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1. Introduction 

 
Technical progress and gains in economic efficiency are generally viewed as favorably 

contributing to economic growth and welfare, but does this normative conclusion hold for 

industries exploiting common renewable resources? What are their effects on the paradox 

between the individual firm’s private economic efficiency and economic efficiency and social 

costs at the level of society with common renewable resources (Gordon 1954)?  In short, what is 

the relationship between technical change and a broad notion of efficiency with the “Tragedy of 

the Commons” and the optimum exploitation of common renewable resources? 

The normative economics literature on common renewable resources has largely 

overlooked technical change and its effects, instead focusing on steady-state levels of effort or 

capital stock, resource stock, yield, and their dynamic approaches under constant technology.1 

Smith (1972), an exception, examined induced technological change and common renewable 

resources, finding that an unpriced common resource induces technical change in favor of 

increased utilization of the unpriced resource and that the competitive pressures of the race to fish 

can compel firms to adopt process innovations. Dasgupta (2008) recently reiterated these points 

and further discussed the relationship between technical change (and economic growth) and the 

shadow price of common renewable resources and other forms of natural capital and the role of 

property rights. Smith and Krutilla (1982) observed that technical change under open access 

accelerates the dissipation of resource rent and depletes resource stocks that are already 

overexploited.2 McAusland (2005) considered technical progress that directly affects the intrinsic 

growth rate of the resource stock but not the production technology, and was not concerned with 

direct normative economic optimization of resource exploitation. Murray (2007) introduced 
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exogenous and disembodied technical progress into a static Gordon-Schaefer model of a fishery 

to show that not accounting for technological change can lead to overestimated natural growth of 

the resource stock and that inputs must be removed from the fishery at the rate of technological 

change to sustain the harvest target, and simulated the probability of resource stock collapse. In 

short, the normative literature has yet to formally analyze the impact of technical progress upon 

optimum exploitation of common renewable resources within a formal normative framework. 

This literature has considered non-autonomous models, but focused on exogenous price shocks 

(Clark 1990). This normative literature has similarly overlooked the notion of economic 

efficiency developed by Debreu (1951) and Farrell (1957), to instead concentrate solely on the 

efficient scale of production, i.e. on the optimum level of effort.3  

In contrast, the normative exhaustible resource and sustainable growth literature has paid 

considerably more attention to technical progress and to substitution possibilities between the 

resource stock and inputs in discussions of natural resource scarcity, limits to growth, and 

backstop technologies (Arrow et al. 2004, Simpson et al. 2005). Farzin (1995), Berck (1995), and 

d’Autume and Schubert (2008) summarized the literature on technical progress and exhaustible 

resources and focused upon the impact of technical change on measures of resource scarcity. 

Climate change and the need to reduce fossil fuel and carbon emissions are focusing considerable 

attention upon induced technical change, with recent surveys by Jaffe, Newell, and Stavins (2003) 

and Pizer and Popp (2007).  

This paper contributes to the normative economic literatures on technical change, 

efficiency, and optimum exploitation of renewable resources by introducing both output-oriented 

Debreu-Farrell technical inefficiency and technical progress into normative static and dynamic 

models of an industry exploiting a common renewable resource and examining the economic and 
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policy ramifications. The paper develops the bioeconomic stages of production and clarifies that 

normative renewable resource models focus solely on scale efficiency and overlook technical and 

allocative efficiency. The most important contribution is an augmented fundamental equation of 

renewable resource economics that incorporates changes in technology and technical inefficiency 

into a new term, the marginal technology effect, and modifies the existing marginal stock effect. 

The results show that lower costs from technology generally outweigh lower costs from a higher 

resource stock and that resource stock levels can decline far below the steady-state equilibrium 

with static technology. The renewable resource model is developed for a fishery using the classic 

Gordon-Schaefer specification (Schaefer 1957, Gordon 1954), which lies at the heart of this 

literature and allows direct and analytic development of the modified Golden Rule.4 The technical 

change specified is disembodied, exogenous, and learning-by-doing and -using.5  

Overlooking technical progress and technical efficiency in common renewable resource 

industries in a normative framework has profound policy consequences through exacerbating the 

commons problem under open access or potentially generating misleading policy advice in terms 

of economic optimum levels of the resource stock, yield, effort (input use), and economic welfare. 

In fishing industries, for example, once fish could no longer hide from vessels that are 

increasingly more technologically advanced, the stage was set for the current overfishing crisis in 

many of the world’s fisheries.6 In fact, perhaps the single greatest pressure on global fisheries is 

technical progress, now that fishing fleets’ capital stocks have built up to an overcapitalized state, 

but policy advice that remains focused solely on reducing capital stocks, fishing effort, or 

subsidies overlooks the ongoing march of technology that allows even reduced capital stock or 

effort to be more effective at finding and harvesting fish. Similarly, technical progress contributed 

mightily to the decimation of many of the great whale stocks (Davis et al. 1987).  
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Section 2 develops a stochastic stock-flow production frontier incorporating technical 

change and technical inefficiency. Section 3 introduces this production frontier into the simple 

static Schaefer model that forms the basis of Section 4’s static Gordon-Schaefer bioeconomic 

model, the workhorse of renewable resource economics, examining the Nash equilibrium of open 

access. Section 5 extends the Gordon-Schaefer rent frontier to the static steady-state Pareto 

optimum, i.e. the sole owner of Scott (1955).  Section 6 develops the backward bending supply 

curve with technical progress and inefficiency based on the static Gordon-Schaefer rent frontier. 

Section 7 develops a simple normative dynamic model of the economic optimum incorporating 

technical inefficiency and technical change, culminating with an augmented Golden Rule or 

fundamental equation of renewable resources incorporating the new marginal technology effect 

term and a modified marginal stock effect. Section 8 considers several policies. Section 9 

introduces the empirical application. The unavailability of detailed capital and investment data for 

the empirical example precludes an empirical analysis of embodied technical change. Section 10 

provides the empirical results. Section 11 provides concluding remarks. The main static results 

are summarized in Table 1 for conditions with and without technical change or technical 

efficiency. Table 2 summarizes the main dynamic model results. All derivations in the paper are 

available in a separate Appendix from the authors. 

2. Fishery Production Frontier 

The stock-flow production function in time t relates catch,Y
t
, to the fish stock, S

t
, and 

fishing effort, E
t
 (Schaefer 1957): Yt = f (q,E t ,St ).

7 Catch is the output or flow from the resource 

stock, and the resource stock and fishing effort are specified as aggregate inputs. Effort is 

typically considered as the first stage in a two-stage production process and implicitly assumes 
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weak or strong separability of E
t
 from S

t
 and Y

t
, or Leontief aggregation, to form a composite 

index of inputs (Hannesson 1983, Squires 1987). The catchability coefficient, q > 0 , is the 

probability that one unit of effort taken at random will catch one unit of the population taken at 

random.8 The classic bioeconomic model specifies a specific form of the Cobb-Douglas 

production function:Yt = qE tSt , which has strong separability. A non-linear but positive exponent 

for the resource stock is possible depending on the nature of the fishery, giving Yt = qE tSt
β , where 

β =1 implies evenly distributed fish and where schooling fish have lower positive values closer to 

zero (Hannesson 1993), as considered later in the paper. 

Introducing time-varying output-oriented technical efficiency (TE) gives Yt = qStE te
−µ(t ,Z ), 

where −µ(t,Z) denotes a nonpositive, half-sided error term that introduces deviations from the 

best-practice frontier or technical inefficiency.9 The measure for technical efficiency (TE) is 

exp{−µ(t,Z)} ≤1. Technical inefficiency arises when TE < 1 and grows with increases in ),( Ztµ . 

Technical inefficiency accounts for the time it may take for new technologies to attain their full 

productive potential and diffusion after their introduction, poorly designed regulation, the firm’s 

managerial failure, and efficiency differences in harvesting units. The vector Z could include 

policy variables Ψ determined by the regulator that induce technical inefficiency or Z could 

include managerial (or crew) effort to allow for asymmetric information or different structures in 

incentives, such as alternative ownership structures or property rights.  

Technical change, specified as exogenous, disembodied, and captured by a linear time 

trend t, can be introduced into the Graham-Schaefer surplus production frontier to give:10  

     Yt = qStE te
λt−µ(t ,Z )  .                                                        (1) 

The parameterλ > (<)0  measures the rate of technical progress (regress), shifting the best-practice 
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frontier, and t denotes time. Technical change in (1) is necessarily Hick’s-neutral with a single 

input, is output-augmenting (and equivalently input-augmenting with a composite input and linear 

homogeneity of the effort aggregator function), and could be easily specified to allow technical 

change which is non-neutral and which is not constant (through addition of interactions E
t
t , S

t
t , 

and t 2 to eλt ); this is considered later in the paper, but initially for simplicity we retain the Hick’s 

neutrality and constant rate.11 (Under open access, non-neutral technical change interacting with 

the resource stock should be biased toward resource-using, which accelerates the externality or 

commons problem as discussed by Smith (1972) and Ruttan (2001) and which we address later in 

the paper.) A more general index of autonomous technical change, A t( ), such as that of Baltagi 

and Griffin (1988), is easily substituted and is also employed in the empirical application, 

allowing technical change to vary in rate and direction in each time period, readily accommodates 

biases, and gives the specification of (1) as:  Yt = qA t( )StE te
−µ(t ,Z ).12 

Technical change in (1) can in part be viewed as a learning-by-doing and -using (Arrow 

1962, Rosenberg 1982), once exogenous innovations have been introduced.13 Usually no formal 

R&D is devoted to technological advances except perhaps in all but the largest, most capital-

intensive, and concentrated fishing industries.14 Firms adopt electronic and other process 

innovations for navigation, communication, finding fish, and monitoring gear performance while 

fishing (and under open access are compelled by the “race to fish”), followed by a period of 

learning (which can be captured by the technical inefficiency term). Some types of technical 

change (often regulatory induced) can mitigate the negative environmental externality of 

undersized fish or undesirable joint products (e.g. bycatch of turtles), but this paper focuses on 

technical change enabling production of desirable outputs at lower cost. Embodied technical 
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change in the fishing vessel can also be important, but the focus here is on continuous and gradual 

smaller process innovations and subsequent learning related to finding fish, especially by the 

firm’s manager (skipper) or learning by doing, and for discovery of new and unanticipated uses of 

the process innovations or learning by using by the manager and labor force (crew). Since 

industries exploiting renewable resources are largely mature, minimal depreciation of the largely 

tacit knowledge acquired through learning is anticipated (although little is known about the 

process by which this tacit knowledge is acquired). Normally, there is no opportunity cost other 

than the current cost of production with learning-by-doing (i.e. without other opportunity costs 

such as crowding out from R&D or knowledge market failures), but as demonstrated below, the 

external cost under incomplete property rights with common resources does create a social 

opportunity cost. There may also be learning benefit spillovers from one firm to the next, but the 

lion’s share of the learning benefits are nonetheless expected to accrue to the firms engaged in the 

learning, especially to the skipper in finding fish (skippers usually own their vessels and inter-

vessel skipper movement is usually limited) and to the crew in handling gear and equipment, 

although learning differences are anticipated among firms.  

3. The Schaefer Model: The Yield-Effort Frontier 

The equilibrium yield-effort function, developed by Schaefer (1957), starts with the net 

growth rate of the biomass specified as a simple differential equation: dS
t
dt = F(S

t
) −Y

t
, where 

F(S
t
)  denotes a general growth function of the resource stock measured in biomass. Substituting 

(1) and the logistic or Pearl-Verhulst growth function15 into dS
t
dt = F(S

t
) −Y

t
: 

    ),(1 Ztt

tt

t

t

t eEqS
K

S
rS

dt

dS µλ −−⎥
⎦

⎤
⎢
⎣

⎡
−=  ,               (2)
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where r is the maximum intrinsic growth rate of S
t , i.e. r = lim

t→0

dS
t
dt

S
t

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  and K is the carrying 

capacity, lim
t→∞

S
t

= K  with zero harvest. In steady-state equilibrium, the instantaneous rate of 

change in the population is zero, i.e. dS
t
dt = 0 .16  

Solving for the steady-state level of the biomass allowing for output-oriented technical 

inefficiency and technical progress gives for the Graham-Schaefer surplus production frontier: 

    ⎥
⎦

⎤
⎢
⎣

⎡
−=

−

r

eqE
KS

Ztt

ttTE
),(

, 1
µλ

 .                   (3) 

The steady-state level of biomass, tTE
S

, , depends not only upon r, K, q, and fishing effort, Et, but 

now also on ),( Ztt
e

µλ − . With continued technical progress we only have a steady-state equilibrium 

level of biomass if the fishing effort is reduced accordingly. This can be seen by differentiating 

(3) with respect to time (given the level of technical efficiency) to give: 

 )( ),(),(
,

ZtttZtt

t

tTE

e
t

E
eEq

r

K

t

S µλµλ
λ

∂

∂ −−

∂

∂
+−=  .               (4) 

From (4) it is clear that a steady-state equilibrium level of biomass requires ∂E
t
∂t = −λE

t
< 0 . In 

other words if the level of fishing effort is constant, continuous technical progress will lower the 

level of the biomass. In principle, with a pure compensation population model, such as the logistic 

growth function and the static Schaefer model, the population can march inexorably to extinction 

with continued technical progress without corresponding reductions in the level of fishing effort, 

as illustrated by Figure 1 by the continued rotation upwards of the ray from the origin, the 

production frontier from Equation (1).17 

The higher is technical efficiency, the lower is equilibrium level of tTE
S

, :18 
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     0
),(

),(
,

>=
− Ztt

t

tTE

eqE
r

K

Zt

S µλ

∂µ

∂
 .    (5) 

This effect is shown in Figure 1 as an upwards shift of the production function. Changes in 

technical efficiency lead to changes in the steady-state equilibrium level of biomass. 

[Figure 1 around here] 

The equilibrium Schaefer yield-effort frontier allowing for technical inefficiency and 

technical change is found by substituting tTE
S

,  from (3) into the production frontier (1) to give: 

Yt
TE ,t

= qKE te
λt−µ( t,Z )

1−
qE te

λt−µ(t ,Z )

r

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = qKE te

λt−µ(t ,Z ) −
q
2
KE t

2
e
2λt−2µ( t,Z )

r
 . (6) 

The marginal product of effort, MP
E

TE ,t , is reKEqqKeEY
Ztt

t

Ztt

t

tTE ),(222),(, 2 µλµλ
∂∂

−−
−= . The 

average product of effort is reKEqqKeEYAP
Ztt

t

Ztt

t

tTE

t

tTE

E

),(222),(,, µλµλ −−
−==  

[ ]reqEqKe
Ztt

t

Ztt ),(),( 1 µλµλ −−
−= , or using (3), tTEZtttTe

E SqeAP
,),(, µλ −

= . 

 The level of technical efficiency of the fleet or the state of technical progress does not 

affect maximum sustainable yield (MSY) or the corresponding resource stock level (Figure 1). 

