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ABSTRACT

We propose a novel approximation to the low-ℓ joint likelihood of the angular spectrum Cℓ

of masked cosmic microwave background temperature maps which is both very accurate

and very fast to evaluate. We show that, for a flat prior, the posterior distribution of each

Cℓ closely follows an inverse gamma distribution even with partial sky coverage and that

the posterior correlation is weak enough that a copula approximation to the joint likelihood

is quite accurate. In this paper, the quantities needed to build such a copula approximation

(inverse gamma parameters at each angular frequency and a correlation matrix) are computed

from an exploration of the posterior using adaptive importance sampling. The accuracy of the

proposed approximation is assessed using statistical criteria as well as a mock cosmological

parameter fit. When applied to the Wilkinson Microwave Anisotropy Probe 5 data set, the

copula approximation yields cosmological parameter estimates at the same level of accuracy

as the best current techniques.

Key words: methods: data analysis – methods: statistical – cosmic microwave background.

1 IN T RO D U C T I O N

The cosmic microwave background (CMB) angular spectrum C =
{Cℓ} is a central quantity for conducting statistical inference based

on CMB observations (Bond & Efstathiou 1987). The high resolu-

tion of available (Hinshaw et al. 2009) and forthcoming CMB obser-

vations (Efstathiou, Lawrence & Tauber 2005) makes it necessary

(at least in the case of partial sky coverage) to adopt a processing

scheme in which the low- and high-ℓ parts of the data are processed

independently (Efstathiou 2006). This paper addresses the large-

scale part of the problem: inference regarding low multipoles based

on a partial low-resolution CMB map.

After defining the problem of low-ℓ pixel-based likelihood and

introducing some notations (Section 2), we first show how to build

a (large) set of N importance samples of the angular spectrum such

that all integrals of interest for statistical inference can be approxi-

mated by Monte Carlo estimates (Section 3). Based on those results,

we propose in Section 4 a new approximation to the likelihood for

partially observed low-resolution CMB maps. This approximation

was initially built as part of the importance sampler, but it turns

out to be so accurate that it is of independent interest. This paper

and the recent reference (Rudjord et al. 2009) are similar in spirit

but differ in the sampling method and in the proposed likelihood

approximation.

⋆E-mail: benabed@iap.fr

2 L I K E L I H O O D

We recall some well-known facts about the likelihood of the angular

spectrum of a CMB temperature map.

In the ideal case of noise-free, beam-free, full-sky map (rep-

resented by the vector x of pixels), one has direct access to the

harmonic coefficients aℓm of the sky. Assuming an isotropic Gaus-

sian field, the empirical angular spectrum Ĉℓ = 1
2ℓ+1

∑
m |aℓm|2 is

a sufficient statistic for the data and their probability distribution

takes the factorized form (Bond, Jaffe & Knox 2000):

p(x|C) ∝
∏

ℓ≥0

exp −
2ℓ + 1

2

(
Ĉℓ

Cℓ

+ log Cℓ

)
. (1)

In the case of a flat prior p(C), expression (1) combined with the

Bayes rule p(C|x) = p(x |C)p(C)/p(x) reveals that, given x, the

angular spectrum C is distributed as a product of inverse gamma

densities:

p(C|x) =
∏

ℓ

iŴ(Cℓ; αℓ, βℓ) (2)

iŴ(x; α, β) ≡
βα

Ŵ(α)
x−α−1e−β/x, (3)

with parameters αℓ = (2ℓ − 1)/2 and βℓ = (2ℓ + 1)Ĉℓ/2.

Such a factorization does not hold when only a fraction of the

sky is observed (or has to be ignored because of excessive con-

tamination by foregrounds), or when the stationary CMB is con-

taminated by non-stationary noise (Gorski 1994; Tegmark 1997).

C© 2009 The Authors. Journal compilation C© 2009 RAS
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220 K. Benabed et al.

However, for small sky masks and/or small deviations from station-

arity, deviations from the factorized form (1) are expected to be

small, suggesting the new likelihood approximation developed in

Section 4.

Pixel-based likelihood. We turn to the actual case of interest: partial

sky coverage, presence of independent additive Gaussian noise,

low-pass effect of a beam. The data set, represented by an N pix ×
1 vector x of pixel values, can no longer be losslessly compressed

into a sufficient spectral statistic Ĉℓ. Rather, one must use the plain

Gaussian density:

p(x|R) = |2πR|−1/2e− 1
2 xT R

−1
x, (4)

where the covariance matrix R of x has contributions from the CMB

signal and from noise: R = S+N. For two pixels i and j with angular

separation θ ij, the CMB part of the covariance matrix has an (i, j )

entry given by (Bond et al. 2000)

Sij =
∑

ℓ

2ℓ + 1

4π
WℓCℓPℓ(cos θij ), (5)

where P ℓ is the Legendre polynomial of the order of ℓ and where

the window function W ℓ can represent, for example, the spectral

response of an azimuthally symmetric beam, or more generally the

convolution of the signal with any azimuthally symmetric kernel.

