thus, theDs value in a toroidal system can be negative~h
can be positive! whenq is above unity. Ifh is positive, the
asymptotic solution given by Eqs.~12! and~13! gives rise to
a 1/X h-like singularity~ucu→` at X→0). In contrast to the
h<0 case discussed in Sec. IV, the numerical truncation
Eq. ~16! will be severe in higherb cases rather than fo
lower b cases because of the change in the sign ofDs and
thus the powerh. Figure 4~b! shows an eigenfunction of a
m/n52/1 mode in a torus withb57%, which has a positive
spike in the vicinity of the mode rational surface. This
expected analytically from Eqs.~12! and ~13!. Figure 4~c!
shows the detail of the singular behavior in the vicinity
xs ; the analytical solutions~solid line!, Eqs.~12! and ~13!,
are successfully matched to the numerical solutions~dashed
line!.

The dot–dashed line in Fig. 4~a! shows the value ofD8
as a function ofb in the presence of the pressure term~C—
curvature effect!, but without toroidal shape effects~the met-
ric elements are set to their cylindrical limits!. The solid line
in Fig. 4~a! shows the value ofD8 in the presence of both o
the effects. As one can see from the difference of the th
lines in Fig. 4~a!, toroidal geometry effects~S! stabilize the
tearing mode significantly, even in a lowb regime before the
curvature effect~C! comes into play, for the typical tokama
q profile and a pressure profile we have employed~see Fig.
5!. More generally, the curvature effect is expected to
modest, unless one enters an extremely highb regime, or
extremely low shear region where the 1/q82 in Ds becomes
Downloaded 07 Mar 2007 to 128.104.198.190. Redistribution subject to AI
c-
e

b

in

e

e
influential. The line~C! in Fig. 4~a! supports this latter fac
numerically. Note that the curvature effect is rather a loc
ized layer property, while the Shafranov shift is a glob
effect obtained via the metric elements.

FIG. 4. ~a! We seeD8 as function ofb @S ~Shafranov! indicates in the
absence of the pressure gradient drive term, but with toroidal shap
~curvature! in the presence of the pressure gradient drive term, but with
toroidal geometrical effects (^grr&5^guu&51), and S1C both the toroidal
effects and pressure-drive effects present#. ~b! The eigenmode profile of an
m/n52/1 mode withb57%. ~c! An expanded eigenfunction in the vicinity
of xs . Analytical solutions~solid line! and the numerical solutions~dashed
line! are both shown.
P license or copyright, see http://pop.aip.org/pop/copyright.jsp
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VI. SUMMARY AND DISCUSSION

In this paper, we have reviewed tearing mode theory
computations in a cylinder and extended the studies to
symmetric toroidal geometries. A new numerical algorith
that shoots out from the singular surface rather than in
ward the singular layer was developed and employed.
merical results obtained from the shooting code for cylind
cal cases matched results obtained previously by Furthet al.9

The effect of finite pressure on tearing modes has b
discussed. For the first time, theD8 value as a function ofDs

has been reported. It has been shown that, with the
algorithm we employed~shooting away from the mode ratio
nal surface rather than into it!, shooting methods resolve th
singularities9 due to the finite pressure effect. The meth
guarantees separation of the large and the small solution
the vicinity of a resonant surface. It has been demonstra
that the method is convergent for a relatively highb regime
(b>7%) for cylinders and lowb regime (b&20%) for to-
roidal geometries. It has been shown that the finite pres
effects stabilize the constant-c tearing mode in a highb (b
>7%) cylindrical geometry.

In toroidal geometries, it is suggested that the distort
of the flux surfaces by large Shafranov shifts~a macroscopic
effect! stabilizes the tearing mode. The magnetic w
effect13 was investigated quantitatively, as well. By compa
ing the change inD8 as a function ofb, it has been shown
that the distortion of the flux surface~or Shafranov shift!
stabilizes the tearing mode significantly, even in a lowb
regime ~near theb limit !, before the magnetic well effec

TABLE II. The relation betweenb and Shafranov shiftDS in the equilib-
rium with q(x)511x2.

b ~%! Ds

1 0.14
2 0.21
3 0.27
5 0.36

10 0.48
20 0.60

FIG. 5. The Grad–Shafranov equilibrium pressure profile employed
Figs. 4~a!, ~b!, and~c!.
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comes into play. Thus we believe that, for practical purpo
in estimatingD8 in the linear stage, the pressure term can
neglected unless one enters an extremely highb regime, or
an extremely low shear region. Inclusion of the pressure g
dient term merely complicates the prediction of tearing mo
stability.

The analysis of mode coupling of incommensurate he
ity perturbations is beyond the scope of this paper and
be a subject for future work.
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APPENDIX: REVIEW OF WESSON’S ANALYSIS AND
COMPUTATION

In this Appendix, the results of Ref. 10 will be reviewe
In the large aspect ratio limit, the Newcomb equation, E
~4!, reduces to

FIG. 6. ~a! The eigenmode profile for anm/n52/1 mode.~b! HereD8 vs
xs . These results correspond to Fig. 6.7.1 of Ref. 10.

r
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c91
1

x
c82g~x!c50, ~A1!

where

g~x!5
m2

x2 1
mq

x~m2nq!

d j

dx
12b

n2q2

x~m2nq!2

dp

dx
. ~A2!

Wesson10 used current profiles in the form ofj (x)5(1
2x2), and correspondinglyb(x)5x/22x3/4 and q(x)
54e/(22x2). Heree5(22xs

2) (qm/n/4) stands for the in-
verse aspect ratio. The numerical algorithm applied for
~A1! is the same as in Sec. III. The value ofD8 is calculated
by D85AII2AI , as before. Figure 6~a! shows the eigenmod
profile for anm/n52/1 mode with a mode rational surfac
located atxs50.5. Figure 6~b! shows the value ofD8 as a
function of mode rational surfacesxs . The results match
with Fig. 6.7.1 of Ref. 10.
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