This follows because MSY and the stock level at MSY are solely determined by the biological 

parameters r and K. However, the corresponding level of effort is affected. Differentiating (6) by 

Et and setting the result equal to zero gives the level of fishing effort that produces MSY (Table 

1): EMSY

TE ,t
=

r

2qe
λt−µ(t ,Z )

. The difference EMSY

TE ,t − EMSY =
r

2q

1

e
λt−µ(t ,Z )

−1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  indicates that technical 

progress reduces the effort and increases in technical inefficiency raise the effort yielding MSY, 

where E
MSY

 is the MSY level of effort in the standard model, i.e. without technical change and 

technical efficiency. Substituting E
MSY

TE ,t  into the yield-effort curve (6) gives MSY (Table 1): 
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Y
MSY

TE ,t
= rK 4 . Similarly, substituting E

MSY

TE ,t  into (3) gives S
MSY

TE ,t
= K 2. The difference 

AP
E

TE ,t
− AP

E
= [ ] [ ]11 ),(222),( +−−

−− ztt

t

Ztt
eKEqeqK

µλµλ  similarly indicates that technical progress 

reduces the average product of effort and that increase in technical inefficiency raises it. 

Sustainable yield changes over time as given after differentiating (6) by time t: 

   
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎥⎦

⎤
⎢⎣

⎡
−−⎥⎦

⎤
⎢⎣

⎡
−=

−
−

t

Zt

r

eKEq

t

Zt
eqKE

t

Y
Ztt

tZtt

t

tTE

∂

∂µ
λ

∂

∂µ
λ

∂

∂ µλ
µλ ),(

2
),(

),(2222

),(
,

   .         (7) 

Technical progress holding technical inefficiency constant is given by: 

        tTE

Et

Ztt

tZtt

t

tTE

MPE
r

eqE
eqKE

t

Y ,

),(

),(
, 2

1 λλ
∂

∂ µλ
µλ

=⎥
⎦

⎤
⎢
⎣

⎡
−=

−
−    .          (8) 

The sustainable yield is zero when fishing effort exceeds the critical level of effort, E
c
 

(Clark 1976). In the standard equilibrium Schaefer yield-effort model, Ec = r q; when qrE > , 

the population is driven towards extinction and when E ≤ r q = Ec
, there exists a stable 

equilibrium population level. When output-oriented technical efficiency and technical change are 

introduced into the equilibrium Schaefer yield-effort frontier (6), then Ec

TE ,t = r qe
λt−µ( t,Z )[ ]. The 

difference Ec

TE ,t − Ec =
r

q

1

e
λt−µ(t ,Z )

−1
⎡ 

⎣ ⎢ 
⎤

⎦⎥
 indicates that technical progress reduces the critical level of 

effort and technical inefficiency increases the critical level of effort. 

The sign of tY
tTE
∂∂

,  depends on the level of E. Specifically, 0)(
,

<>
t

Y
tTE

∂

∂
 as 

tTE

MSY

Ztt

t EqerE
,),(2)( =><

−µλ , i.e. technical progress increases (decreases) equilibrium yield 

when tTE

MSYt
EE

,)(>< . Technical progress raising equilibrium yield requires not only a positive rate 

of output augmentation, λ > 0, but a positive marginal product of effort, MP
E

TE ,t
> 0, or what is 
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effectively harvesting in the Bioeconomic Stage II of Production where tTE

MSYt
EE

,
0 << .19 

 The marginal product of effort changes over time as given by: 

[ ][ ]reKEqqKetZttEYtMP
Ztt

t

Ztt

t

tTEtTE

E

),(222),(,2, 4),( µλµλ
∂∂µλ∂∂∂∂∂

−−
−−== . Holding 

technical inefficiency constant, technical progress affects MP
E

TE ,t  as: 

== tEYtMP
t

tTE

E

tTE

E
∂∂∂∂∂

,2,  [ ]reKEqqKe
Ztt

t

Ztt ),(222),( 4 µλµλ
λ

−−
−  

[ ]reqKEqKe
Ztt

t

Ztt ),(),( 41 µλµλ
λ

−−
−= . ∂MP

E

TE ,t
∂t > (<)0  when 2)( .tTE

MSYt
EE >< , as indicated by 

setting the terms inside the bracket equal to zero and solving for E, giving 

24 ,),( tTE

MSY

Ztt

tt EeqErE ==
−µλ . Changes in technical inefficiency on MP

E

TE ,t  holding technical 

progress constant are given by == ),(,2,
ZtEYtMP

t

tTEtTE

E
∂µ∂∂∂∂  

[ ]reKEqqKetZt
Ztt

t

Ztt ),(222),( 4),( µλµλ
∂∂µ −−

−−  [ ]reqKEqKeZt
Ztt

t

Ztt ),(),( 41),( µλµλµ −−
−−= . 

∂MP
E

TE ,t
∂µ(t,z)(<)0  as 2)( .tTE

MSYt
EE >< . Figure 2 illustrates the effect of technical progress on 

MP
E

TE ,t . 

[Figure 2 around here] 

 The average product of effort changes over time as given by: 

( )[ ][ ]reKEqqKetZttAP
Ztt

t

ZtttTE

E

),(222),(, 2, µλµλ
∂∂µλ∂∂

−−
−−= . Holding technical inefficiency 

constant, setting the terms inside the brackets equal, and solving shows that ∂AP
E

TE ,t
∂t > (<)0  as 

tTE

MSYt
EE

,)(>< . 

The effect of the level of technical inefficiency on sustainable yield depends on the level 

of effort vis-à-vis the MSY level of effort, E
MSY

TE ,t , or equivalently, the resource stock vis-à-vis 

MSY, S
MSY

TE ,t . Holding technical progress constant, differentiating the equilibrium yield-effort 
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frontier, Equation (6), with respect to µ(t,Z)  gives: 

 ⎥
⎦

⎤
⎢
⎣

⎡
+−=

−
−

r

eqE
eqKE

Ztd

dY
Ztt

tZtt

t

tTE ),(

),(
, 2

1
),(

µλ
µλ

µ
 .                                   (9) 

The sign of ),(,
ZtddY

tTE µ  depends on the algebraic sign of [ ]),(2 Ztt

teqEr
µλ −+−  which 

since 0),(
>

− Ztt

teqKE
µλ , depends on the level of effort E vis-à-vis E

MSY

TE ,t . Hence, when 

tTE

MSYZttt E
qe

r
E

,

),(2
)( =<>

−µλ
, 0)(),(,

<>ZtddY
tTE µ , i.e. when tTE

MSYt
EE

,)(<>  an increase in 

technical inefficiency or reduction in technical efficiency leads to an increase (decrease) in 

sustainable yield. Similar to technical progress, ∂MP
E

TE ,t
∂µ(t,Z) < (>)0 , as 2)( .tTE

MSYt
EE >< . 

In short, changes in technical efficiency and technology can raise (lower) sustainable, 

steady-state yield at lower (higher) levels of effort than that of MSY, at which point the resource 

stock is comparatively higher (lower) and the marginal product of effort is positive (negative).20 

These results with a renewable resource and the requirement of sustainable yield sharply contrast 

with the usual expected result in industries that do not exploit a renewable resource with a stock-

flow technology in which an increase in technical efficiency (up to the frontier) and especially 

technology raises output levels regardless of the input levels. This can also been seen in Figure 1. 

If the surplus production frontier crosses the growth function below S
MSY

, then increases in effort 

decreases equilibrium yield, while if the surplus production frontier crosses above S
MSY

, then 

increases in effort increase equilibrium yield. 

The traditional static results are now conditional upon the level of technical inefficiency 

and the state of technology. Allowing for technical inefficiency and technical progress shows that 

there any number of sustainable equilibria effort, resource stock, and catch levels, and that these 
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sustainable equilibria can readily change over time through technical progress and changes in 

technical efficiency. Increases in technical efficiency and technical progress raise sustainable 

yields at levels of effort below the E
MSY

TE ,t , i.e. at a Bioeconomic Stage II of Production, but lower 

sustainable yields at higher effort levels. Increases in technical efficiency and technical progress 

raise MP
E

TE ,t  at levels of effort one-half of E
MSY

TE ,t . In both instances, E
MSY

TE ,t  is declining with 

increases in technical efficiency and technical progress and hence the interval of effort within the 

bioeconomic Stage II of Production will continue to decrease. 

4. The Gordon-Schaefer Bioeconomic Model 

Gordon (1954) developed the classic static bioeconomic model based on the equilibrium 

Schaefer yield-effort curve when the access to the fishery is open. Let P = constant price per unit 

of harvested biomass (yield). Let c = constant (marginal and average) cost per unit of effort, 

where allow all costs to be variable in a given time period. Total sustainable revenue (using 

Equation 6) is ⎥
⎦

⎤
⎢
⎣

⎡
−=

−
−

r

eqE
ePqKETR

Ztt

tZtt

t

tTE

),(

),(, 1
µλ

µλ . Total cost is commonly specified 

t
cETC = , so that the costs of fishing are proportional to the effort expended.  

The rent frontier allowing for technical inefficiency and technical change is: 

     [ ]
t

Ztt

tZtt

t

tTEtTEZtt
cE

r

eqE
ePqKETCTReEKqrcP −⎥

⎦

⎤
⎢
⎣

⎡
−=−=

−
−−

),(

),(,,),( 1,,,,,,
µλ

µλµλπ          (10) 

   t

Ztt

tZtt

t cE
r

eKEPq
ePqKE −

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

−
−

),(2222

),(

µλ
µλ  . 

The marginal revenue of effort from (10) is: ∂TRTE ,t
∂E =MR

E

TE ,t  

[ ] EreKEPqePqKE
Ztt

t

Ztt

t ∂∂
µλµλ ),((222),( −−

−=  reKEPqPqKe
Ztt

t

Ztt ),(222),( 2 µλµλ −−
−=  = 
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⎥
⎦

⎤
⎢
⎣

⎡
−=

−
−

r

eqE
PqKe

Ztt

tZtt

),(

),( 21
µλ

µλ . MR
E

TE ,t
> (<)0  depends on tTE

MSYt
EE

,)(>< . Setting the two terms 

inside the brackets equal to zero and solving for E shows that MR
E

TE ,t
> (<)0  as 

[ ] tTE

MSY

Ztt

t EqerE
,),(2)( =>< −µλ , that is, within a Bioeconomic Stage II of Production.  

 Technical progress changes MR
E

TE ,t  by output-augmentation in the production frontier (1), 

and thus the Schaefer yield-effort frontier (6), and is given by: 

 ⎥
⎦

⎤
⎢
⎣

⎡
−⎥⎦

⎤
⎢⎣

⎡
−=

−
−

r

eqE
PqKe

t

Zt

t

MR
Ztt

tZtt

tTE

E

),(

),(
, 4

1
),(

µλ
µλ

∂

∂µ
λ

∂

∂
. 

Setting the terms inside the right-hand bracket equal to zero, holding technical inefficiency 

constant, and solving for E TE ,t  gives: E TE ,t
= r 4qe

λt−µ(t ,Z )
= EMSY

TE ,t
2 , where E

MSY

TE ,t  corresponds to 

prior technical progress. Hence, since λPqKeλt−µ(t ,Z )
> (<)0  for technical progress (regress), 

∂MR
E

TE ,t
∂t > (<)0  as E TE ,t

< (>)E
MSY

TE ,t
2 . Technical progress increases MR

E

TE ,t  over increasingly 

lower levels of effort as time progresses as illustrated in Figure 2, recognizing that 

MR
E

TE ,t
= PMP

E

TE ,t . 

A different specification of the rent frontier is found by solving the production frontier (1) 

for [ ]),( Ztt

t qSeYE
µλ −= , and substituting into the cost equation 

t
cETC =  to give the cost 

function: 

 [ ] .),(,,,,
),(

t

t

Ztt qS

Y

e

c
ZtqSYTC

µλ
µλ

−
=−    

Technical progress leads to cost diminution, where the TC function can now be interpreted in 

terms of input price diminishment or effective input price, given by c φ(t) , and where 

φ(t) = e
λt−µ( t,Z ) is the augmentation coefficient.21 With a single composite input, cost-reducing 
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technical change can be viewed as cost-neutral and is equivalent to rent-neutral and Hick’s-

neutral technical change with the homogenous Gordon-Schaefer rent frontier.22   

Technical progress and gains in technical efficiency reduce costs. From 

[ ][ ]
t

Ztt

t

tTE
qSecYtZTtTC
),(, ),( µλ

∂∂µλ∂∂
−

−−=  and holding technical inefficiency constant, 

[ ] 0),(, <−= −

t

Ztt

t

tTE
qSecYtTC

µλ
λ∂∂ , i.e. cost diminution, and holding technical change constant 

gives [ ] 0),( ),(, >= −

t

Ztt

t

tTE
qSecYtZttTC

µλ
∂∂µ∂∂ , i.e. increases in technical efficiency also 

diminishes cost. Increases (decreases) in the resource stock lower (raise) total costs, 

[ ] 0
2),(, <−= −

t

Ztt

t

tTE
qSecYSTC

µλ
∂∂ , and decreases in the resource stock combined with 

technical progress raise total costs, [ ] 0
2),(,2 >= −

t

Ztt

t

tTE
qSecYtSTC

µλ
λ∂∂∂ , as might be 

expected as technical progress reduces the resource stock, thereby countervailing the effect of 

technical progress on costs.23 Marginal cost is given by [ ]
t

ZtttTEtTE

E qSecYTCMC
),(,, µλ

∂∂
−== , 

and increases in technology, technical efficiency, and resource stock have the same effect on 

marginal cost as on total cost, i.e. ∂ 2TCTE ,t
∂Y∂t < 0,∂

2
TC

TE ,t
∂Y∂µ(t,z) > 0  and 

∂
2
TC

TE ,t
∂Y∂S < 0. 

The rent frontier using the cost function is written: 

[ ]
tZtt

tt

t

Zttt

Ztt
Y

eqS

c
P

qS

Y

e

c
PYeYSqcP ⎥

⎦

⎤
⎢
⎣

⎡
−=−=

−−

−

),(),(

),(,,,,,
µλµλ

µλπ .                      (11) 

This rent frontier in terms of yield and biomass is used in several derivations below and in the 

dynamic model. The rent frontier in terms of effort, Equation (10), is useful for empirical analysis 

of time series of catch and effort. 

 Sustainable resource π TE ,t  rent changes over time in (10) according to: 



 
 16 

    

.         (12) 

Holding constant changes in technical inefficiency over time gives the effects of technical 

progress on resource rent:  

 .                  (13) 

Given , the sign of  depends on the sign of , which in turn depends on 

the sign of the terms in the bracket. Setting the terms inside the brackets equal to zero and solving 

gives  or .   whenMR
E

TE ,t
> (<)0 , which 

occurs when , i.e. when effort falls within the Bioeconomic Stage II of production, 

which also corresponds to .24 We observe in passing that the technical progress 

raises rent (11) through reductions in total costs and that . 

Much traditional regulation limits production or input use and thereby creates technical 

inefficiency. The effect of an increase in technical inefficiency on resource rent is given by: 

   
t

tTE

E

Ztt

tZtt

t

tTE

EMRZt
r

eKEPq
PqKeEZt

Zt

,

),(222

),(
,

),(
2

),(
),(

µµ
∂µ

∂π µλ
µλ −=⎥

⎦

⎤
⎢
⎣

⎡
−−=

−
−     .            (14) 

The effect of regulation by technical inefficiency is captured by 
∂π

TE ,t

∂µ(t,Z)

∂µ(t,Z)

∂Z
. Similar to 

technical change, given −µ(t,Z) < 0  and E > 0, 0)(),(),( ,,
><−=

t

tTE

E

tTE
EMRZtZt µ∂µ∂π , when 

MR
E

TE ,t
> (<)0 , which occurs when tTE

MSYt
EE

,)(>< , which corresponds to 
MSYt
SS )(<>  and the 
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Bioeconomic Stage II of production. 

