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Abstract—We propose TEASER, the first fast and certifiable
algorithm, for 3D point cloud registration with large amounts
of outlier correspondences. We decouple scale, rotation, and
translation estimation, and adopt a Truncated Least Squares (TLS)
formulation for each subproblem. Despite being non-convex and
combinatorial, we show that (i) TLS scale and translation estima-
tion can be solved exactly in polynomial time via adaptive voting,
(ii) TLS rotation estimation can be solved by a tight semidefinite
programming (SDP) relaxation, with a certifiable global optimality
guarantee. We also develop a second certifiable algorithm, named
TEASER++, that circumvents solving an SDP and runs in millisec-
onds. We provide theoretical bounds on the estimation errors
for both algorithms. Experiments show that both algorithms
dominate the state of the art and are robust against 99% outliers.
We release a fast open-source C++ implementation of TEASER++
at https://github.com/MIT-SPARK/TEASER-plusplus.

I. INTRODUCTION

Point cloud registration is a fundamental problem in
robotics and computer vision [1, 2, 3, 4]. It consists in finding
the best transformation (rotation, translation and potentially
scale) that aligns two point clouds.

A typical approach consists of extracting and matching
features in the two point clouds, and computing the trans-
formation that aligns corresponding features. When the cor-
respondences found are correct, the registration problem can
be solved with closed-form solutions [5, 6]. In practice, the
correspondences may contain many outliers, leading these
solvers to produce poor estimates [7, 8].

This paper presents an overview of two recently proposed
certifiable algorithms for 3D registration with outliers. A full
technical description is given in [9]. By certifiable algorithm,
we mean an algorithm that attempts to solve an intractable
problem (e.g., robust estimation with outliers) and provides
checkable conditions on whether it succeeded. The first al-
gorithm, TEASER, is accurate and robust but requires solving
a large Semidefinite Program (SDP). The second algorithm,
TEASER++, has similar performance in practice but circum-
vents the need to solve an SDP and can run in milliseconds.
Both algorithms formulate the problem using a Truncated
Least Squares (TLS) cost, and use a graph-theoretic framework
to decouple scale, rotation, and translation estimation that
also allows pruning outliers by finding a maximum clique.
We develop theoretical results certifying the quality of the
solutions returned by our algorithms. Moreover, we show that
the proposed algorithms dominate the state of the art in terms
of robustness, accuracy and speed.
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II. TRUNCATED LEAST SQUARES ESTIMATION AND
SEMIDEFINITE RELAXATION (TEASER) OVERVIEW

A. Robust Registration with Truncated Least Squares Cost

In the robust registration problem, we are given two 3D
point clouds A = {ai}Ni=1 and B = {bi}Ni=1, with ai, bi ∈ R3.
We consider a correspondence-based setup, where we are
given putative correspondences (ai, bi), i = 1, . . . , N , that
obey the following generative model:

bi = s◦R◦ai + t◦ + oi + εi, (1)

where s◦ > 0, R◦ ∈ SO(3), and t◦ ∈ R3 are the unknown
scale, rotation, and translation, εi models the measurement
noise, and oi is a vector of zeros if the pair (ai, bi) is an inlier,
or a vector of arbitrary numbers for outlier correspondences.

In our formulation, we estimate the unknown scale, rotation
and translation using a Truncated Least Squares (TLS) cost:

min
s>0,R∈SO(3),t∈R3

N∑
i=1

min

(
1

β2
i

‖bi − sRai − t‖2, c̄2
)
, (2)

where βi is the bound on the i-th measurement noise, and c̄2

is a constant typically chosen to be 1. Essentially, (2) discards
outlier measurements with residuals greater than c̄2.

B. Decoupled Scale, Rotation, and Translation Estimation

We propose a general approach to decouple scale, transla-
tion, and rotation estimation in problem (2) using quantities
that are invariant to a subset of the transformations (scaling,
rotation, translation). First, we obtain a Translation Invariant
Measurement (TIM) from (1) by computing āij

.
= aj−ai and

b̄ij
.
= bj − bi, and the TIM satisfies the following generative

model:
b̄ij = sRāij + oij + εij , (TIM)

where oij
.
= oj − oi is zero if both the i-th and the j-th

measurements are inliers (or arbitrary otherwise), while εij
.
=

εj − εi is the measurement noise. If ‖εi‖≤ βi and ‖εj‖≤ βj ,
then ‖εij‖≤ βi + βj

.
= δij .