Hence, we ignore the complications due to an anisotropic beam as

well as the presence of residual foreground contaminants.

The noise part of the covariance matrix could take any form but,

in this work, it is taken to correspond to an isotropic noise with

angular spectrum N ℓ. We can thus define a total angular spectrum

Dℓ

Dℓ = WℓCℓ + Nℓ, (6)

which is unambiguously related to Cℓ since the beam Bℓ and the

noise spectrum N ℓ are assumed to be known.

Free parameters. In practice, we consider a more restricted model

for the covariance matrix of the observed pixels. First, the adjustable

multipoles are restricted to a range ℓmin ≤ ℓ ≤ ℓmax, while other

multipoles are kept at constant values. Secondly, we only consider

uncorrelated noise with zero mean and variance σ 2 per pixel. It

contributes a term σ 2δij to R and corresponds to a flat angular

spectrum N ℓ = σ 2 /
pix if all pixels have the same area 
pix. Then,

the covariance matrix of x as a function of D = {Dℓ}ℓ=ℓmax
ℓ=ℓmin

is spelled

out as R(D) = R
var(D) + R

cst with

Rvar
ij (D) =

ℓ=ℓmax∑

ℓ=ℓmin

2ℓ + 1

4π
(Dℓ − Nℓ)Pℓ(cos θij ), (7)

Rcst
ij =

∑

ℓfixed

2ℓ + 1

4π
WℓCℓPℓ(cos θij ) + σ 2δij . (8)

Priors and posterior distributions. In all the following, the prior

distribution on D is taken to be flat for Dℓ ≥ N ℓ. At all angular

frequencies such that W ℓCℓ ≫ N ℓ (Fig. 1 illustrates the values

used in this paper), this is almost identical to a flat prior on the

positive values of Cℓ. The posterior distribution of D given the data

x is

π (D) = p(D|x) ∝ p[x|R(D)]

ℓ=ℓmax∏

ℓ=ℓmin

1(Dℓ ≥ Nℓ),

where p[x|R(D)] is evaluated using equations (4), (7) and (8).

(
+

1)
C

/2
π

Figure 1. Angular spectra, rescaled by ℓ(ℓ + 1)/2π: WMAP best-fitting

spectrum Cℓ (black solid line); noise spectrum Nℓ for a variance of σ 2 =
1µK2 pixel−1 (black dashed line); angular spectra W ℓCℓ (dot–dashed) and

W ℓCℓ + Nℓ (solid) for the WMAP Gaussian beam (red) and for the window

function of equation (11) (green).

About noise and regularization. On a cut sky, the CMB part of

the covariance matrix may be poorly conditioned with a trough

in its eigenvalue spectrum corresponding to those modes which are

mostly localized in the cut. In this case, it is customary (Eriksen et al.

2007; Hinshaw et al. 2007) to add a very small amount of noise to

the data and to add the corresponding contribution to the covariance

matrix as in equation (8). Another reason for adding uncorrelated

noise is to cover spurious noise correlation possibly introduced

when the observed sky map is downgraded and to simplify the noise

structure (Dunkley et al. 2009). See Fig. 1 for the values used in our

experiments. Another possibility is regularization by projection on

to the most significant eigenvectors of the covariance matrix (Bond

et al. 2000), but this possibility is not considered here.

3 BUI LDI NG A SAMPLE OF THE LOW-ℓ

POSTERI OR W I TH I MPORTANCE SAMPL ING

This section reports on the construction of importance samples of

the Cℓ under their joint posterior for two data sets. The principle

of importance sampling is first briefly recalled in Section 3.1; our

specific technique (an adaptive variant) is described in Section 3.2

and applied to a synthetic CMB cut sky map (Section 3.3) and

to the official Wilkinson Microwave Anisotropy Probe 5 (WMAP5)

low-resolution map (Section 3.4).

3.1 Importance sampling

Importance sampling is a well-established technique to explore a

probability distribution when no method for directly sampling from

it is available [the well-known VEGAS algorithm (Lepage 1978),

e.g., is based on importance sampling]. Consider estimating the

expectation Ef (x) =
∫

f (x)π (x) dx of some function f of x when

the random variable x is distributed under π . If xi, i = 1, N are N

samples of x, then Ef (x) can be estimated by the sample average
1
N

∑
i f (xi). In contrast, importance sampling relies on samples xi

distributed under a proposal distribution g not necessarily equal to

π . If the support of g includes the support of π , then

Ef =
∫

f (x)π (x)dx =
∫

f (x)
π (x)

g(x)
g(x) dx,

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 400, 219–227
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TEASING: fast CMB low-ℓ likelihood 221

so that if the samples xi are distributed under g, then Ef is estimated

without bias by

1

N

N∑

i=1

wif (xi), where wi = w(xi) ≡
π (xi)

g(xi)
.

The factors wi are called importance weights.