4.1. The Gordon-Schaefer Model under Open Access 

At the open-access equilibrium, all rents are dissipated, so that 

[ ] 0.,,,,, ),( =− Ztt

t eEKqrcP
µλ

π  and the level of effort is larger than Pareto-optimal. Solving for the 

steady-state equilibrium level of biomass under open access, S
∞

TE ,t , from (11) gives: 

    S
∞

TE ,t
=

c

Pqe
λt−µ(t ,Z )

 .                                                     (15) 
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S
∞

= c Pq in the standard Gordon model without technical efficiency and the state of 

technology and is constant over time. The level of technical efficiency, the state of 

technology, catchability, and the cost-price ratio determine S
∞

TE ,t  in (15). The difference 

S∞
TE ,t − S∞ =

c

Pq

1

e
λt−µ( t,Z )

−1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  indicates that technical progress and increases in technical 

efficiency reduce S
∞

TE ,t , i.e. S
∞

TE ,t
< S

∞
.   

 Technical progress reduces the steady-state resource stock over all population 

levels with pure compensation models such as the logistic. Differentiating (15) by t gives:  

                    
∂S∞

TE ,t

∂t
=

c

Pqe
λt−µ(t ,Z )

−λ +
∂µ(t,Z)

∂t

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ = −S∞
TE ,t λ −

∂µ(t,Z)

∂t

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥    .                        

(16) 

Holding technical inefficiency constant shows that continued technical progress leads to 

inexorable decline in the resource stock: 

 
∂S

∞

TE ,t

∂t
=

−λc

Pqe
λt−µ(t ,Z )

= −λS
∞

TE ,t
< 0.                                                       

(17) 

The inherent inability of input controls to halt this decline in the face of continued 

technical progress and ill-structured property rights is evident. Technical progress creates 

a paradox, in which gains in private efficiency through process innovations reduce the 

resource stock for all. 

 Regulation by increasing technical inefficiency lifts the open-access equilibrium 

resource stock, demonstrating the paradox. Differentiating (15) by µ(t,Z)  gives: 

                
∂S

∞

TE ,t

∂µ(t,Z)
= µ(t,Z)

c

Pqe
λt−µ( t,Z )

= µ(t,Z)S
∞

TE ,t
> 0  .                            



 
 19 

(18) 

Because technical efficiency only increases to the best-practice frontier that exists in a 

given time period, there is an inherent limit to the extent that gains in technical efficiency 

can drive down the resource stock. Technical progress is clearly the more powerful force 

for resource stock declines.  

The open-access level of effort, E
∞

TE ,t , allowing for technical efficiency, the state 

of technology, and steady-state equilibrium is found by setting π = 0 in (10) to give: 

                            E
∞

TE ,t
=

r

qe
λt−µ( t,Z )

1−
c

PKqe
λt−µ(t ,Z )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = r

PqKe
2λt−2µ( t,Z ) − c

Pq
2
Ke

2λt−2µ( t,Z )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥                          

(19a) 

                                     =
r

qe
λt−µ(t ,Z )

1−
S∞
TE ,t

K

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 2EMSY

TE ,t
1−

S∞
TE ,t

K

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   .                                          

(19b) 

In the standard model E∞ = r
PqK − c

Pq
2
K

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ].1[

pqK

c

q

r
−=  and the difference is 

E∞
TE ,t − E∞ =

r

Pq
2
K

PqK + c[ ]
1

e
λt−µ(t ,Z )

−1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . ∞∞

>< EE
tTE )(,  depending on the relative 

strengths of technical progress and technical inefficiency, but where E
∞

TE ,t
< E

∞
 with 

technical progress and increases in technical efficiency. 

Changes in technology and technical efficiency alter E
∞

TE ,t . Differentiating (19a) 

by t: 

   
∂E∞

TE ,t

∂t
=

r

qe
λt−µ( t,Z )

1−
2c

PqKe
λt−µ(t ,Z )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ −λ +

∂µ(t,Z)

∂t

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ = −
r

qe
λt−µ( t,Z )

1−
S∞
TE ,t

K 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ λ −

∂µ(t,Z)

∂t

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ .    

(20) 
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Holding technical inefficiency constant, (20) reduces to the effects of technical progress 

on E
∞

TE ,t : 

       
∂E∞

TE ,t

∂t
= −

λr

qe
λt−µ( t,Z )

1−
2c

PqKe
λt−µ(t ,Z )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = −

λr

qe
λt−µ(t ,Z )

1−
S∞
TE ,t

K 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = −λEMSY

TE ,t
1−

S∞
TE ,t

SMSY

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .          

(21) 

The effect of technical progress on tTE
E

,

∞
depends on the level of S

∞

TE ,t  relative to 

S
MSY

= S
MSY

TE ,t
= K 2 , because −λr qeλt−µ(t ,Z )

= −λ2EMSY

TE ,t
< 0.  Setting the terms inside of the 

brackets equal to zero and solving gives S
∞

TE ,t
= K 2 = S

MSY
,  so that ∂E

∞

TE ,t
∂t < (>)0 as 

S
∞

TE ,t
< (>)S

MSY
. Technical progress lowers (raises) effort in open access if the open access 

resource stock is less (greater) than the MSY stock level. The resource stock under open 

access can generally be expected to lie below S
MSY

, so that technical progress can be 

expected to lower effort. 

 Figure 3 illustrates the effect of technical progress on the sustainable revenue 

frontier, total costs, and effort. Technical progress shifts the revenue frontier toward the 

origin and reduces the open-access level of effort.  

[Figure 3 around here] 

The effects of changes in technical inefficiency on E
∞

TE ,t  depend on the level of 

S
∞

TE ,t  relative to S
MSY

. Differentiating (19b) by µ(t,Z)  gives:  

      
∂E∞

TE ,t

∂µ(t,Z)
=

µ(t,Z)r

qe
λt−µ(t ,Z )

1−
S∞
TE ,t

K 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = µ(t,Z)

EMSY

TE

2
1−

S∞
TE ,t

SMSY

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .                                     

(22) 

µ(t,Z)r qeλt−µ(t ,Z )
> 0. Setting the terms inside of the brackets equal to zero and solving  

gives S
∞

TE ,t
= K 2 = S

MSY
, the resource stock level at which E

∞

TE ,t
= E

MSY
 also occurs, so 
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that: ∂E
∞

TE ,t
∂µ(t,Z) > (<)0 as S

∞

TE ,t
< (>)S

MSY
.  

In short, gains in private technical efficiency and technical progress pose a social 

problem with open access or unregulated common property through short run rises in 

catch rates, increases in effort, a new Pareto-inefficient equilibrium, and further 

reductions of the resource stock (which is socially undesirable if this level is less than the 

target). These gains in private technical efficiency and technical progress raise social 

costs as the technological resource stock externality is exacerbated, as is demonstrated 

next. 

4.2. The Resource Stock Externality under Open Access 

 The effect of technical inefficiency and technical progress on the technological 

resource stock externality under open access can be examined with a simple static model 

adapted from Hartwick and Olewiler (1998). Letting P =1, the average revenue of effort 

(AR
E

TE ,t
) equals the average product of effort (AP

E

TE ,t
)and MR

E

TE ,t
= MP

E

TE ,t . The total 

harvest from the fishery is 
t

tTE

E

tTE

E
EAPY

,,
= . Differentiating 

t

tTE

E

tTE

E
EAPY

,,
=  with 

respect to E gives: 
dE

dAP
EAP

dE

dY
MP

tTE

E

t

tTE

E

tTE

EtTE

E

,

,

,

,
+== , where 

dE

dAP
E

tTE

E

t

,

 is the stock 

effect or the technological stock externality. 

 The stock effect is negative, 0
),(222

,,
<−=−

−

r

eKEq
APMP

Ztt

ttTE

E

tTE

E

µλ

, because 

an increase in E reduces the sustainable resource stock, which in turn lowers the catch per 

unit of effort, AP
E

TE ,t . For each increment in E, firms actually receive the industry AP
E

TE ,t  

minus the stock effect, which no firm considers. All firms in the industry are affected by 

the marginal change in E, but because the effect per firm is relatively small, each firm 

ignores it.  
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 The size of the externality depends upon the level of effort and the state of 

technology and technical efficiency. The stock externality changes over time according 

to: 

[ ]
⎥⎦

⎤
⎢⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
−=

− −−

t

Zt

r

eKEq

r

eKEq

tt

APMP
Ztt

t

Ztt

t

tTE

E

tTE

E

∂

∂µ
λ

∂

∂

∂

∂ µλµλ
),(2 ),(222),(222,,

   .      

(23) 

Holding technical inefficiency constant, ∂ MP
E

TE ,t
− AP

E

TE ,t[ ] ∂t  gives the impact of 

technical progress on the stock externality. Because [ ] 02 ),(222 <−
−

reKEq
Ztt

t

µλ
λ , 

technical progress deepens the stock externality, widening the wedge between the private 

and social costs. Even though the technical progress exacerbates the stock externality, 

adversely impacting all firms in the fishery and indeed society as a whole, each firm 

ignores this growing adverse marginal impact because the effect per firm is small and 

because the firm instead receives the average product less the small stock effect. 

 The effect of a change in technical efficiency on the stock externality is: 

[ ]
0

2

),(),(

),(222),(222,,

<
−

=⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

−

− −−

r

eKEq

r

eKEq

ZtZt

APMP
Ztt

t

Ztt

t

tTE

E

tTE

E

µλµλ

µ∂

∂

µ∂

∂
 .                

(24) 

Declines in technical inefficiency through time similarly exacerbate the stock externality. 

5. The Static Pareto Optimum: The Sole Owner 

The “sole owner” provides the standard static Pareto-optimum benchmark to the 

inefficient open-access equilibrium (Scott 1955). The sole owner might be an individual 

firm or public agency maximizing social welfare. The Pareto optimum is now comprised 

of both scale and technical efficiency and is conditional upon the state of technology. The 
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static rent-maximizing sole owner with output-oriented technical inefficiency and 

technical progress maximizes the rent frontier 

[ ] [ ] ttt cEtqrEPYtqrEcP −= µµπ ,,,,,,,,,, , Equation (10).25 The first-order condition for 

rent maximization and a Pareto optimum is:26 

      0
2 ),(222

),(
,

=−−=

−

−
c

r

eKEPq
PqKe

E

Ztt

tZtt
tTE µλ

µλ

∂

∂π
 .                                       

(25) 

Scale efficiency, given technical inefficiency and the state of technology, occurs when 

MR
E

TE ,t
= MC

E
, i.e. c

r

eKEPq
PqKe

Ztt

tZtt
=−

−

−

),(222

),( 2 µλ

µλ , 

where the Pareto optimum requires full technical efficiency. 

 The level of fishing effort giving scale efficiency with technical progress and 

technical inefficiency is: 

  E
*

TE ,t =
r PqKe

λt−µ(t ,Z ) − c[ ]
2Pq

2
Ke

2λt−2µ( t,Z )
=

r

2qe
λt−µ( t,Z )

1−
S

∞

TE ,t

K

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = EMSY

TE ,t
1−

S∞
TE ,t

K

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  .                

(26) 

As with the standard sole owner model, and comparing (19b) with (26), E
*

TE ,t
= E

∞

TE ,t
/2, 

but the technical inefficiency leads to lower levels of both open-access equilibrium and 

optimal level of effort than under full technical efficiency. That is, the efficient scale of 

production for the aggregate technology requires lower effort. Figure 3 illustrates the 

optimal effort prior to technical progress, E
*
, and the reduction in optimal effort from 

technical progress, tTE
E

,

*
. 

 In the standard model, E
*

= r PqK − c[ ] 2Pq
2
K , and the difference is 
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E
*

TE ,t − E
*

=
r PqKe

λt−µ(t ,Z ) − c[ ]
2Pq

2
Ke

2λt−2µ( t,Z )
−
r PqK − c[ ]
2Pq

2
K

=
r

2Pq
2
K

PqK + c[ ]
1

e
λt−µ(t ,Z )

−1
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . 

E
*

TE ,t
< (>)E

*
, depending on the relative strengths of technical progress and technical 

inefficiency, but with technical progress and increases in technical efficiency E
*

TE ,t
< E

*
. 

 The effects of changes in technology and technical inefficiency on the Pareto-

optimum level of effort are the same as on the open-access level of effort, since 

E
*

TE ,t
= E

∞

TE ,t
/2 , i.e. since E

*

TE ,t  is simply a scalar multiple of E
∞

TE ,t , see Equation 20. 

Thus, ⎥
⎦

⎤
⎢
⎣

⎡
−−==

∞∞

MSY

tTE

tTE

MSY

tTEtTE

S

S
E

t

E

t

E
,

,

,,

* 1
2

12/
λ

∂

∂

∂

∂
 and the same conclusions hold as with 

∂E
∞

TE ,t
∂t . 

 The static scale-efficient level of the resource stock S
*

TE ,t is: 

     S
*

TE ,t = K −
K

2
1−

c

PqKe
λt−µ( t,Z )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ =
1

2
K + S∞

TE ,t[ ]  ,                                   

(27) 

where the Pareto optimum requires full technical efficiency. 

 The level of carrying capacity, technical efficiency, the state of technology, 

catchability, and the cost-price ratio determine tTE
S

,

*
 in (27). It follows from equation 

(27) that the sole owner resource stock is larger than the open-access resource stock, i.e. 

S
*

TE ,t
> S

∞

TE ,t . The optimal stock level in the standard model is )1(
2

*
pqK

cK
S +=  and the 

difference ⎥⎦

⎤
⎢⎣

⎡
−=−

−
1

1
),(*

,

* Ztt

tTE

ePq

c
SS

µλ
 indicates that technical progress and increases 

in technical efficiency reduce tTE
S

,

*
, i.e. 

*

,

* SS
tTE
< .   

 The Pareto-optimal stock S
*

TE ,t  changes over time according to: 
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∂S

*

TE ,t

∂t
=
∂

∂t

1

2
K + S∞

TE ,t[ ] =
∂ S∞

TE ,t
2[ ]

∂t
=
∂

∂t

c

2Pqe
λt−µ(t ,Z )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = − λ −

∂µ(t,Z)

∂t

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
S∞
TE ,t

2
  .      

(28)  

Holding technical inefficiency constant, technical progress lowers S
*

TE ,t : 

             
∂S

*

TE ,t

∂t
= −λ

S
∞

TE ,t

2
< 0    .                                                        

(29) 

Increases in technical inefficiency given technology raise S
*

TE ,t : 

             
( )

( ) 0
2

,
,

,,

* >= ∞

tTEtTE
S

Zt
Zt

S
µ

∂µ

∂
,                                                 

(30) 

which reaches the scale- and technically efficient optimum when TE=1. 