Secondly, we define Translation and Rotation Invariant
Measurement (TRIM) as sij =

‖b̄ij‖
‖āij‖ which are invariant to

both R and t:
sij = s+ osij + εsij , (TRIM)

where εsij
.
=

ε̃ij
‖āij‖ ≤

δij
‖āij‖ , and osij = 0 if both i and j

are inliers and arbitrary scalar otherwise. Notice that |εsij |≤
δij/‖āij‖ since |ε̃ij |≤ δij .

Using TRIMs and TIMs, we are able to estimate scale, rotation
and translation in a cascade, using TLS estimation. To estimate
scale, we propose an adaptive voting algorithm that enumerates
all possible consensus sets in polynomial time, and selects the
one with the lowest TLS cost.

https://github.com/MIT-SPARK/TEASER-plusplus
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(b) Correspondence-free
Fig. 1. Benchmark results. (a) from left to right: Boxplots of rotation errors, translation errors, and timing for the six compared methods on the Bunny dataset
with known scale. (b) from left to right: An example with 95% outlier correspondences,boxplots of rotation and translation errors for TEASER++ and ICP on
the Bunny dataset with the correspondence-free problem setup.

Scenes
Kitchen

(%)
Home 1

(%)
Home 2

(%)
Hotel 1

(%)
Hotel 2

(%)
Hotel 3

(%)
Study

Room (%)
MIT Lab

(%)
Avg.

Runtime [ms]
RANSAC-1K 90.9 91.0 73.1 88.1 80.8 87.0 79.1 81.8 9.7
RANSAC-10K 96.4 92.3 73.1 92.0 84.6 90.7 82.2 81.8 96.5

TEASER++ 97.7 92.3 82.7 96.9 88.5 94.4 88.7 84.4 85.1
TEASER++ (CERT) 99.2 97.5 90.0 98.8 94.9 97.7 94.8 93.9 -

TABLE I
PERCENTAGE OF CORRECT REGISTRATION RESULTS USING TEASER++, TEASER++ CERTIFIED, AND RANSAC ON THE 3DMatch DATASET.

To estimate rotation, we formulate the TLS rotation esti-
mation problem as a a Quadratically Constrained Quadratic
Program (QCQP). We then develop a tight convex semidefinite
programming (SDP) relaxation. We further develop a fast
global optimality certification algorithm that computes a sub-
optimality gap for any rotation estimate.

After obtaining the scale and rotation estimates, we can
estimate the translation t component-wise by substituting them
back into problem (2).

For a discussion of the theoretical bounds on the estimation
errors, please refer to our full technical description in [9].

III. TEASER++: A FAST C++ IMPLEMENTATION

We have also developed a fast C++ implementation of
TEASER, named TEASER++. TEASER++ has been released as an
open-source library and can be found at https://github.com/
MIT-SPARK/TEASER-plusplus. TEASER++ follows the same
decoupled approach described in Section II, except that it
circumvents solving a large-scale SDP by using the GNC
approach described in [10] for TLS rotation estimation.

IV. EXPERIMENTAL RESULTS

We benchmark TEASER and TEASER++ against two state-of-
the-art robust registration techniques: Fast Global Registration
(FGR) [11] and Guaranteed Outlier REmoval (GORE) [12].
In addition, we test two RANSAC variants: a fast version

where we terminate RANSAC after a maximum of 10,000
iterations (RANSAC10K) and a slow version where we terminate
RANSAC after 60 seconds (RANSAC1min). Fig. 1 shows the
benchmarking results for the Stanford Bunny dataset [13].
TEASER, TEASER++, and GORE are robust against up to
99% outliers, while RANSAC1min with 60s timeout can resist
98% outliers with about 106 iterations. RANSAC10K and FGR
perform poorly under extreme outlier rates. While GORE,
TEASER and TEASER++ are both robust against 99% outliers,
TEASER, and TEASER++ produce lower estimation errors, with
TEASER++ being one order of magnitude faster than GORE.