The Monte Carlo integration reaches its maximum efficiency

when the samples are drawn independently under a proposal distri-

bution g which is identical to the target distribution π . While Markov

Chain Monte Carlo (MCMC) methods try to draw from the target

distribution π , they do not build independent samples; in contrast,

importance sampling (usually) relies on independent draws from

an approximate distribution g and corrects the discrepancy using

importance weights wi. Therefore, importance sampling achieves

higher relative accuracy (lower variance of posterior integrals) per

sample compared to MCMC methods whenever independent sam-

ples can be drawn from a proposal distribution which is ‘close

enough’ to the target (see e.g. Wraith et al. 2009).

The agreement between target and proposal distributions can be

measured by the Kullback–Leibler divergence

K(π |g) ≡
∫

log
π (x)

g(x)
π (x) dx, (9)

which is often remapped as the so-called perplexity criterion:

P(π |g) ≡ exp −K(π |g) so that perfect agreement is reached when

P = 1. Another criterion is the effective sample size (ESS) of an

importance sample:

ESS =
(∑

i wi

)2

∑
i w

2
i

. (10)

If the proposal matches the target perfectly, then ESS = N , other-

wise it is smaller than the number of importance samples. The ESS

is directly related to the variance of the Monte Carlo estimates.

Importance sampling is well fitted to the problem at hand for at

least two reasons: ease of parallelization and availability of a good

proposal distribution.

Parallelization is a strong requirement due to the high compu-

tational cost of CMB studies. We are planning to sample a 30- to

40-dimensional space, and the computation of the likelihood for a

given angular spectrum costs about 5 s for ℓmax = 48 and N pix =
3072 on a typical 2 GHz CPU. Since importance sampling can be

trivially parallelized, it makes it straightforward to take full advan-

tage of CPU clusters. For instance, computing 105 samples would

take about 4 days on a single CPU but is reduced to mere hours on

a cluster. The MCMC algorithm cannot be parallelized as easily.

Indeed, to be able to mix different parallel chains, one has to ensure

that they have correctly converged (Rosenthal 2000), which can be

a difficult task in 30 to 40 dimensions.

Regarding the proposal distribution, one can draw inspiration

from the noise-free, full-sky case (2) since a mask hiding less than

20 per cent of the sky and a high signal-to-noise ratio situation are

expected to modify it only slightly.1 Indeed, as demonstrated below,

a product of independent inverse gamma distributions turns out to be

a very efficient proposal distribution, provided it is correctly tuned.

Such a tuning is achieved via an adaptive importance sampling, as

explained next.

Other techniques have been proposed to draw samples under the

posterior distribution of the power spectrum. In particular, a clever

1This situation is representative of CMB data sets from satellites such as

WMAP and Planck.

rewriting of the problem allows for the use of some flavours of

the MCMC (Gibbs Eriksen et al. 2004; Jewell, Levin & Anderson

2004; Wandelt, Larson & Lakshminarayanan 2004; or Hybrid MC-

based, Taylor, Ashdown & Hobson 2008). Those techniques are

much faster, i.e. have better scaling properties, than our importance

sampler. We decided to stick to an importance sampler for its ease

of implementation. In our case, poorer scaling properties are com-

pensated by massive parallelization.

3.2 An adaptive importance sampling algorithm

Importance sampling is efficient only if the proposal distribution is

close enough to the target, an objective which may be difficult to

reach in large dimensions (sampling angular spectra in the range

0 ≤ ℓ ≤ 40 qualifies as large problem). To tackle this complexity, we

resort to adaptive importance sampling which consists in running

a sequence of importance runs in which the proposal distribution is

improved at each run based on the results of previous runs. A more

detailed description of adaptive importance sampling (based upon

the Population Monte Carlo algorithm from Cappé et al. 2008) in

the context of cosmology can be found in Wraith et al. (2009).

General scheme. The general scheme, based on a parametric family

of proposal distributions g( y; θ ), is as follows.

(i) Start with the best available guess of θ for the parameters of

the proposal distribution.

(ii) Sample under g( y; θ ). Compute and store the importance

weights.

(iii) Re-estimate θ so that g( y; θ ) best matches the current sample

set.

(iv) If the (estimated) perplexity P[π ( y)|g( y; θ )] is high enough

(e.g. above 0.5) or if it has not changed significantly during the last

iterations, exit to (v). Otherwise, go to (ii) for another importance

run with the re-estimated parameters.

(v) Use the last value of θ for a large final importance sampling

run.

Sampling angular spectra. In our experiments, we sample the total

angular spectrum, i.e. y = D = {Dℓ}ℓ=ℓmax
ℓ=ℓmin

and use independent

inverse gamma distributions for the proposal:

g(D; θ ) =
ℓ=ℓmax∏

ℓ=ℓmin

iŴ(Dℓ; αℓ, βℓ).

Hence, we must adapt a vector θ = {αℓ, βℓ}ℓ=ℓmax
ℓ=ℓmin

of 2(ℓmax −
ℓmin + 1) parameters. As a starting point at Step (i), we use

αℓ =
(2ℓ + 1)

2
fsky − 1, βℓ =

(2ℓ + 1)

2
fskyD

ML
ℓ ,

where DML
ℓ is the maximum-likelihood (ML) estimate of the angular

spectrum. At Step (iii), parameters αℓ and βℓ are re-estimated at their

ML values (see the Appendix).