Under open access, the regulator may invoke the policy variables Ψ to induce 

technical inefficiency and thereby guide fishing effort to that level giving E *.  Rent 

dissipation and Pareto-inefficiency with a Nash equilibrium remain since open access 

remains. Letting Z = Ψ, then  µ = g t,ψ,Eψ( ) . When regulators manage the fishery by 

inducing technical inefficiency, it is expected that ∂µ ∂ψ > 0 , that is, an increase in the 

strength of the policy (e.g. shorter seasons) induces increased technical inefficiency or 

reduced technical efficiency. 

The static rent-maximizing yield conditional upon technology and technical 

inefficiency, tTE
Y

,

*
, can be found from: ),(,

*

,

*

,

*

ZtttTEtTEtTE
eEqSY

µλ −
= .  Substituting in the 

values for tTE
E

,

*
 and tTE

S
,

*
 found above gives tTE

Y
,

*
: 
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(31) 

Whether the rent-maximizing level of yield is higher than the optimal yield in the 

standard model depends as before on the relative strengths of technical progress and 

technical inefficiency, but with technical progress and increases in technical 

efficiency
*

,

* YY
tTE
> . 

The rent-maximizing yield changes over time: 

2

),(

,

* )(
2

)
),(

(
ztt

tTE

pqKe

crK

t

zt

t

Y
µλ

µ
λ

−
∂

∂
−=

∂

∂
 

Holding technical inefficiency constant, technical progress always increases rent-

maximizing yield, while increases in technical inefficiency given technology always 

decreases rent-maximizing yield. These results are due to the fact that the level of optimal 

stock will always be higher than the MSY-stock level. 

 These results show that if the fishery policy is based on economic efficiency (e.g. 

ITQs) then technical progress and overall higher technical efficiency provides a positive 

net-benefit from a social point of view. The adjustments in effort are under ITQs handled 

by the private actors in the fishery while the setting of the TAC is the responsibility of the 

regulators. Setting the right TAC requires following equation (31), knowledge about the 

biological parameters r and K and the economic parameters price/cost relationships, 

catchability, technical progress and technical inefficiency. 

6. The Backward-Bending Supply Curve with Technical Inefficiency and Technical 

Change 

 Equilibrium supply represents the yield from the fishery as a function of the 

prices of catch and effort and biological parameters under conditions of steady-state 

equilibrium. To find the static equilibrium supply curve allowing for technical 
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inefficiency, substitute S
∞

TE ,t  from (15) into the condition for steady-state equilibrium, 

Y = F(S), to give: 

        ⎥
⎦

⎤
⎢
⎣

⎡
−=

−− ),(),(

, 1
zttztt

tTE

PqKe

c

Pqe

rc
Y

µλµλ
      .                                           

(32) 

Because [ ][ ][ ]tZtPqKecPqerctY
ZttZtttTE

∂∂−−=∂∂
−− ),(21 ),(),(, µλ
µλµλ  = 

[ ] [ ][ ]tTE

MSY

tTE

MSY

Ztt
EPKcPEKe

,,),( 412 −
−µλ

λ , technical progress and gains in technical 

efficiency raise (lower) sustainable supply when cPKE
tTE

MSY
4)(,

>< . The vertical 

intercept of the static sustainable supply curve becomes: 

      P
TE ,t

=
c

Kqe
λt−µ( t,Z )

 .        (33) 

Technical progress and gains in technical efficiency lower this intercept. The slope now 

depends on the states of technology and technical inefficiency: 

    
∂Y TE ,t

∂P
=

rc

P
2
qe

λt−µ( t,Z )
−1+

2c

PKqe
λt−µ( t,Z )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  .                                          

(34) 

Price at maximum sustainable yield,P
MSY

TE ,t , now also depends on the states of technology 

and technical inefficiency: 

     PMSY
TE ,t

=
2c

Kqe
λt−µ( t,Z )

 .                           

(35) 

Because [ ] ( )[ ]tZtKectP
ZtttTE

MSY
∂∂−−=∂∂

− ,2 ),(, µλ
µλ , both technical progress and gains 

in technical efficiency lower price at MSY. Maximum static sustainable supply is found 

by substituting (35) into (32) to give: 
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    YMSY
TE ,t

=
rc

PMSY
TE ,t
qe

λt−µ(t ,Z )
1−

c

PMSY
TE ,t
Kqe

λt−µ( t,Z )
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⎢ 

⎤ 
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⎥ =

rK

4
.   (36) 

As before, MSY is unchanged by technical progress or technical inefficiency, since it is 

established by the biological conditions. 

7. Dynamic Model 

 The presence of technical inefficiency and technical progress substantially 

changes the standard normative results through an augmented Golden Rule or 

fundamental equation of renewable resource exploitation. We demonstrate this result by a 

simple model of present value maximization of net benefits for a sole owner or social 

planner derived from exploiting the resource, but in which technical progress and 

technical inefficiency are now allowed.27 The cost diminution in our cost-neutral cost 

frontier and rent-neutral rent frontier exactly measures technical progress because of the 

linear homogeneity in E, without confounding by economies or diseconomies of scale. 

This linear homogeneity in E also yields costs linear in the control variable Y. The 

introduction of changes in technology and technical efficiency, however, creates an 

optimization model that while linear in Y with linear bang-bang approach paths to the 

steady-state equilibrium resource stock when technology and technical efficiency are 

static, creates approach paths to the infinite time horizon stock that are now nonlinear. 

 If δ > 0  is a constant denoting the continuous social rate of discount, the objective 

may be expressed as: PV (π ) = π Y
t
,S

t[ ]
0

∞

∫ e
−δt
dt  subject to 

tt
YSFdtdS −= )(  and 

S
0
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(11). The inclusion of time leads to a non-autonomous model.  

 The present value Hamiltonian allowing for technical inefficiency and technical 

progress is given by: 

          H = e−δtπ Yt ,St[ ] + α(t)(F(St ) −Yt ) = e−δt (P −
c

qSe
(λt−µ(t ,z))

)Yt + α(t)(F(St ) −Yt ),           

(37)  

where α(t) is the present value multiplier. The first-order conditions for a maximum are:  

   
∂H

∂Yt
= e

−∂t ∂π

∂Yt
−α(t) = e

−∂t
(P −

c

qSte
λt−µ(t ,z)

) −α(t) = 0                                      

(38) 

   
∂H

∂St
= e

−∂t ∂π
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= e

−∂t c

qSt
2
e
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∂F
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•

 .  (39) 

Taking the time derivative of Equation (38) gives:  
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(40) 

Equating the right-hand sides of Equations (39) and (40) and simplifying gives an 

augmented Golden Rule, or fundamental equation of renewable resources, incorporating 

technical change and technical inefficiency:  

    ∂F

∂St
+

c F(S)

S(PqSe
λt−µ( t,z )

− c)
+
c(λ − ∂µ(t,z) /∂t)

(PqSe
λt−µ(t ,z)

− c)
= δ     .           (41) 

Compared to the traditional rule, there is a new term added beyond the marginal 

productivity of the resource (∂F ∂S
t

= r 1− 2S K( )), and the marginal stock effect 

cF S( )[ ] S(PqSe
λt−µ( t,z )

− c)[ ] , namely the last term on the left-hand side, the marginal 
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technology effect. The marginal technology effect captures the effect of technical 

progress and increases in technical efficiency on cost. Furthermore, the marginal stock 

effect is itself augmented by technical change and technical inefficiency. 

 The singular solution *

t
S  of (41) is (for the logistic growth function): 

       St
*

=
K

4

c

PqKe
λt−µ( t,Z )

+1−
δ

r
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⎢ 
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c
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8c(δ + λ −∂µ t,Z( ) ∂t)

PqKre
λt−µ( t,Z )
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⎢ 
⎢ 

⎤ 
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⎥ 
⎥ 
 .         

(42) 

Equation (42) clearly indicates that there is no steady-state solution to the problem. With 

on-going technical change, the optimal level of the stock declines over time, because 

PqKe
λt−µ( t,z ) increases due to technical progress. However, the short-run effects of 

introducing technical progress are an increase in the stock size. The new marginal 

technology effect term is positive with technical progress, so that – all things equal – the 

stock level is higher compared to the situation without technical progress beyond the 

marginal stock effect. It can also been seen from the last term in (42). In the traditional 

model λ is not included, and therefore the immediate effect of technical progress is a 

higher stock level compared to the traditional model. It is now profitable to reduce 

harvest today because of future technical progress. 

 However, over time technical progress will lead to lower stock levels, because the 

unit profit of harvest, pqSeλt−µ(t ,z)
− c , increases due to technical progress, so that the 

effect of these terms decline over time.28 Notably, the marginal stock effect in the 

modified Golden Rule, Equation (41), declines in importance under continued technical 

progress. Harvest costs that increase with declining stock size can be more than balanced 

by harvest cost diminution through technical progress.29 Over time, the marginal stock 
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and technology effects decline, requiring continuing increases in the own rate of return to 

the resource stock, ∂F ∂S
t
, that follow with declining stock size, given constant δ . The 

own rate of return is increasingly likely to be positive rather than negative as well. Higher 

social discount rates or rates of technical progress hasten the stock decline.   

 A comparison of the marginal stock and technology effects shows that 

cF S( )[ ] S(PqSe
λt−µ( t,z )

− c)[ ] > (<) c λ −∂µ t,z( ) ∂t( )[ ] (PqSeλt−µ( t,z )
− c)  as 

F S( ) S( ) > <( ) λ −∂µ t,z( ) ∂t( ), or in words the marginal stock effect exceeds (falls short 

of) the marginal technology effect when the relative growth of the resource stock exceeds 

(falls short of) the rate of change in technology and technical efficiency. With the logistic 

growth function this is ( ) ( ) ( )( )tztKSr ∂∂µλ ,1 −<>− , so that higher r or K or lower S 

balance higher λ. Notably, as stock levels decline over time in the face of technical 

progress, the marginal costs rise to increasingly counterbalance a constant rate of 

technical progress. With variable rates of technical change, including technical regress, 

this relationship becomes more complex. The marginal stock effect is comparatively 

more important in the modified Golden Rule for relatively lower rates of technical 

progress. 

 The effect of increases in technical efficiency on S
t

*  for a given state of 

technology, i.e. no further technical progress, eventually ends if the frontier defined by 

current technology is reached. This is the case after full diffusion of a technology or 

fishing skill. 

 The terms involving PqKeλt−µ( t,z ) in (42) approach 0 in the limit as t approaches 

infinity:  
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It can be seen that
MSYtt
SS ≤

∞→

*
lim , because the sum of the terms in the brackets is less 

than or equal to 2, which contrasts with results showing that S* , the economic optimum 

under static technology, generally exceeds S
MSY

 (Grafton et al. 2007).30 Essentially, over 

an infinite time horizon technical progress erodes costs to zero and the optimum stock is 

determined solely by the social discount rate and biological parameters. In the static case, 

where δ = 0 , lim
t→∞

S
t

*
= K 2 = S

MSY
 under continuous technical progress over a long time 

frame (because costs eventually approach 0); this gives an optimal harvest rate of MSY, 

which is the standard biological case without costs and prices. When δ ≥ r, lim
t→∞

S
t

*
= 0 

or extinction is optimal under continuous technical progress, where technical progress 

should hasten extinction compared to the case without it. In the intermediate and realistic 

case, 0 < δ < r , and 0 < lim
t→∞

S
t

*
< S

MSY
, which contrast with the traditional dynamic 

model without technical progress, in which S
t

*
> S

MSY
 for most reasonable levels of costs 

and in which stock-dependent costs play a more important role. The optimal stock size 

given by (43) is exactly the same as the stock size in which the growth rate in the stock is 

equal to the discount rate, i.e. δ=)(' SF , from equation (41).31 

 Differentiating the singular solution S
t

* , Equation (42), with respect to time gives: 

      
∂S

t

*

∂t
= − λ −∂µ t,Z( ) ∂t[ ]A(t)

K

4
C t( )   ,                                                  

(44) 
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where A(t) = c PqKe
λt−µ(t ,Z ) , C t( ) = 1+

1

2
B(t)

−
1
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⎡ 
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⎢ 

⎤ 

⎦ 
⎥ ,  

and B(t)  is the terms inside of the square root in Equation (42). When technical 

inefficiency is constant, then ∂S
t

*
∂t < 0 , i.e. the resource stock declines with technical 

progress. However, the rate of decline slows, i.e. ∂ 2S
t

*
∂t

2
> 0 , as shown by: 
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 The declining stock levels out for a given rate of continuous technical progress 

and technical inefficiency over an infinite time horizon. Hence with continuous technical 

progress the optimal stock declines at a slower rate towards a stock level for which the 

growth rate in the stock is equal to the discount rate, i.e. δ=)(' SF . 

 The singular solution for yield Y
t

* can be found from the growth equation as 

Y
t

*
= F(S

t

*
) −

∂S
t

*

∂t
. Differentiating yield with respect to time gives: 
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S
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S
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(46) 

The sign of ∂Y
t

*
∂t  can be either negative or positive depending on the optimal stock 

size. For a given stock level greater than
MSY
S , the sign of ∂Y

t

*
∂t  is positive. For stock 

levels lower than the given stock level, the sign is negative, and the optimal yield will 

from a given point in time will decline. In more detail, if S
t

*
< S

MSY
 the sign of the sum of 
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the terms in the brackets is positive and together with the negative sign of the term 

outside the brackets it results in ∂Y
t

*
∂t < 0 . If S

t

*
> S

MSY
, the sign of the sum of the terms 

depends on the relative size between S
t

*
S
MSY

 and the rate of technical progress. The sign 

of ∂Y
t

*
∂t  is positive for sufficiently high stock levels. For a given stock level higher than 

MSY, ∂Y
t

*
∂t  is zero. In contrast to the traditional dynamic model, Y

t

* is now conditional 

upon the state of technical progress and technical inefficiency as well as the entire set of 

bioeconomic parameters.  

[Figure 4 about here]  

 Figure 4 illustrates examples of paths for the optimal yield. The path beginning in 

Y1 – a high yield level - is declining over time and hence the optimal stock level at the 

initial time is less than the stock level, where ∂Y
t

*
∂t  is zero. The path beginning in Y2 is 

first increasing indicating that the initial optimal stock level is above the stock level, 

where ∂Y
t

*
∂t  is zero. Since the optimal stock level decreases, the yield will inevitably 

begin to fall. Finally, the path beginning in Y3 has an even higher initial optimal stock 

level, so that the period with increasing yield is longer. To sum up, the optimal yield path 

is more complicated than the constant equilibrium path obtained in the traditional 

dynamic model.32 The time period with the complicated course is followed by a period 

where the yield path asymptotically approaches the level, where δ=
∞ )(' SF , given by 

)1)(1(
2 rr

rK
Y

δδ
+−=

∞ .33 

 The singular solution for *

t
E is found from the production frontier as: 
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(47) 

The sign of the time derivative of effort,∂E
t

*
∂t , can be shown to be negative (positive) 

below (above) a certain level of the stock which is higher than 
MSY
S . Hence, given high 

initial optimal stock levels, in the short and medium run the optimal effort level increases, 

but over time with technical progress the optimal level of effort starts to decline, because 

the optimal stock level declines. Similarly, for stock levels below the stock level, where 

*
0

t
E t∂∂ = , gains in technical efficiency for a given state of technology lower E

t

* until 

the frontier is reached. 