In addition, we tested the performance of TEASER++ on
the 3DMatch dataset [14]. We use 3DSmoothNet [15] to com-
pute descriptors, and generate correspondences using nearest-
neighbor matching. We then feed the correspondences to
TEASER++ and RANSAC with 1K and 10K iterations (using
Open3D [16]) and compare their performances in terms of
percentages of successfully matched scans and runtime (Table
I). Two scans are successful matched when the transformation
computed by a technique has (i) rotation error smaller than
10°, and (ii) translation error less than 30 cm. TEASER++
dominates all RANSAC variants in success rates. The last row
in Table I shows the success rate for the poses certified as
optimal by TEASER++. The success rate strictly dominates both
RANSAC variants and TEASER++, since TEASER++ (CERT) is
able to identify and reject unreliable registration results.

https://github.com/MIT-SPARK/TEASER-plusplus
https://github.com/MIT-SPARK/TEASER-plusplus


REFERENCES

[1] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox,
“Rgb-d mapping: Using kinect-style depth cameras for
dense 3d modeling of indoor environments,” Intl. J. of
Robotics Research, vol. 31, no. 5, pp. 647–663, 2012.

[2] G. Blais and M. D. Levine, “Registering multiview range
data to create 3d computer objects,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 17, no. 8, pp. 820–824, 1995.

[3] A. Zeng, K. T. Yu, S. Song, D. Suo, E. Walker, A. Ro-
driguez, and J. Xiao, “Multi-view self-supervised deep
learning for 6d pose estimation in the amazon picking
challenge,” in IEEE Intl. Conf. on Robotics and Automa-
tion (ICRA). IEEE, 2017, pp. 1386–1383.

[4] M. A. Audette, F. P. Ferrie, and T. M. Peters, “An
algorithmic overview of surface registration techniques
for medical imaging,” Med. Image Anal., vol. 4, no. 3,
pp. 201–217, 2000.

[5] B. K. P. Horn, “Closed-form solution of absolute orien-
tation using unit quaternions,” J. Opt. Soc. Amer., vol. 4,
no. 4, pp. 629–642, Apr 1987.

[6] K. Arun, T. Huang, and S. Blostein, “Least-squares
fitting of two 3-D point sets,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 9, no. 5, pp. 698–700, sept. 1987.

[7] F. Tombari, S. Salti, and L. D. Stefano, “Performance
evaluation of 3d keypoint detectors,” Intl. J. of Computer
Vision, vol. 102, no. 1-3, pp. 198–220, 2013.

[8] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz,
“Aligning point cloud views using persistent feature his-
tograms,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS). IEEE, 2008, pp. 3384–3391.

[9] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and Cer-
tifiable Point Cloud Registration,” arXiv preprint arXiv:
2001.07715, 2020, (pdf).

[10] H. Yang, P. Antonante, V. Tzoumas, and L. Carlone,
“Graduated non-convexity for robust spatial percep-
tion: From non-minimal solvers to global outlier re-
jection,” IEEE Robotics and Automation Letters (RA-
L), vol. 5, no. 2, pp. 1127–1134, 2020, arXiv preprint
arXiv:1909.08605 (with supplemental material), (pdf), .

[11] Q. Zhou, J. Park, and V. Koltun, “Fast global registra-
tion,” in European Conf. on Computer Vision (ECCV).
Springer, 2016, pp. 766–782.

[12] Á. Parra Bustos and T. J. Chin, “Guaranteed outlier re-
moval for point cloud registration with correspondences,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 40,
no. 12, pp. 2868–2882, 2018.

[13] B. Curless and M. Levoy, “A volumetric method for
building complex models from range images,” in SIG-
GRAPH, 1996, pp. 303–312.

[14] A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, and
T. Funkhouser, “3dmatch: Learning the matching of local
3d geometry in range scans,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
vol. 1, no. 2, 2017, p. 4.

[15] Z. Gojcic, C. Zhou, J. D. Wegner, and A. Wieser, “The

perfect match: 3d point cloud matching with smoothed
densities,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp.
5545–5554.

[16] Q.-Y. Zhou, J. Park, and V. Koltun, “Open3D: A modern
library for 3D data processing,” arXiv:1801.09847, 2018.

https://arxiv.org/pdf/2001.07715.pdf
https://arxiv.org/pdf/1909.08605.pdf

	Introduction
	 Truncated least squares Estimation And SEmidefinite Relaxation (TEASER) Overview 
	Robust Registration with Truncated Least Squares Cost
	Decoupled Scale, Rotation, and Translation Estimation 

	TEASER++: A Fast C++ Implementation
	Experimental Results