The target density π (D) is the posterior distribution of D when

the prior distribution of D is flat. Hence, it is proportional to the

likelihood.

In the two examples presented below, this iterative algorithm

reached a perplexity above 0.6 after the first step of 50 k samples,

and a 500 k sample set was produced during the final sampling

phase.

3.3 Synthetic map

We first describe the results of adaptive importance sampling runs

on a synthetic CMB map. The map is prepared at resolution

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 400, 219–227
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222 K. Benabed et al.

Figure 2. The synthetic CMB map used at Section 3.3.

N side = 16 from the WMAP5 best-fitting power spectrum (Dunkley

et al. 2009) using HEALPIX (Górski et al. 2005). To avoid aliasing

small-scale power into large-scale modes, the map is smoothed prior

to down-sampling using a synthetic window function wℓ:

Wℓ =

⎧
⎪⎨

⎪⎩

1 0 ≤ ℓ ≤ 40
1 + cos[(ℓ − 40)π/8]

2
40 ≤ ℓ ≤ 48

0 48 ≤ ℓ

, (11)

which is used to explore the posterior of Cℓ up to ℓ = 40.

The posterior of the power spectrum is given by the likelihood

described in equation (4), with a flat prior. The Galactic region is

excluded using the WMAP5 mask, hiding 18 per cent of the sky. The

map is shown in Fig. 2. A 1 µK pixel−1 noise is taken into account

in the likelihood, but no noise is actually added to the map. This

level should not affect our results as it is much lower than 
pixC40

(see Fig. 1). We build a sample of the posterior of the masked map

using the adaptive importance sampling algorithm described above.

We only explore ℓ = 2 to 40, the other modes (ℓ = 0, 1 and 41 ≤
ℓ ≤ 48) being held constant to the ML estimate.

The initial proposal is given by the product of independent inverse

gamma distributions, as described in Section 3.2, centred at DML
ℓ

with a width given by an effective sky coverage equal to f sky ×
0.98 to ensure that the initial proposal is wide enough.

Only one adaptation step was needed. It took about 58 min on

80 2 GHz CPUs to produce the first 50 k samples (about 6 s for

each likelihood evaluation, taking into account all overheads). The

final 500 k sample run took 6 h and 21 min on 120 2 GHz CPU

(about 5.5 s for each likelihood evaluation, taking into account all

overheads). The adaptive algorithm behaved very well: the first step

reached P = 0.68, while the second run hit P = 0.93. This last run

had an effective sample size ESS = 437 029, i.e. a ratio ESS/N =
0.874.

Figs 3–5 give an overview of the results. First, looking at the 1D

marginal distributions, Fig. 3 shows a few marginals (π ℓ) and their

best inverse gamma fits. The inverse gamma model is seen to account

very well for both the tails and the mode of the distribution, in line

with the high perplexity reached in the last iteration. This agreement

validates a posteriori the adaptive approach. On this synthetic map,

at least, the marginals closely follow an inverse gamma distribution.

The peaks of the marginals and an effective sky coverage at

multipole ℓ, denoted as f ℓ, are obtained by inverting

αℓ =
(2ℓ + 1)

2
fℓ − 1, (12)

βℓ =
(2ℓ + 1)

2
fℓ

(
WℓC

peak
ℓ + Nℓ

)
. (13)

Both quantities are shown in Fig. 4. The C
peak
ℓ and CML

ℓ discrepancy

is small; it is below the per cent order, albeit with a few modes

disagreeing by at most 3 per cent. The effective sky coverage, how-

ever, is quite different from f sky. Its behaviour indicates a transition

between scales that are not affected significantly by the cut, and

scales that are smaller than the cut, so that their deficit of modes is

given by f sky. Our resolution is probably not good enough to reach

this regime.

One would expect some discrepancy between the C
peak
ℓ and the

ML estimate. Indeed, since the cut induces correlation between

scales, there is no reason for the peak of the posterior to be identical

to the peak of the marginals in each direction. The small discrepancy

can only be explained by a low level of correlation between the Cℓs,

so that the peak of the marginals is close to the joint peak. As a first

estimate of the correlation, Fig. 5 shows the correlation matrix

measured on our sample

[V ]ℓ,ℓ′ ≡ Corr (Cℓ, Cℓ′ ). (14)

In this figure, the diagonal of the matrix is removed so as not to

dominate the off-diagonal terms. Those exhibit a pattern below the

6 per cent level. Most of the correlation is located around ℓ = 12,

and the correlation seems to extend significantly for about six modes

off the diagonal.

Several checks can be performed to assess the accuracy of this

matrix. First, the ESS allows us to estimate the error on the matrix

measurement to be of the order of 0.15 per cent, which is well

below the observed correlation pattern. One can also measure the

correlation matrix on the results of the first iteration of the adaptive

algorithm, which provides us with an independent exploration of

the posterior. The noise was much higher (with a level, according to

the ESS of this run of about 0.6 per cent), but the pattern observed

in Fig. 5 is easily recovered. Finally, we checked on a full-sky run

that no correlation pattern is visible.