7.1. Biased Technical Change 

 Technical change can be biased towards using more or less effort or the resource 

stock, in which the direction of bias can be induced by the state of property rights (Smith 

1972, Ruttan 2001). Resource-using technical change in a stock-flow production process 

can be viewed as allowing more effective use of the entire, existing resource stock (not 

increasing the overall stock size or giving more catch biomass from the existing stock 

biomass), such as allowing exploitation of formerly unreachable and unfished fishing 

grounds, harvesting of previously undersized fish, or detection of formerly unknown 

stocks (much like increasing the economic reserves of an exhaustible resource). 

Specifying autonomous technical change as input-augmenting by the use of efficiency 

units for both effort and the resource stock with the Schaefer (or Cobb Douglas) 

production function does not allow identifying the individual efficiency gains for effort 

and stock. Thus, ( ) ( ) ( ) βαβλαλβαβλαλβλαλ
tt

t

tt

tt

t

t

t

t

t SEqeSEeqeSeEeqY 212121
+

=== , where  

α = β =1 for the Schaefer model. An alternative allowing identification of technical 

change is a modified Cobb-Douglas functional form:  
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where β
1

= β
2

=1 with the Schaefer model. In log-linear form, 

lnYt = lnq + β
1
lnE t + β

2
lnSt + λ

1
t + λ

2
t
2

+ λ
3
lnE t t + λ

4
lnSt t  and 

∂ lnY
t
∂t = λ

1
+ λ

2
t + λ

3
lnE

t
+ λ

4
lnS

t
, where λ

3
> <( )0  indicates technological change 

that is effort using (saving) and λ
4

> <( )0  indicates resource using (saving).  

8. Renewable Resource Policy 

 Consider next the use of taxes to induce the social optimum when there is 

technical progress and initially open access. Under open access, fisher behavior leads to 

the open-access equilibrium with dissipated rents (Gordon 1954). From the rent frontier 

in Equation (11) under open access, price is equal to unit cost, i.e. ( )[ ]
t

Ztt
SqecP

,µλ −= . 

From the first-order conditions for the Pareto optimum with the dynamic model given in 

Equation (38),     

     )()(
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ztt
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(49) 

where β(t) is the current value costate variable or the marginal user cost, which now 

varies over time with the state of technology and technical efficiency. To align the private 

incentives with the optimal solution a tax equal to β(t) can be implemented. Because the 

proportional rate of change in optimal stock with respect to time is numerically less than 

the rate of technical progress, the unit cost decreases over time.34 Hence, with constant 

biological and economical parameters the tax rate will increases over time. However, 

from a practical viewpoint, the regulator has to recalculate the tax rate every year, 
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because, without steady-state equilibrium, the optimal level of stock and yield is 

changing due to technical progress. Rates of technical change that vary by time period or 

even regress further complicate the setting of taxes. Further, in the traditional dynamic 

model the tax rate has to be adjusted every year as economic and biologic parameters 

change, making the use of tax policy difficult in practice. The analysis shows that adding 

technical progress and technical inefficiency into the bioeconomic model makes it even 

more complicated to set the optimal tax rate. 

 The shadow price of natural capital or the common renewable resource stock, 

Equation (38), reflects direct use value, representing the marginal user cost along the 

optimal trajectory of the resource in the face of technical progress and changes in 

technical efficiency. This equation does not include the indirect use values from the 

public goods of the broader ecosystem and its services in which the resource stock is 

embedded and makes a contribution as a predator or prey or the indirect use and 

existence value of the stock’s biodiversity. When only capturing direct use value, the 

shadow price can be expected to grow over time under technical progress, but as stock 

levels reach lower levels and the opportunity cost of its increasingly foregone public 

good contributions rises, the net value of the stock will decline, although this value is not 

captured by the fundamental equation of renewable resources or its modification in 

Equation (41). 

 Under ITQ regulation, the regulator has to adjust the total quota so that the 

equilibrium price in the quota market equals the shadow value of the stock. In principle, 

this requires exactly the same information as the tax policy.35 However, the division of 

work has been that the biologist sets a total quota based on biological criteria and the 
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fishermen adjusts their fishing costs by quota trading, leading to a cost-efficient fleet. The 

setting of total quotas is not based on the outcome of a dynamic fishery model. Under 

ITQ regulation, the TAC has to be recalculated on an on-going basis to account for 

technical progress (Murray 2007). Critically, the optimum fleet size and fishing capacity 

must adapt to the TAC of an optimum resource stock that declines over a range before 

reaching a limit as in Equation (43), and which is below that of a steady-state equilibrium 

not accounting for changes in technical inefficiency and technology, given by the 

augmented Golden Rule with the technology term. Empirical experience bears this out in 

the Southeast Trawl fishery of Australia, where a fisheries buyback was required to 

remove excess capacity even after an ITQ program was introduced (Fox et al. 2007). The 

point is that excess capacity can be expected to persist for even long periods of time after 

an ITQ is introduced and other measures may be required to reduce excess capacity 

(Vestergaard et.al. 2005). To sum up, under ITQs a well-functioning quota market is 

needed to achieve a cost-efficient fleet. This point is reinforced by introducing technical 

progress. Further, the setting of the total quota is more complicated with technical 

progress, but in practice this might not influence the quota policy, because in many cases 

the quota is determined only by biological considerations (Squires et.al. 1995).  

9. Empirical Example: The U.S.-Canada Albacore Fleet 

The empirical example applies the concepts of output-oriented technical 

efficiency and technical change to the single-species U.S. and Canadian troll fleets 

fishing for North Pacific albacore (Thunnus alalunga) over 1981-2006 to examine the 

optimal stock, yield, and tax time paths. The case study examines both constant and time-

varying rates of technical progress to demonstrate the additional complexity introduced 
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into the modified Golden Rule and optimal exploitation when more realistic 

specifications of technical change are allowed. The data used are for the U.S. and 

Canadian troll fleets, but the bioeconomic results obtained in the simulation should 

closely match the bioeconomics for the entire North Pacific albacore fishery of troll, 

pole-and-line, and other surface gear for Taiwan, Japan, Korea, U.S., and Mexico, since 

catch per unit effort indices for these other surface fisheries closely track those of the 

U.S. and Canadian troll fishery. The industry was not regulated over the period of study, 

implying no regulatory-induced technical change. 

The U.S. and Canadian albacore troll fleets are comprised of family-owned 

vessels harvesting northern albacore from about 150°Ε eastward. The albacore, aged 

about 2-5 years (but predominately ages 3 and 4), are sexually immature, school and 

swim near the ocean surface, and are caught by troll lines employing jigs. During April-

May, distant-water troll vessels begin fishing albacore in the central Pacific Ocean 

(around the International Date Line). As the fish become available off the North 

American coast in June and early July, the distant-water fleet moves closer to the coast 

and coastal vessels enter the fishery. The U.S. and Canadian vessels have access to each 

other’s waters and ports through an international treaty, with Canadian vessels harvesting 

in U.S. waters on a frequent basis due to a preponderance of fish there. The fishery 

utilizes relatively small vessels, with the U.S. vessels averaging 43 feet in length. The 

average year of construction of 1976 suggests a fleet with vessels that are relatively old 

and stable. The average U.S. skipper has 28.9 years of fishing experience, 21.1 years of 

albacore troll experience, and has been with the vessel an average of almost 14 years 

(Squires et al.  2003).  The fishery is largely well established and “mom-and-pop”, with 
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innovation adoption only incompletely diffused and varying by innovation. The 

electronic process innovations used by the U.S. fleet in 1999 include (percent adopters in 

parenthesis): depth sounders (43% ), radar sensor (71%), temperature gauges (54%), telex 

(17%), fax (29%), cell phone (51%), satellite phone (6%), video plotters (9%), direction 

finders (6%), GPS (71%), sideband radio (75%), ham radios (31%), VHF (57%), comsat 

satellite navigation (0%), Doppler radar (0%), autopilot (78%), PC or laptop (57%), sonar 

(20%), color sounder (6%), and IMARSAT (23%). The mean value ($2001) of these 

innovations per vessel over 1996-1999 was $287, compared to a mean insured 

replacement value of the vessel of $365,758.  

The empirical analysis employs the catch and days fished data used in the 

international stock assessments by the population biologists of the fishery’s 

representative countries (McDaniel, Crone, and Dorval 2006). These catch and days 

fished data are for all landings by all vessels. Appendix I discusses these and the 

economic data. The intrinsic growth rate, r = 0.18, and the environmental carrying 

capacity, K = 250 metric tons, were provided by an albacore population biologist and 

were developed from life history studies, population assessments, and other biological 

research, and can be treated as exogenous. The catchability coefficient, q, is 0.00526169, 

comes from international stock assessments, and is the weighted average of age-specific 

values of q for 2,3,4, and 5-year old year classes (one-third weights for 3 and 4 year olds 

and one-sixth weights for 2 and 5 year-olds). The estimates of biomass (resource stock) 

also come from international stock assessments. The albacore landed are largely for the 

canned and blast bled frozen tuna markets and are only small part of the global albacore 

market, which in turn is part of a highly competitive global market for canned tuna from 
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other species, so that the ex-vessel price can safely be viewed as exogenous with respect 

to own landings. Similarly, prices of inputs used by albacore troll vessels can be expected 

constant, since the quantities used are insufficient to affect prices. The ex-vessel albacore 

price and cost per vessel per day (US$2001) were set at the 1981-2006 means, giving 

P = $2,852.24 /mt  and c = $1,268.48 /vessel − day , where c  includes the operating costs 

of fuel, oil, food, gear, and labor, and capital costs of loan payments and insurance. The 

discount rate is 2.5%. 

To obtain values of the rate of technical change λ and the change in technical 

efficiency ∂µ t,Z( ) ∂t , the following Cobb-Douglas production function was estimated 

using the unbalanced panel data for the U.S. and Canadian fleets’ catch and effort: 

            lnY
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where i indexes the individual country, a
i
 captures the fixed effect (and is allowed to be 

correlated with E
it
,S

it
 in an unknown correlation structure), in this case Canadian effort, 

and v
it
 is an i.i.d. stochastic disturbance term with a zero mean, finite variance, and 

normal distribution. Technical inefficiency 
  

 
u 

it
 is measured semi-parametrically by 

(Schmidt and Sickles 1984): 
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u it =max j

 
a j +
 
a j E jt( ) −

 
a i +
 
a iE it( ), which reduces to the 

relative technical inefficiency between two countries. This approach specifies a time-

varying, non-neutral form of technical inefficiency, a semi-parametric version of Huang 

and Liu (1994). This measure varies over time, because effort varies over time, and is 

non-neutral because the measure varies with effort. Differences between U.S. and 

Canadian vessels reflect differences in biophysical conditions, notably the preponderance 

of albacore in U.S. rather than Canadian waters, requiring Canadian vessels to travel 

longer distances to reach fishing grounds. The limited number of countries in our data set 
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precludes an explicit time-varying semi-parametric specification of technical inefficiency 

-- parameterized as a function of time and even parameters that vary over firms -- and 

still identifying technical progress.36  The limited number of observations also precludes 

evaluating biased technical change. 

 We also estimated a time-varying general index of Hick’s neutral technical 

change as an alternative to the time trend “straightjacket” and to more closely examine 

technical progress and optimum stock size over the range of the data set (Baltagi and 

Griffin 1988). This general index of technical change specifies a dummy variable for 

each year, requires panel data, and is essentially a Solow residual. The production 

function with the general index of Hick’s neutral technical change and country-specific 

dummy variable for Canada to allow for semi-parametric estimation of technical 

inefficiency is specified:37 
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where A t( ) denotes the general index of technical change that varies by year. Because 

A t( ) is unobserved, annual dummy variables D
t
 t =1,...,T( ) are used to give: 

   lnY
it

= β
1
lnE

it
+ β

2
lnS

it
+ β

3
D
t

+ a
i

+ v
it
 .                           (52) 

The base years consist of 1981-1982 rather than a single year to overcome singularity and 

to obtain plausible estimates with the limited panel and degrees of freedom. The 

restriction β
3

= α + A t( )  is imposed in Equation (52) for estimation. The rate of technical 

change, given by A(t) − A(t −1), allows for Hick’s-neutral technical change that is not 

constant, comparable to λt + φt 2  in Equation (50). Taking 1981-1982 as the base period 

for A t( ), so that A 1( ) = 0 allows identification of a
i
 and the index A t( ). The general 

index of technical change is calculated following Equation (7) of Baltagi, Griffin, and 



 
 43 

Rich (1995) as exp A t( )[ ].38 

 We specify a measure of the composite input, effort, comprised of both days 

fished and the number of vessels as the first stage in a two-stage decision-making 

process. This approach provides an instrumental variable predetermined in the effort 

model that avoids endogeneity issues and reduces multicollinearity when estimating the 

second-stage (Fuss 1977).39 40 Technical progress is not specified in the effort aggregator 

function, but under the linear homogeneity of this function in E, factor-augmenting 

technical change that equally augments each input comprising E
t
 is equivalent to output-

augmenting technical change (Thirtle and Ruttan 1987).  

 Two approaches to the linearly homogeneous aggregator function of the 

composite input effort were adopted. The composite input effort was first constructed as a 

Tornqvist chain index of days fished and vessel numbers because the corresponding 

translog functional form for this superlative aggregator function (Diewert 1976) 

corresponds to the separability inflexibility of input-output separability and the Cobb-

Douglas functional form of the catch production frontier (Denny and Fuss 1977).41 

Annual variable input costs shares correspond to the costs of fuel, labor, food, and gear 

and the annual capital cost shares correspond to the capital services prices of the vessels 

(Appendix I). 

The index of unobserved effort was also created, following Fuss (1977) and 

Squires (1987), as a generated regressor (Murphy and Topel 1985), and retrieves the 

actual values of the aggregator function. Consistent with the separability inflexibility of 

the Cobb Douglas catch equation with input-output separability, a linearly homogeneous 

translog effort aggregator function was specified, which gives a superlative effort index 
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equivalent to the Tornqvist discrete approximation to the Divisia. Fitted values from the 

estimated effort aggregator function, Equation (53) below, provide an estimate of effort 

(up to the arbitrary scaling factor α + a
i
 in Equation (53)) and predetermined variable for 

unobserved (log of) endogenous effort in the catch frontiers, Equations (50) and (52), and 

allow effort to be exogenous in the second stage of decision-making.42  The translog 

effort aggregator function (with time-invariant technical inefficiency) is: 
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where X
1it

 denotes days fished for country i in time t, a measure of variable input usage, 

X
2it

 denotes the number of vessels for country i in time t, a measure of the capital stock, 

and symmetry is imposed by α
12

= α
21

.43  Assuming competitive markets, differentiating 

Equation (53) with respect to lnX
1it

 and lnX
2it

 yields the cost share equations:  
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 where M
1
,M

2
 are the cost shares for days and vessel numbers. Linear homogeneity is 

imposed by α
1

+ α
2

=1,a
1

+ a
2

= 0,α
11

+ α
12

+ α
22

= 0.  Since the cost share equations sum 

to unity, the vessel numbers equation is dropped, only the variable input equation is 

estimated by ordinary least squares, and the results are invariant to the choice of dropped 

equation. The variable input cost share equation and the production frontier were 

simultaneously estimated by maximum likelihood. 