3.4 WMAP5 map

We perform a similar experiment using the WMAP map distributed

along with the 5-year WMAP-likelihood code found on the Lambda

web site.2 The setting is slightly different, since the window function

is a 9.◦18 Gaussian beam, cutting much more high-frequency power

than the window function (11) (see Fig. 1). Therefore, only the range

2 ≤ ℓ ≤ 30 is explored here, with the other multipole powers held

constant at their ML values. As done in the WMAP-likelihood code,

a 1 µK pixel−1 noise is added to the data and to the model. We take

care of adding the specific noise realization used in the likelihood

code. Indeed, with the beam used, the signal-to-noise ratio at ℓ =
30 is only ∼14, and our tests have shown a small dependency of the

value of the higher Cℓs on the noise realization.

As in the previous run, only one adaptation step turns out to be

needed. It took 32 min on 120 CPUS for 50 k samples, while the

second and final run produced 500 k samples in 5 h and 19 min. The

first iteration reached P = 0.48, the second one P = 0.96 and an

effective sample size ESS = 457 600 (ESS/N = 0.92).

The results are generally similar to those reported in Section 3.3.

We do not show more 1D marginal plots, but present the recovered

C
peak
ℓ and f ℓ (Fig. 6), as well as the correlation matrix (Fig. 7). The

C
peak
ℓ and the ML estimates are somewhat similar to the WMAP5

power spectrum, with a small discrepancy also observed by Eriksen

et al. (2007) using the Gibbs sampling and in Rudjord et al. (2009)

2http://lambda.gsfc.nasa.gov/
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TEASING: fast CMB low-ℓ likelihood 223

Figure 3. A few marginalized binned posteriors of the Cℓ. The red line is the best inverse gamma approximation (including binning) obtained using the ML

estimates, while the black dots are the binned marginal obtained on the 500 k sample. The red short dotted vertical line gives the location of the peak according

to the approximation, and the green long dotted vertical line shows the CML
ℓ . Top plots are in log–log scale, while bottom plots are in linear scale to show the

behaviour in the tail and at the peak of the marginals.

( + 1) C /2π

f

Figure 4. Top panel: angular spectra. Blue dashed line: the power spectrum

used to synthesize the map; red: the ML estimate CML
ℓ ; black dots: C

peak
ℓ .

The error bars are 68 per cent limits obtained from the inverse gamma fits

for the marginals. Bottom panel: sky coverage f ℓ. Black line: effective

coverage f ℓ; the blue dashed line shows f sky = Nmask/Npix.

(zooming in their fig. 5). At any rate, the discrepancy is always

within the Cℓ error bars.

The effective coverage f ℓ is similar to the one reported in Sec-

tion 3.3, with a transition from 1 to f sky but differs in some details,

Figure 5. The correlation matrix V for Cℓ (see equation 14) with the diag-

onal removed. Most of the correlation is located around ℓ = 12 and extends

only to a few neighbouring modes. The correlation is always below the

6 per cent level.

indicating that it is not only a function of the mask, but also of the

actual data set.

Finally, Fig. 7 shows the correlation matrix. It exhibits structures

similar to those in Fig. 5. As for the f ℓ, the differences between

Figs 7 and 5 indicate that the correlation matrix does not depend

only on the mask.

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 400, 219–227
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224 K. Benabed et al.

( + 1) C /2π

f

Figure 6. Same as Fig. 4 for the WMAP5 data set. The dashed blue top

panel line now is the WMAP published spectrum.

Figure 7. Same as Fig. 5 for the WMAP5 data set.

4 A P P ROX IM ATING THE LOW-ℓ L I K E L I H O O D

For both data sets considered in the previous section, the posterior

distribution of the total angular spectrum Dℓ revealed similar and

striking features: the marginals are very well approximated by in-

verse gamma distributions, and there is a weak correlation between

multipoles (below the 10 per cent level). Since we used a flat prior,

these findings suggest that a copula approximation to the likelihood

should be quite accurate (in addition to being fast, by design). This

approach is somewhat similar to what has been proposed by Bond

et al. (2000) and implemented at low ℓ in Rudjord et al. (2009) and

at high ℓ in Hamimeche & Lewis (2008). It differs in that instead of

offset lognormal (as in Bond et al. 2000) or spline approximation

(Rudjord et al. 2009) we use inverse gamma cumulative functions

for Gaussianization. For the high-ℓ approximation, Hamimeche &

Lewis (2008) use an analytic reparametrization with an approximate

covariance matrix, computed using a fiducial Cℓ.

4.1 Copula approximation

A good approximation formula must at least reproduce the inverse

gamma marginals, and the observed level of correlation. A generic

way of building multivariate distributions with specified marginals

and some correlation is provided by copula models (Sklar 1959).

The copula model. Denote N (d)(·; μ,M) as the d-variate Gaus-

sian density with mean μ and covariance matrix M. Consider a

set of zero-mean unit-variance Gaussian variables Gℓ with den-

sity N (d)(Gℓ; 0, MG), where MG has only 1s on the diagonal and

possibly non-zero off-diagonal terms. Consider those transformed

variables Dℓ = Dℓ(Gℓ) which have an inverse gamma distribution

with parameters αℓ and βℓ, i.e. Gℓ and Dℓ are related by

N (Gℓ; 0, 1)dGℓ = iŴ(Dℓ; αℓ, βℓ)dDℓ. (15)

The distribution of Dℓ is then easily seen to be

π̃ (Dℓ) ≡
∏

k

iŴ(Dk; αk, βk)
N (d)(Gℓ; 0, MG)∏

k N
(1)(Gk; 0, 1)

. (16)

Distribution (16) is called the copula approximation. It belongs to a

parametric model with 2d + d(d − 1)/2 parameters: each of the d

multipoles requires a pair (αℓ, βℓ) for the marginal distribution and

the correlation matrix MG depends on d(d − 1)/2 free parameters.

Two properties. Probability distributions of the form (16) enjoy two

nice properties which readily follow from their construction. First,

the marginal distribution of each Dℓ remains an inverse gamma re-

gardless of the correlation level (which is independently controlled

by the matrix MG). Secondly, marginalization over any subset of

Dℓ is readily achieved by removing the corresponding rows and

columns of matrix MG.

Gaussianization. Evaluating the copula density (16) requires ex-

plicit Gaussianization, i.e. mapping Dℓ to Gℓ. This is easy, since

relation (15) implies that

Gℓ ≡ cN−1[ciŴ(Dℓ; αℓ, βℓ)], (17)

where ciŴ(·; α, β) denotes the cumulative distribution function

(CDF) of the inverse gamma distribution and cN−1 is the inverse

CDF (or quantile function) of the standard normal distribution,

sometimes called the probit function. The former is

ciŴ(x; α, β) ≡
∫ x

0

iŴ(t ; α, β) dt = Ŵ (α, β/x) /Ŵ(α),

while the latter, if missing from a statistical library, can be computed

as cN (x)−1 =
√

2erf−1(2x − 1) with erf(y) = 2√
π

∫ y

0
exp(−t2)dt .

Speed. Copula evaluation is very fast. Using a custom code to

compute the inverse error function, and the free GSL library3 for the

gamma and cumulative gamma distribution, we can compute about

18 000 samples per second, while the pixel-based likelihood needs

about 5.5 s per sample on the same computer within the same setting

(i.e. same overheads). Moreover, one can also sample directly from

the copula by first drawing Gℓ under to their multivariate Gaussian

distribution and then invert equation (17) to get the Dℓ values.

Learning the copula model. Learning the 2d + d(d − 1)/2 pa-

rameters of a copula model from (importance) samples of Dℓ is

straightforward. In a first step, one estimates for each ℓ, the inverse

gamma parameters (αℓ, βℓ) by ML (see Appendix A). In a second

step, the samples are Gaussianized via equation (17) using the esti-

mated values of (αℓ, βℓ). Finally, matrix MG is plainly estimated as

the sample correlation matrix of the Gaussianized samples.

Significance of correlation. Given a copula model π̃ with correlation

matrix MG, there is a simpler copula model with the same marginals

3http://www.gnu.org/software/gsl/
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TEASING: fast CMB low-ℓ likelihood 225

but without correlation, i.e. with MG = I. This model is denoted

π̃0 and called the uncorrelated model which, of course, is not as

accurate as π̃ . Since π̃0 and π̃ are Gaussian distributions, the loss

can be quantified exactly thanks to a Pythagorean property of the

Kullback-Leibler divergence which yields

K(π |π̃0) = K(π |π̃) + K(π̃ |π̃0). (18)

It shows that the mismatch K(π |π̃0) of the uncorrelated approx-

imation to the posterior is larger than the mismatch K(π |π̃) of

the regular copula by a positive term K(π̃ |π̃0). This term can be

computed in a closed form:

K(π̃ |π̃0) = −
1

2
log det MG, (19)

which is positive unless MG = I and readily gives a measure of the

price to pay for ignoring correlation.

Figure 8. f ℓ, cumulants and the Kullback divergence of Gℓ exhibit some

correlation. From top to bottom panels, f ℓ (and f sky), skewness, kurto-

sis and the Kullback divergence between the marginals and standard nor-

mal. Note that the Kullback divergence is estimated from a histogram. The

last two panels have their ordinates downwards to better show the corre-

lation. Error bars are measured on 500 Gaussian simulations of size ESS

(= 457 600).

4.2 Validation: first results

We first look at some self-consistency results when learning a copula

model from the importance samples obtained from the WMAP data

set discussed in Section 3.4.