The generated regressor approach is preferred to the index number approach, but 

the additional parameterization of the general index approach to technical change 

precludes its use in this instance because of limited observations. Hence, we apply index 

numbers to the general index approach and the generated regressor approach to the time 
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trend specification of technical change. 

The time frame of analysis was 1981-2006 for U.S. vessels and 1995-2006 for 

Canadian vessels to match the availability of data. The data are unbalanced panel. 

 We also estimate a two-factor learning curve that accounts for the stock-flow 

nature of the production technology (since rates of cumulative catch could slow down not 

from declining learning but from lower resource stocks making less catch available for 

accumulation): 

     lnYit = α + β
1
ln y i + β

2
St + ai + εit ,                                         (55) 

where y i denotes cumulated production in time t. 

10. Empirical Results 

 The catch frontier with constant Hick’s neutral technical change Equation (50) 

using the Tornqvist index of effort was estimated by maximum likelihood with the effort 

coefficient restricted to one (consistent with the Schaefer specification). Evidence of first-

order serial correlation led to maximum likelihood estimation correcting for first-order 

serial correlation.44 A t-test for the null hypothesis that the effort coefficient equals one 

gave a t-value of -6.73, rejecting the null hypothesis; nonetheless, we maintain the 

specification consistent with the classic Gordon-Schaefer model. Parameter estimates of 

Equation (50) are reported in Table 4, R2 = 0.828 , Canadian vessels are less technically 

efficient, and there is a statistically significant rate of technical change of 4.27 percent (t-

ratio of 2.03).45 This result led to a final specification of constant Hick’s neutral technical 

change in the modified Golden Rule. Given the constant returns to scale for effort 

(coefficient of one) and allowance for technical inefficiency, technical progress is 

equivalent to total factor productivity growth. 
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 The general index of technical change model, Equation (52), using the Tornqvist 

index of unobserved effort and the Schaefer restriction that the effort coefficient equals 

one, was estimated by ordinary least squares with the base period of 1981-1982 rather 

than simply 1981 due to multicollinearity and with a dummy variable for Canada. 

Evidence of serial correlation led to maximum likelihood estimates correcting for first-

order serial correlation.46 A t-test for the null hypothesis that the effort coefficient equals 

one gave a t-value of -16.40858, rejecting the null hypothesis; nonetheless, we again 

maintain the specification consistent with the classic Gordon-Schaefer model. A 

likelihood ratio test that the annual dummy variables are jointly zero was rejected at five 

percent significance (χdf = 24

2
= 54.39, critical value of 36.415). The final parameters 

estimates for Equation (51) are reported in Table 5, R2 = 0.948, and Canadian vessels are 

statistically less technically efficient than U.S. vessels. 

 The production frontier with constant Hick’s-neutral technical change (50) and 

the variable input cost share equation for the generated regressor index of unobserved E
t
 

(54), were jointly estimated by full information maximum likelihood with a serial 

correlation correction for (17a). A likelihood ratio test failed to reject the classic Gordon-

Schaefer specification β
1

=1 (χdf =1

2
= 0.6032), and conditional upon β

1
=1, a likelihood 

ratio test failed to reject β
2

=1 (χdf =1

2
=1.2356). The parameter estimates are reported in 

Table 6 for (54) and Table 7 for (50) with R2 = 0.92  for (54) and R2 = 0.83 for (50). The 

Debreu-Farrell best practice frontier defined by U.S. vessels expands at an annual rate of 

3.56 percent due to technical progress.47 Canadian vessels’ state of technology always 

lags behind the expanding frontier. 

 The general index model, Equation (52) using the effort aggregator function (53) 
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had an excessive number of parameters for estimation.  

 The two-factor learning curve, Equation (55), estimated by maximum likelihood 

with a first-order serial correlation correction gave a statistically significant value for the 

natural log of the cumulated production coefficient, indicating an annual rate of technical 

change of 10.89 percent (Table 8).48 Because this value is unrealistically high, we retain 

our focus on the catch frontier approach. Nonetheless, this result reinforces our finding of 

important technical change. 

Figure 5 illustrates northern albacore stocks over a 150-year time horizon with 

constant annual Hick’s neutral technical progress of 3.56 percent for: the fundamental 

equation of renewable resources with static technology S* ; with technical progress (8) 

S
t

* ; S
MSY

= K 2; the limit stock over an infinite time horizon with technical progress (9); 

and the open-access equilibrium stock with technical progress (the initial value is the 

open access stock under static technology) S
∞

TE ,t = c Pqe
λt−µ(t ,Z )[ ]. The results clearly 

illustrate the wide divergence between S* =159.12mt , S
t

* , lim
t→∞

S
t

*
=107.64mt , 

S
MSY

=125mt , and S
∞

TE ,t , which is 84.52mt in the initial time period and 0.41mt in the fina 

time period. S
t

*
> S

*  for a finite number of years, as discussed earlier, before S
t

*drops 

below S* , steadily diverging from S* , and eventually reaches the limit stock. The 

slowing rate of decline with technical progress reflects (11). Notably, the limit stock lies 

below not only S*  but also S
MSY

 as the marginal technology effect dominates and steadily 

erodes the marginal stock effect over time. S*  lies well above S
MSY

 due to the marginal 

stock effect and cost savings from keeping fish in the water, but represents an opportunity 

cost of foregone rent with technical progress.   

The effect of technical progress on S
∞

TE ,t  in Figure 5 is striking, demonstrating the 
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importance of property rights or an optimum tax, the dangers of ignoring the rapid stock 

decline due to technical progress – especially under open access, and the low levels that 

S
∞

TE ,t  can reach. The current state of high seas fisheries for valuable highly migratory 

species, such as bluefin tunas (which face extinction), reflect rapid technical change 

under open access. The difference S
t

*
− S

∞

TE ,t  measures the resource stock externality 

under technical change, which increasingly diverges over time due to the march of 

technical progress. However, although steadily diverging, the externality, which begins at 

86.2 mt, levels off at it asymptotically approaches 107.64 mt, as lim
t→∞

S
t

*
=107.64mt  

and lim
t→0

S
∞

TE ,t
= 0mt , i.e. lim

t→0
S
t

*
− lim

t→0
S
t

TE ,t
= lim

t→0
S
t

* . Higher rates of technical 

progress exacerbate the external cost under open access by strengthening the resource 

stock externality and hastening the decline in stock size and foregone rents.  

Figure 6 presents optimum yields over 150 years corresponding to the optimum 

resource stocks in Figure 2. Y * is 10.41 mt and Y
MSY

= rK 4  is 11.25 mt. Optimum yields 

in the early years of technical progress reflect stock rebuilding and matches Y
2
 in Figure 

1. Y
t

*
>Y

* , and the lower costs due to technical progress lead to net benefits to society of 

higher harvest rates than without technical progress in which the only source of lower 

costs is retaining a higher resource stock in the water 

 This relationship between the marginal stock effect and the marginal technology 

effect over 150 years is illustrated in Figure 7. The marginal technology effect in the 

albacore fishery always dominates the marginal stock effect, since 

F S
t( ) S

t( ) < λ −∂µ t,z( ) ∂t( ) , and the marginal stock effect is minimal and quickly 

eroded through technical change. 

 Different species of fish concentrate (school) differently. Fish are evenly 
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dispersed throughout the ocean when β
2

=1, whereas if the stock schools or contracts as 

it is depleted and preserves its density β
2

= 0  (Hannesson 1993). Values of 1, 0.5, and 0.1 

were assigned to β
2
 to reflect the stock’s schooling. The results in Figure 8 indicate an 

even lower optimal stock size for schooling species, reflecting the accelerated effect of 

technical progress on harvests due to concentration of fish and their consequent increased 

ease of location and lower harvest cost. The stock limits for β
2

= 0.1 compared to β
2

=1 

illustrate just how low the optimum stock can become, close to extinction and almost 

indistinguishable from open access, under technical progress and schooling. For some 

schooling and highly valuable species under open access, such as giant bluefin tunas, the 

economic optimum differs little from open access when technical change is considered. 

 The impact of technical change on the optimum tax is illustrated in Figure 9. The 

optimum tax rises over time to level off . With technical change, the optimum tax must be 

updated every time period until the externality narrows enough to be de facto negligible. 

 Figure 10 illustrates the static resource stock externality over 1981-2006, 

developed in Section 4.2. with the linear time trend model and the Tornqvist index of 

effort. This externality is the difference between the marginal and average products of 

effort: 0
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. As expected, technical progress 

exacerbates the external costs over time, although the amount varies according to the 

level of effort and can even increase when the level of effort declines. Higher rates of 

technical progress can be expected to increase the external cost by strengthening the 

resource stock externality, and in principle the social return to technical progress under 

open access can be negative. 
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11. Concluding Remarks 

  Progress in technology and technical efficiency under incomplete property 

rights exacerbates the commons problem, further widening the wedge between the private 

and social costs of resource exploitation – the negative resource stock externality. The 

resource stock declines more rapidly than under static technology, which is hastened 

under resource-using technical change and the more a species schools or concentrates. 

Extinction can also be hastened. The rapid technical progress over the past 150 years 

undoubtedly contributed to the decline of most, if not all, global fisheries. 

 Changes in technology and technical efficiency can markedly alter the optimum 

exploitation of common renewable resources. Accounting for these changes alters the 

fundamental equation of renewable resources or Golden Rule by modifying the existing 

marginal stock effect and introducing the new marginal technology effect. 

 Economically optimum harvest costs that increase with declining stock size can 

be more than balanced by harvest costs declining through progress in technology and 

technical efficiency. The optimal resource stock declines over time to reach, over an 

infinite time horizon, a level that can be notably less than the steady-state economic 

optimum under static technology and even less than the stock of maximum sustainable 

yield, S
MSY

. This result can markedly differ from conventional wisdom (Grafton et al. 

2007), in which the dynamic economic optimum stock under static technology exceeds 

S
MSY

, in large part due to the marginal stock effect. The realistic possibility of an 

economic optimum stock below S
MSY

 also suggests that at least some of the approximate 

75% of global fish stocks that lie at or below MSY (FAO 2006) may not be economically 

overexploited after all, and that from an economic perspective the current crisis in global 
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fisheries may be overstated. The present near-universal policy in global fisheries of 

managing for MSY (sometimes modified by a precautionary level) may in some instances 

be economically sub-optimal by surprisingly favoring stocks too large rather than too 

small, and can create an opportunity cost of forgone rents. Managing renewable resources 

for a non-existent steady-state economic optimum under static technology sets 

inappropriate targets for yields, effort and resource stocks and exacerbates the 

opportunity cost of foregone rents. 

 In sum, accounting for changes in technology and technical efficiency creates the 

potential for turning conventional normative economic fisheries management on its head 

by allowing for the very real possibility of dynamic economic optimum stock sizes below 

S
MSY

, lowering or even removing the importance of retaining fish in the water to reduce 

harvest costs and increase asset value, and shifting the management focus away from 

input to output controls. Nonetheless, sound ecological and biodiversity reasons may well 

argue for larger resource stocks, richer biodiversity, and larger-sized fish (Worm et al. 

2006, Anderson et al. 2008), reinforced by uncertainty, non-convex and nonlinear 

ecosystems, and non-market amenity values. Common resources increasingly require 

management as public goods rather than simply as the historic “commons problem” and 

direct use value. The economic benefits from technological progress can best be fully 

realized under well-developed individual or group property rights on outputs (Costello et 

al. 2008, Heal and Schlenker 2008), but perhaps at lower, sometimes perhaps even much 

lower, resource stock levels than previously believed.  
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Appendix I: The Data 

 
The catch and effort data are those used for the international resource stock assessments 
of North Pacific albacore (McDaniel, Crone, and Dorval 2006). Effort is measured by the 
number of days fishing. Albacore price data, which correspond to each fishing trip’s sales 
from the vessel to fish processors (ex-vessel data), are from all landings of albacore troll 
vessels over 1981-2006 along the Pacific coast of the United States.  
 
Cost data were centered upon a panel of cost data over 1996-1999 for individual troll 
vessels, which the albacore industry collected (Squires et al. 2003) and is discussed 
further below. These benchmark costs reflect the state of technology and technical 
inefficiency over this time period. With the exception of three vessels, the panel data set 
was balanced. To extend the cost data backward to 1981 and forward to 2006, variable 
and fixed input costs per day were assumed to change at the same annual rate as their 
associated input prices. U.S. Bureau of Labor Statistics economic producer or consumer 
price indices (not seasonally adjusted) were used for labor (compensation: wages and 
salaries for construction, extraction, farming, fishing, and forestry occupations), food 
(Portland-Salem, Oregon-Washington), and gear (machinery and equipment) for periods 
before 1996 and after 1999. The capital service price used that year’s mean daily interest 
rate for seasoned bonds rated Baa by Moody’s. Annual fuel price changes were 
calculated from an average of monthly dockside number two marine diesel fuel prices for 
600 gallons cash price before tax by port for Washington (13 ports), Oregon (7 ports), 
and California (11 ports) over 1981-1988 and 2000-2007. Because actual fuel prices were 
unavailable over 1988-1995, the producer price index for fuels and related products and 
power was used to fill in the gaps. The opportunity cost of labor, discussed in detail 
below, was available for 1981-1985 and 1996-2007 with the gap years filled in by the use 
of the BLS index for construction average hourly earnings, where blue collar work is the 
expected alternative to serving on a vessel. Because effort (and the resource stock) is 
assumed in equilibrium, the capital stock is specified to be in equilibrium in each period, 
leading to the use of a capital services price rather than a quasi-rent to allow for 
variations in capacity utilization. This specification is consistent with the cost per unit 
effort, c, variable in each time period and the implicit assumption of instantaneous entry 
and exit. Capital services prices were constructed using the above interest rate and a 
depreciation rate of seven percent and insured replacement value from the panel data set 
over 1996-1999 All economic data were deflated by the GDP implicit price deflator to 
provide values in $2001.  
 
All variable input cost changes were weighted by the mean 1996-1999 cost shares of 
labor, food, diesel fuel and oil, and gear to provide an index of annual changes for 
variable cost per day, and similarly for the vessel (includes engine, equipment, etc.) for 
the rate of change of Moody’s long-term bond rate rated Baa. The annual rates of variable 
and fixed cost changes per day were used to extend the 1996 observed mean variable and 
fixed cost per day from the panel data set backwards from 1996 and forwards from 1999 
to provide a variable and fixed cost per day of fishing, which when multiplied by each 
year’s total days fished gave the fleet’s annual total cost. The use of these cost-shares 
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implies that the single-product harvest technology was Leontief or fixed over this time 
period for variable and fixed costs, which also satisfies Leontief aggregation theorem for 
a composite input, effort. This Leontief separability is consistent with the homothetic 
input separability of all inputs required to construct the composite input fishing effort. 
The cost shares are independent of the technology index t under implicit Hick’s input 
neutrality. 
 
The panel cost data are from a survey of vessel annual cost-and-earnings for the 
Washington-Oregon-California albacore troll fleet covering the years 1996-1999 
conducted by the American Fishermen’s Research Foundation, the Western Fish Boat 
Owners’ Association, and the National Marine Fisheries Service (NMFS), in conjunction 
with the Pacific States Marine Commission (Squires et al. 2003). The survey was based 
on a stratified random sample determined by the Neyman Allocation Method with a finite 
population correction for 95% level of precision (significance) for a 10% error term from 
the mean 1996-97 albacore troll landings (these population data are all landings of fish 
along the Pacific Coast at the point of first sale) for a single year of data, although four 
years of panel data were collected. All strata received small rounding toward the closest 
integer. The sample size was 88, but to allow at least 3 vessels in each sample (to satisfy 
NMFS confidentiality requirements), several strata received additional vessels to give a 
final sample size of 92. The level of precision and error should actually exceed 95% and 
10% for a full sample since four years rather than one year of data were obtained. There 
were 14 strata, which were developed in consultation with the Western Fish Boat 
Owner’s Association. The data were collected double blind to NMFS to insure 
confidentiality and accuracy of the data. A total of 55 surveys received could be 
attributed to one of the 14 strata. An additional 39 surveys received were not attributed to 
any of the 14 strata. The total number of surveys received was 94, 2 more than the 
required 92. The criteria for stratification were: (1) inshore or offshore; (2) state of home 
port; (3) trans-shipping at sea or not; (4) fishing in the South Pacific or no t when fishing 
offshore; and (5), the special category of vessels with PacFIN identifiers of “ZZZ” or 
“none”, denoted “other.” The data for trips of vessels fishing in the South Pacific was 
excluded, because the empirical study focused on the Pacific coast of North America. 
 
Landings of albacore are primarily monitored via the processing facilities (canneries).  
That is, legal requirements dictate that financial transactions associated with 
commercially landed fish must be accounted for by a ‘landing receipt.’  Data from these 
receipts are processed and archived in a centralized data base (Pacific Fisheries 
Information Network or PacFIN) to provide U.S. albacore troll vessels’ landings and ex-
vessel prices. Additionally, the Western Fishboat Owners’ Association (WFOA–albacore 
fishing industry organization) monitors all landings of albacore and maintains an 
independent data base.  Final estimates of commercial landings of albacore are derived 
using both of the data bases above.  It is generally believed that a ‘small’ amount of 
albacore are unaccounted for each year, given that some fishermen do not sell their fish to 
a cannery, but rather, directly to the public (say dockside from their vessel) and 
subsequently, may not document these sales. 
 
U.S. effort data are obtained from log books filled out on a daily basis by U.S. albacore 
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fishers while fishing. Historically, logbooks have not been required to be turned into 
NMFS, and thus each year only a sample of logbooks is collected from a subset of the 
entire population of fishermen, i.e., the sample is strictly non-random and based on 
logbooks that have been voluntarily submitted. 
 
The opportunity cost of labor for an ordinary crewmember is the simple arithmetic mean 
for a number of blue collar labor categories (ranging from 6-10)  that varied by coastal 
county of the state of the vessel’s home port, and these data were obtained from the state 
labor departments for California, Oregon, and Washington. All crewmembers’ 
opportunity cost also included three U.S. Bureau of Labor Statistics (BLS) categories. 
The opportunity cost of labor for the vessel’s captain was the BLS category, “Bus, truck, 
and stationary engine mechanics,” on the assumption that the captain has the skill and 
experience of working the vessel’s engine. This skill is presumed readily transferable to 
other motor engines. This labor category is also one of the highest paid of the alternative 
possible occupations, which would reflect the captain’s human capital comprising of not 
only mechanical skill, but organization and leadership skills and the quasi-rent the 
captain would receive for these skills. Squires et al. (2003) provide further details. 
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Table  1. Expressions for Yield, Stock and Effort at maximum sustainable yield, optimal and open access with output-augmenting 

technical change and static model. 
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Table 2. Expressions for optimal Yield, Stock and Effort with output-augmenting technical change and dynamic model. 
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Table 3. Summary Statistics of the Data 

Category Mean St. Deviation Minimum Maximum 

U.S. Catch (mt) 8,750.86 4,316.87 1,845.00 16,938.35 

U.S. Days Fished 24,226.38 10,195.95 9,146.24 44,774.79 

U.S. Vessel Numbers 732.00 367.19 172.00 1,837.00 

U.S. Composite Effort Tornqvist Index 0.5164 0.2164 0.1860 1.00 

U.S. Variable Input (Days Fished) Cost Share 0.73 0.14 0.50 0.92 

U.S. Capital Cost Share 0.27 0.14 0.08 0.50 

Canada Catch (mt) 3,410.38 2,416.83 139.00 7,856.00 

Canada Days Fished 878.35 984.10 95.88 3,371.29 

Canada Vessel Numbers 187.00 76.09 45.00 295.00 

Canada Composite Effort Tornqvist Index 2.6445 1.9338 0.6110 7.4646 

Canada Variable Input (Days Fished) Cost Share 0.81 0.11 0.67 0.92 

Canada Capital Cost Share 0.19 0.11 0.08 0.33 

Price of Albacore (US$/mt) 2,852.24 505.70 1975.45 3,983.32 

Cost per day (US$/day) 1268.48 255.26 936.90 1978.52 

Biomass from International Stock Assessment (mt) 170,956.98 25,522.07 124,684.19 22,5743.85 

 
Note: Monetary values in US$2001. 
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Table 4. Parameter Estimates of Linear Time Trend Model with  
              Tornqvist Index of Effort, 1981-2006 
 

 Effort Coefficient not Restricted Effort Coefficient = 1 

Parameter Estimate St. Error t-statistic Estimate St. Error t-statistic 

Constant -2.8507 8.4033 0.3392 -7.7721 10.4620 -0.7490 

Dummy Canada -1.8754 0.5974 -3.1393 -2.7323 0.2920 -9.3580 

Effort 0.1245 0.1301 0.9572 1.000   

Biomass 0.9727 0.6956 1.3984 1.4161 0.8752 1.6180 

Trend 0.0446 0.0243 1.8322 0.0427 0.0210 2.0287 

Rho 0.7572 0.1416 5.4025 0.3336 0.1519 2.1958 

R
2 0.808262   0.827605   

Log-Likelihood -29.1723   -42.1681   

Note: Number of observations = 43.Maximum likelihood estimation with  
Correction for first-order serial correlation. Cobb Douglas functional form  
with linear time trend. 
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Table 5. Parameter Estimates of General Index of Technical Change Model 
              with Tornqvist Index of Effort, 1981-2006 
 

Parameter Estimate St. Error t-statistic 

Constant 36.2217 86.9674 .416497 

Dummy Canada -2.77949 0.265188 -10.4812 

Effort 1.000   

Biomass -2.24909 7.28238 -.308840 

Rho .609177 .121853 4.99927 

D1983 -.070812 .330995 -.213937 

D1984 .474335 .948242 .500225 

D1985 .477752 .584542 .817311 

D1986 .178382 .603761 .295451 

D1987 -.470339 .871398 -.539752 

D1988 .162001 0.555134 .291823 

D1989 -.738228 .945343 -.780910 

D1990 -.710823 1.60617 -.442557 

D1991 -.894899 .832313 -1.07520 

D1992 -.074155 1.47201 -.050377 

D1993 -.549851 1.14332 -.480923 

D1994 .175547 .684737 .256371 

D1995 .586890 1.15904 .506358 

D1996 2.25675 2.84855 .792245 

D1997 1.07411 2.80150 .383406 

D1998 1.92104 1.74271 1.10233 

D1999 1.61324 2.03451 .792937 

D2000 .382128 .697466 .547881 

D2001 .836831 .694556 1.20484 

D2002 1.08690 1.17526 .924817 

D2003 1.28201 .598456 2.14220 

D2004 1.44485 1.58139 .913657 

D2005 .704940 1.72686 .408220 

D2006 2.13323 1.95737 1.08984 

 
Note: Number of observations = 43. Unbalanced panel data, U.S. 1981- 
2006, Canada 1990-2006. Cobb Douglas functional form  with general  
index of technical change and effort coefficient = 1.   

R
2

= 0.948 . Log-likelihood = -16.8179. Std. error of regression =0.602515. 
Standard Errors computed from heteroscedastic-consistent matrix  
 (Robust-White) 
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Table 6. Parameter Estimates of Translog Effort Aggregator Function 

 
Full information maximum likelihood estimation with first-order serial correlation 
correction joint with catch frontier.  
 
 

 No Restrictions Effort Coefficient= 1 Effort and Stock Coefficients = 1 

Parameter Estimate St. 
Error 

t-statistic Estimate St. 
Error 

t-
statistic 

Estimate St. Error t-statistic 

Constant 0.5157 0.1543 3.34 0.4907 0.1422 3.45 0.4961 0.1262 3.93 

Dummy 
Canada 

-0.2318 0.1164 -1.99 -0.2367 0.0877 -2.70 -0.2346 0.0840 -2.79 

Days 
Fished 

0.0093 0.0091 1.02 0.0072 0.0093 0.78 0.0062 0.0086 0.72 

Number 
of Vessels 

0.0026 0.0146 0.18 0.0078 0.0099 0.79 0.0089 0.0087 1.02 

Rho 1.033 0.0328 31.47 1.0325 0.0304 34.01 1.0325 0.0312 33.08 

R
2 0.9171   0.9159   0.9158   
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Table 7. Parameter Estimates of Catch Frontier 

 No Restrictions Effort Coefficient = 1 Effort and Stock Coefficients = 1 

Parameter Estimate St. 
Error 

t-
statistic 

Estimate St. 
Error 

t-
statistic 

Estimate St. Error t-statistic 

Constant -6.1134 7.9111 -0.77 -6.0064 8.2430 -0.73 -11.9193 0.6438 -18.52 

Dummy 
Canada 

-4.4927 2.4217 -1.86 -3.4666 1.6889 -2.05 -3.2852 1.7343 -1.89 

Dummy 
Canada*Effort 

1.6931 0.9160 1.85 1.2529 0.2319 5.40 1.1934 0.2428 4.92 

Effort 0.7784 0.3415 2.28 1.0000   1.0000   

Biomass 0.6280 0.7446 0.84 0.4952 0.6980 0.71 1.0000   

Trend 0.0389 0.0121 3.22 0.3896 0.0116 3.36 0.0356 0.0111 3.21 

Likelihood 57.6471   57.3455   57.3455   

R
2 0.8278   0.8333   0.8331   

Note: Number of observations = 43. Full information maximum likelihood estimation 
jointl with effort aggregator function.  
 
 
 
 
 
Table 8. Parameter Estimates of Two-Factor Learning Curve, 1981-2006 
 

Parameter Estimate St. Error t-statistic 

Constant 6.60755 1.38302 4.77762 

Dummy Canada 1.26423 .612536 2.06393 

Cumulative Catch .108867 .047989 2.26857 

Biomass -.125511 .110088 -1.14010 

Rho .983322 .015283 64.3390 

Note: Number of observations = 43. Maximum likelihood estimation with 

correction for first-order serial correlation. R2 = 0.957. Log likelihood = 42.2637. 
Std. error of regression = .140768. 
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 Figure 5. Optimum stock size over a 150-year time horizon 

 
 
 
 
Figure 6. Optimum yield over a 150-year time horizon 
 

 



 
 68 

 
Figure 7. Marginal stock and technology effects in modified Golden Rule 

 
 
 
Figure 8. Optimum resource stocks with technical change and schooling 
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Figure 9. Optimum Tax 

 
 
 
 
 
Figure 10. Static Stock Externality, 1981-2006 
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Endnotes 
                                                
1 See, for example, the following representative classics of renewable resource 
economics: Gordon (1954), Scott (1955), Dasgupta and Heal (1979), Dasgupta (1982), 
Clark (1990), and Hannesson (1993). Dasgupta (1982) explicitly holds technology 
constant. Brown (2000), in an authoritative survey, mentions in passing that optimal 
technology is assumed fixed in normative models. There is also a literature on trade, 
renewable resources, economic growth, and technical change introduced by Brander and 
Taylor (1998), reviewed by McAusland (2005), but it is not germane to the present 
discussion on normative utilization of common renewable resources. 
 
2 Whitmarsh (1980) and Ruttan (2001) qualitatively discussed technical change with 
common renewable resources, with Whitmarsh stressing transferable property rights in 
outputs, a conclusion also reached by Murray (2007) and this paper. Squires (1992) and a 
subsequent positive economics literature evaluated productivity growth when explicitly 
accounting for the resource stock. Jensen (2007) examined the impact of cell phones on 
artisanal fishers. Technical inefficiency in a positive framework was introduced by 
Hannesson (1983) through a deterministic frontier and extended to the stochastic frontier 
by Kirkley et al. (1998), but has not yet been introduced into a normative framework. 
 
3 Scale efficiency arises when price equals marginal cost. In the standard bioeconomic 
model, assumptions of homothetic separability between inputs and outputs and joint 
production are imposed to form an aggregate output and an aggregate input (Squires 
1987). Consequently, profit or rent efficiency in the renewable resource economics 
literature -- the traditional Pareto optimum or Maximum Economic Yield -- reduces to 
only scale efficiency, and technical efficiency and allocative efficiency for multiple 
inputs and for multiple outputs are overlooked as sources of economic efficiency. This 
paper introduces technical efficiency, but allocative inefficiency in the second stage of 
production is inherently prohibited because of the input-output separability. 
 
4 This classic Gordon-Schaefer model specifies a composite input, fishing effort, with an 
exponent of one, and a composite output, catch, a composite measure of resource 
abundance, biomass, also with an exponent of one, static technology, and no allowance 
for technical inefficiency. Marginal costs increasing in the harvest rate require an 
exponent less than one for effort. Subsequent refinements introduce demographic features 
of the population (age structure), non-instantaneous entry and exit, investment, and 
further features (Clark 1990, Hannesson 1993, Brown 2000), but our focus is on 
analytically developing the modified fundamental equation of renewable resource 
economics to clearly demonstrate the effect of changes in technology and technical 
efficiency. The specification of a classic Gordon-Schaefer model leads to an optimization 
model is linear in the control Y, but the optimal stock and harvest rate is nonetheless not 
linear, and instead varies continuously with changes in technology and technical 
efficiency. Nonlinearity in E yields a marginal cost function that is non-linear in Y, but 
analytical solutions are not possible for the augmented fundamental equation of 
renewable resource economics, and the fundamental point of this paper is unchanged. 
 
5 The main omissions are embodied technical change, endogenous technical change, 
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jump-diffusion (diffusion is currently incorporated by technical inefficiency), costs 
nonlinear in the control variable (following from non-linear effort), and stochasticity, all 
subjects of future research and given our focus on the classical renewable resource model 
based on Gordon (1954) and Schaefer (1957). As we discuss below, the majority of 
technical change in fishing industries is likely to be autonomous rather than endogenous 
because of research and development activities by firms. We leave for future work 
analysis, in the presence of weak or nonexistent resource policies, of investments in the 
development and diffusion of new environmentally beneficial technologies (which are 
likely to be less than would be socially desirable). We further leave for the future the 
analysis of the impact of positive knowledge and adoption spillovers and information 
problems that can affect innovation incentives, and in general knowledge market failures. 
 