High perplexity. The first important thing to report is that, on the

perplexity scale, the copula approximation is remarkably good: we

reach P(π |π̃) = 0.99 on a 500 k simulation sample using estimates

of the C
peak
ℓ , f ℓ and MG obtained on the same sample. As a simple

cross-validation test, we split the 500 k sample into two subsets of

equal size, re-estimate the copula parameters on the first subset and

compute the perplexity using the second subset. We find a negligible

decrease in perplexity of about 5 × 10−4.

Thus, the copula approximation appears to work extremely well

on this data set. Still, one should look further than a single number.

This section looks into more details of the approximation.

Gaussianization. Even though the marginals were found to be well

approximated by inverse gamma distributions, the Gaussianized

importance samples may show some small hints of non-Gaussianity.

Indeed, for each Gℓ, we computed the skewness, the kurtosis and

the Kullback divergence to a standard Gaussian. See Fig. 8 for the

WMAP data set (a similar plot can be obtained on the other data

set). The plot shows a small deviation from Gaussianity showing

that the target densities are not exactly inverse gamma distributed.

In addition, those non-Gaussian indicators degrade with ℓ and are

correlated with f ℓ. Since the latter measures deviation from the

full-sky case, this is not unexpected.

Correlation matrices. By design, the copula correctly predicts the

correlation matrix of the Gaussianized variables but it is not nec-

essarily accurate as a predictor of the correlation matrix V of Cℓ.

Here, we check that V is well predicted by the covariance matrix of

the copula model, denoted as Ṽ. Matrix V is estimated as described

before (based on an importance sample); matrix Ṽ is obtained from

the same importance samples, reweighed by π̃/π . The results are

displayed in Fig. 9 and show an excellent agreement, with small

and evenly distributed errors.

4.3 Perplexities

We briefly report on the relative perplexity and the Kullback diver-

gence between the posterior and its approximations on the WMAP5

data set. Some results are reported in Table 1. Since the Gaus-

sianized variables were found to be weakly correlated, it may be

tempting simply to ignore this correlation and to resort to the uncor-

related approximation π̃0 defined in Section 4.1. In this case, the fit

is slightly degraded: we measure P(π |π̃0) = 0.97, in line with the

perplexity obtained after the last step of the adaptive importance run

Figure 9. Left-hand panel: V; centre panel: V − Ṽ; right-hand panel: 10 × (V − Ṽ). All panels share the same colour scale. Matrices V and Ṽ have been

obtained on the same importance sample with appropriate weights.
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Table 1. Perplexities (see the text).

Approximation Perplexity Kullback (×10−3)

Copula π̃ 0.991 8.6

Uncorrelated copula π̃0 0.965 35.2

Uncorrelated last run 0.956 45.0

Naive π̃naive 0.779 249.6

Lognormal 0.191 1655.3

(P = 0.96; Section 3.4) showing that the determination of C
peak
ℓ

and f ℓ is only marginally improved by the 500 k simulation. The

contribution of correlation to the quality of the fit is given on the

Kullback scale by the Pythagorean decomposition (18). Numerical

evaluation by Monte Carlo integration gives, term to term,

K(π |π̃0) = 35.18 × 10−3 ≈ 8.61 × 10−3 + 27.3 × 10−3. (20)

This is only an approximate equality because of MC errors. The

last term was also evaluated using equation (19), yielding 27.5 ×
10−3. These values show that correlation accounts for most part of

the mismatch in the sense that K(π |π̃) ≈ 1
3
K(π̃ |π̃0).

Those results can be compared to the naive approximation used

as the initial proposal in our adaptive importance sampling runs, i.e.

the copula approximation π naive with CML
ℓ , f sky and ignoring the

correlation. It gives a perplexity of P(π |π̃naive) = 0.76 correspond-

ing to a huge increase in the Kullback divergence.

Finally, we compute, as a comparison baseline, the perplexity

of the classical offset lognormal approximation (Bond et al. 2000).

The estimation of the curvature at the peak is easily derived from

f ℓ. The perplexity goes down to P = 0.2 for that approximation.

4.4 Validation: pseudo-cosmological parameters

We now compare several likelihood functions via their impact on

estimation of (pseudo-) cosmological parameters from WMAP data.

Since only the low-ℓ part of the spectrum is considered, only a

few cosmological parameters can be fitted. We choose to perform

our comparisons using a simple model with only two parameters,

amplitude and spectral index, i.e. we consider

C̃ℓ ≡ Cref
ℓ × A

(
ℓ

ℓ0

)n

, (21)

where Cref
ℓ is a reference angular spectrum (here the WMAP1 best-

fitting spectrum), and the relative amplitude A and the relative spec-

tral index n are our pseudo-cosmological parameters. The reference

power spectrum being a fit on a broader range of multipoles, the

posterior of (A, n) is not centred at (1, 0).

Fig. 10 shows the 1σ , 2σ and 3σ contours and the peak posi-

tion for different likelihood approximations. The top panel presents

a comparison between the WMAP5 likelihood code, used in both

pixel-based and Gibbs modes (Dunkley et al. 2009), and copula

approximations with or without correlations (i.e. π̃ and π̃0). They

all appear to be in remarkably good agreement. The small discrep-

ancies in the contour curves (which are smaller than the grid step

size) are much smaller than the width of the mode. The peaks of

the copula approximations and of the Gibbs approximation are very

slightly displaced compared to the official WMAP5 results, at a dis-

tance of the order of the step size of the grid on which likelihoods are

evaluated. The bottom panel presents a comparison with the lognor-

mal approximation described in the previous chapter. As expected,

the quality of that last approximation is poor, with a deviation of

the best fit (A, n) of the order of σ/4. None the less, the areas of

A

n

A

n

Figure 10. Posterior distribution for (A, n) using different likelihood ap-

proximations. Both panels: the dashed blue line shows official WMAP5

likelihood code and the black solid line shows the copula approximation

π̃ . Top panel: green dotted line is the Gibbs implementation included in

the official code, the red dash–dotted line is the copula approximation ig-

noring correlations, π̃0. Bottom panel: solid magenta line is the lognormal

approximation. The coloured symbols mark the peak of each posterior.

the 1σ , 2σ and 3σ regions are similar, probably because these areas

are mostly controlled by the values of f ℓ.

5 C O N C L U S I O N

Using an adaptive importance sampling algorithm, we explored the

low-ℓ posterior of partially observed CMB maps, both synthetic

and real. From this exploration, we built a copula-based approxi-

mation for that posterior distribution. Numerical evaluation of that

approximation is much faster than the pixel-based computation. We

showed that the approximation is very close to the actual posterior

with an accuracy which is probably sufficient for most cosmologi-

cal applications. For example, on a simple two-parameter pseudo-

cosmological model, we found a discrepancy which is negligible

with respect to the width of the posterior mode (Fig. 10).

The copula approximation uses two ingredients: a model of

marginal distributions and a correlation matrix. The marginals are

mostly distributed as inverse gammas, as in the full-sky case,

but with different parameters. Maybe surprisingly, the correla-

tions between (Gaussianized) multipoles are found to be quite low

(<10 per cent). Ignoring them in the toy cosmological model

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 400, 219–227
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illustrated by Fig. 10 does not significantly change the posterior.

However, when considering the full joint distribution of the mul-

tipoles (as opposed to its projection on to the two-parameter toy

model), the correlation is significant: the Kullback divergence from

the true posterior to its copula approximation quadruples if the cor-

relation is left out. In both cases, however, the Kullback divergence

remains small.

The main limitation of the proposed approximation is that it re-

quires an exploration of the posterior to measure the parameters of

the approximation. We used an adaptive importance sampling algo-

rithm, but an MCMC algorithm, Gibbs-based (Eriksen et al. 2004;

Jewell et al. 2004; Wandelt et al. 2004) or Hybrid MC-based (Taylor

et al. 2008) can also be used. Both methods exhibit good scaling

properties thanks to a smart rewriting of the posterior and could, if

convergence is well controlled, provide estimates at higher ℓ. In-

deed, a very recent work, published at the time we were finishing

this paper, follows a similar path and demonstrates a Gaussian-

ization technique based on splines rather than on inverse gamma

models (Rudjord et al. 2009).

Another approach would be to determine the parameters of

the marginals directly from the likelihood, without resorting to a

sampling-based exploration. We are currently working on an analyt-

ical derivation of the approximation which would make it possible

to build an approximation valid for higher ℓ at low computational

cost. Being able to reach smaller scales is also important to explore

the transition between low-ℓ estimates and high-ℓ ones. Indeed, at

very small scales, the problem becomes intractable and requires

the use of asymptotic approximations to the likelihood (Percival &

Brown 2006; Smith, Challinor & Rocha 2006).

Finally, it is not clear yet whether the same kind of approximation

can be built for polarized fields. In the temperature case addressed

here, we took advantage of a low correlation situation, thanks to a

high signal-to-noise ratio and relatively small masked area. Polar-

ized observations will be noisier, and it remains to be seen if copula

approximations are up to the task. This is the subject of current

investigations.
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APPENDI X A : ML ESTI MATI ON O F INVERS E

G A M M A PA R A M E T E R S

The log-likelihood logL(α, β) for a sample of N independent real-

izations Xi under an inverse gamma density is

logL =
N∑

i

[
α log β − log Ŵ(α) − (α + 1) log Xi −

β

Xi

]

as seen from equation (3). The ML estimate for (α, β) is the so-

lution of ∂ logL

∂α
= 0 and ∂ logL

∂β
= 0 leading to the two estimating

equations:

log β − ψ(α) =
1

N

N∑

i

log Xi,
α

β
− =

1

N

N∑

i

1

Xi

,

where ψ(u) is the log-derivative of the gamma function, also known

as the digamma function. Using the last equation to express β in

terms of α, the ML estimate can be obtained by solving

log α − ψ(α) =
1

N

N∑

i

log Xi − log

(
1

N

N∑

i

1

Xi

)
. (A1)

This is quickly done numerically in a few steps of a Newton algo-

rithm; both the digamma function and its derivative being available

in the GSL package.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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