6 Rapid advancements in fishing technologies led to increased fishing pressure on all fish 
stocks in the 20th century.  Mechanical power for vessels replaced sail power, which 
allowed the development of new types of gear and substantially larger vessels and gear 
and the exploitation of fish stocks in previously inaccessible ocean locations and depths 
and at substantially higher levels of productivity. Synthetic materials for gear and the 
power block in the 1950s were also critical. Vessel electronics, such as sonar, 
chromoscopes, satellite imaging, cell phones, and GPS, help communications, navigation, 
locate fish, monitor gear performance while fishing, and develop markets. The vast 
majority of large, industrial-scale vessels were constructed between about 1960-1990. 
Local traditional knowledge has in many instances been succeeded by the technology-
based knowledge of modern electronic equipment, communications, and satellites. 
 
7 The usual regularity conditions for a production function are assumed (Dasgupta 1982, 
p. 125): a single-valued continuous function with continuous first and second partial 
derivatives; 0 = f (St ,0) = f (0,E t ); positive first partial derivatives 

(∂Y
t
∂S

t
> 0,∂Y

t
∂E

t
> 0); concavity in S

t
and quasi-concavity in E

t
, so that for the own 

second partial derivatives (∂ 2Y
t
∂S

t

2
< 0,∂

2
Y
t
∂E

t

2
≤ 0); and a non-negative mixed second 

partial derivative ∂ 2Y
t
∂S

t
∂E

t
= ∂

2
Y
t
∂E

t
∂S

t
≠ 0,where symmetry is assumed. 

Yt = f (St ,E t ) is bounded from above by the size of the fish stock. Crowding or 

congestion of vessels occurs when ∂Y
t
∂E

t
< 0and the opposite when ∂Y

t
∂E

t
> 0  

(Dasgupta and Heal 1979) and ∂Y
t
∂S

t
≤ 0  is expected in a stock-flow production 

technology. 
 
8 The authors are grateful to Pat Tomlinson for this definition. q converts, in a Hick’s-
neutral manner, the level of E

t
 to the proportion of S

t
 removed and captures changes in 

technology, technical efficiency, the environment, and other factors not captured by E
t
.  

 
9 Output-oriented technical efficiency measures the potential increase in output given the 
current level of input. In fishing industries, it captures skipper skill, including the ability 
to find and harvest fish, catching up to the best-practice production frontier that is 
shifting due to technical change, and the impact of some regulations designed to lower 
technical efficiency to reduce fishing mortality (Kirkley et al. 1998). When technical 
inefficiency is due to an expanding frontier – especially with learning by doing, rates of 
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adoption and hence gains in technical efficiency may diffuse more slowly than when 
regulatory induced. Conversely, the competitive pressures induced by market failure with 
common resources and incomplete property rights could hasten the pace of diffusion 
(Smith 1972, Ruttan 2001). 
 
10 Squires (1992) and Arrow et al. (2006) analyze the importance of disentangling 
changes in the natural resource stock from changes in technology when evaluating 
changes in productivity. Disembodied technical change may easily predominate over 
embodied technical change, as found by Kirkley et al. (2004) in the only positive analysis 
of both types of technical change in a  renewable resource, in this case a fishery.  
 
11 Technological change A(t)in the form of process innovations affecting E

t
 in a 

production function of the form Y
t

= A(t)F(S
t
,E

t
)  is both Hick’s-neutral and output 

augmenting (Lau 1978, p. 204). Letting A(t) = qλ(t) = qe
λt , where the latter term denotes 

a constant rate of technical change λ , denotes output-augmenting technical change in the 

Graham-Schaefer production frontier Yt = qe
λt
StE t = qStE te

λt  (ignoring technical 

inefficiency). Because of the weak homothetic input separability allowing the formation 
of a consistent composite input E

t
 (and usually the stronger condition of input-output --- 

and hence strong -- separability when there are multiple outputs such as species or sizes 
or fish), and the linear homogeneity of the input aggregator function required for a 
consistent composite input index, biased technical change among the input pairs 
comprising E

t
 in a first stage of production is impossible, i.e. technical change is implicit 

Hick’s neutral among all input pairs comprising E (under implicit Hicks input neutrality, 
the marginal rate of substitution between any inputs is independent of the technology 
index t, and the resource stock B

t
), and changes in the scale of production do not affect 

input ratios. The Graham-Schaefer form Y
t

= A(t)S
t
E
t
 is strongly separable in E

t
, which 

provides Hick’s (and Harrod and Solow) neutrality for E
t
, and which Blackorby, Lovell, 

and Thursby (1976) call extended Hick’s-neutral technological change (allowing a 
multiplicative decomposition of the production function into one term involving input 
variables only and another involving the state-of-technology variable only and is 
expansion-path-preserving; extending this definition to an independent resource stock is 
straightforward). Moreover, when the aggregator function of individual inputs 
comprising E

t
 is linear homogeneous, as with the Graham-Schaefer production frontier, 

factor-augmenting technical change that equally augments each input comprising E
t
 is 

equivalent to output-augmenting technical change (cf. Thirtle and Ruttan 1987, pp. 13-
14).  
 
12 Interest in the sources of neutral or biased technical change could be accommodated by 
replacing the time-oriented terms described above with one or more proxy measures (H) 
for proposed sources of technical change. This is one way of specifying embodied 
technical change, but faces potential omitted variable bias. 
 
13 We develop this discussion heuristically rather than through a formal model of learning 
by doing, which is beyond the scope of this paper’s focus, although we estimate a two-
factor learning curve in the empirical analysis. See McAusland (2005) for a formal model 
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of learning by doing with renewable natural resources but with a focus on growth of an 
economy. We further abstract from incentives to adopt technology due to the state of 
property rights and other factors. 
 
14 The nature and scale of fisheries production makes it difficult to restrict information 
about new technology or practices. Moreover, even the largest vessels or fishing firms are 
relatively small units and are not able to capture more than a small share of the gains 
from inventive activity. Under the incomplete or absent use rights characterizing most 
fishing industries, the private benefits to research and development to advance the state of 
technology cannot be captured by private firms for any length of time but can provide a 
temporary competitive advantage in the race to fish (Smith 1972, Ruttan 2001).  
Organized private research activities in fishing industries have been minimal, and instead 
have largely consisted of adopting “off-the-shelf” innovations such as sonar, GPS, or the 
acoustic imaging technologies.  

15 The logistic growth function is ⎥
⎦

⎤
⎢
⎣

⎡
−=
K

S
rSSF

t

tt
1)( . 

16 Technical progress that increases the intrinsic rate of growth, such as through genetic 

research or animal breeding, could be specified as r t( ) or more concretely as reλt  

(McAusland 2005). 
 
17 Murray (2007) makes this point through simulation. McAusland (2005) finds the same 
result. 
 
18 Remember that technical efficiency is equal to 

),( Zt
e

µ−
. 

 

19 Stage II of Production for a classic production function occurs when there is a positive 
marginal product of an input over the input range between that corresponding to the 
maximum average product to the marginal product equal to zero. With the Schaefer 
yield-effort function, the average product of the single, composite input effort, 

AP
E

=Y E , as a ray from the origin, is found as effort approaches zero, and MP
E

> 0  for 

0 < E < E
MSY

, where MSY denotes maximum sustainable yield. Moreover, MP
E

= 0 at 

E
MSY

 and MP
E

< 0 when E > E
MSY

. With an Allee effect, the lower bound occurs at the 

level of effort corresponding to the minimum viable population level. A depensatory 
growth function, which has an inflection point, allows the maximum MP

E
 to occur 

before the maximum AP
E
 as in the classic production case. With pure compensation 

growth, maximum AP
E
 and maximum MP

E
 coincide, differing slightly from the lower 

bound of Stage II. 
 

20 MP
E

TE ,t
> (<)0  when E < (>)E

MSY

TE ,t , which occurs on the upward (downward) sloping 

part of the yield-effort frontier in Figure 1. 
 
21 The rate of cost diminution overstates (understates) the rate of technical change if there 
exists decreasing (increasing) returns to size and exactly measures the rate of technical 
change only if there exist constant returns to size (Chambers 1988, p. 215). There are 
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constant returns to size in E with the Graham-Schaefer production frontier since the 
production coefficient is 1. Thus the primal and dual rates of technical progress are equal 
since ∂ lnY

t
∂ lnE

t
= ∂ lnC

t
∂ lnY

t
= 0 . Non-linear E leads to numerical solutions of the 

modified Golden Rule and a discrepancy between the rate of technical change and returns 
to size or scale. 
 
22  From Chambers, p. 227, Hicks neutrality, cost neutrality, and profit neutrality are the 
same phenomenon only when the technology is also homothetic (in our case it is linear 
homogeneous in E, an even stronger condition). Cost neutrality means that optimal input 
ratios for either the cost minimizer or the profit maximizer are independent of the state of 
technology so long as output is held constant. (Chambers pp. 224-225) Profit-neutral 
technical change leaves profit-maximizing input ratios undisturbed (Chambers p. 224). 
 
23 This result also holds in steady-state equilibrium of the static model. Under open 

access, substitute from (15) to give ∂ 2TC ∂S∂t = λYP
2
qe

λt−µ( t )
c > 0. A similar result 

holds for the static Pareto optimum of the sole owner. 
 
24 Since MR

E
= PMP

E
 for a constant P, this is the same result found with MP

E
. 

 
25 Technical inefficiency with the sole owner might be viewed as a regression in fishing 
skill or changes in fleet composition (with less technically efficient vessels), or less 
technically efficiency along the linear expansion path of the individual inputs comprising 
effort, given a state of technology and resource stock, compared to a previous time 
period. 
 
26 Second-order conditions are automatically satisfied with a quadratic function. 
 
27 This is a standard model. See, for example, Brown (2000), Clark (1990), Dasgupta 
(1982), Dasgupta and Heal (1979), or Hannesson (1993). 
 
28 The unit profit of harvest – the marginal value of the population – is an increasing 
function of S, as in the traditional rule, but is now also an increasing function of λ , i.e. 

∂ pqSe
λt−µ(t ,z)

− c[ ] ∂S = pqe
λt−µ( t,z ) > 0  and ∂ pqSe

λt−µ(t ,z)
− c[ ] ∂t = λpSqe

λt−µ(t ,z) > 0 . 

 
29 The specification of a linear cost function, TC = cE , in this standard textbook 

specification, which gives a cost function TC = c e
λt−µ(t ,Z )[ ] Y qS[ ]  that in turn leads to a 

Hamiltonian linear in the control variable Y, in part affects the interaction between the 
marginal stock effect and the marginal technology effect. A nonlinear cost specification 
allowing for increasing marginal costs in Y with diminished stock size could potentially 
and increasingly counter the marginal technology effect as stock sizes decline, through 
growing importance of the marginal stock effect relative to the marginal technology 
effect at low levels of resource abundance. We address this relationship in subsequent 
research, but note that the main results of this paper can be expected to hold but with a 
slower rate of resource stock decline and a higher resource stock level over an infinite 
time horizon in the limit case.  
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30 It depends in the traditional model on the relative size of the discount rate and the 
marginal stock effect. If the discount rate is lower than the marginal stock effect the 
optimal stock level is higher than MSY-level. 
 
31 Which it should be, because as time approaches infinity in Equation (41) the marginal 
stock effect and the marginal technical effect approach zero. 
 
32 We are comparing the optimal yield paths in equilibrium. If the stock level is not in 
optimum, the solution is bang-bang or the most rapid approach, where the stock level is 
adjusted as quickly as possible to the equilibrium. 
 
33 ∞∞

YandS indicate the level of stock and yield respectively when time goes to infinity. 

 
34 Differentiate the unit cost with respect to time gives an expression whose sign depends 

on the relative size of SS

•

and λ. From equation (43) it can be seen that SS

•

is 

numerically less than λ. 
 
35 In reality, the ITQ policy is preferred by the fishermen instead of the tax policy, 
because the benefits of the ownership of the quotas go to the firm in the fishery when the 
ITQ system is implemented. 
 
36 The semi-parametric approach has an advantage over the stochastic frontier function in 
that misspecification of production dynamics is a basic problem that is seldom addressed 
in frontier models, and we were concerned with the construction of the generated 
composite effort variable and with serial correlation with a long time series of annual 
data. Moreover, econometric estimates are all heteroscedastic-consistent. 
 
37 With the Cobb-Douglas functional form, this specification is equivalent to that of 
Baltagi, Griffin, and Rich 1995). Intertemporal firm-specific technical efficiency and 
technical change effects can be obtained by using fitted values of the disturbance term v

it
 

in A
it

= A t( ) + a
i

+ v
it
 to obtain the index TI

it
= e

−A
it , where changes in A

it
 imply 

percentage changes (Baltagi, Griffin, and Rich 1995).  
 
38 A chain index of technical change can be calculated as T

t
= T

t−1 exp A t( ) − A t −1( )( )( ) . 

For t = 3, T
4

= e
0

•e
A 2( )−0 •e

A 3( )−A 2( ) •e
A 4( )−A 3( ) = e

0+A 2( ) +A 3( )−A 2( ) +A 4( )−A 3( ) = e
A 4( ) . 

 
39 Given weak separability of an input bundle, Fuss (1977, page 91, footnote 7) states, 
“Homotheticity is a necessary and sufficient condition for the validity of the two stage 
procedure. The further restriction of linear homogeneity is required to ensure that the 
product of the aggregate price and quantity indices equal total cost of the components.” 
The latter corresponds to Fisher’s factor reversal test. The index is not equal to a simple 
weighted average of the components unless the components are perfect substitutes or 
complements (Fuss 1977). 
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40 Resource stock is treated as exogenous in the production model because it was 
estimated by a Box-VPA model using Pacific-wide data on multiple gear types, so that 
considerable exogenous information (e.g. age structure of the population, length-weight 
relationships, recruitment, information from other nations, etc.) and exogenous 
assumptions about the population dynamics were the basis of the stock estimates rather 
than simply the catch and effort (days fished) data from a surplus production model for 
the North American Pacific coast for troll gear. 
 
41 The superlative Tornqvist index is not self-dual, and in that regard does not satisfy 
Fisher’s factor-reversal test, but it does so only by a small order of approximation. 
Moreover, the direct quantity and indirect price forms do satisfy the factor-reversal test, 
and we are only concerned with the direct quantity index of effort. Moreover, we are not 
concerned with multilateral comparisons between the U.S. and Canada, and hence we 
calculate direct bilateral quantity indices for each country. Finally, the Tornqvist index, 
which provides a discrete approximation to the Divisia index, is based on a translog 
technology (Diewert 1976). 
 
42 The index is subject to a base period normalization, such as all effort component 
quantities equal to unity (standard for quantity indices). Since the aggregate effort index 
is unique only up to a scalar multiple (since α + a

i
 cannot be identified from Equation 

(52)), α + a
i
 in Equation (52) is also set equal to unity. The effort aggregator function 

becomes equal to Equation (52) without α + a
i
, which is simply the normalized form of 

Equation (52) (Fuss 1977). 
 
43  Implicitly, the capital stock is assumed to be in full static equilibrium. Moreover, since 
the aggregate effort index is unique only up to a scalar multiple, α  in the effort 
aggregator function equals unity (Fuss 1977). 
 
44 The Durbin-Watson value of 0.935098 indicates first-order serial correlation. The 
regression 

  

 
ν 
it

= ρ
 
ν 
it−1 + η

it
, where 

  

 
ν 
it
,
 
ν 
it−1

 are the current and lagged one-period residuals 

from Equation (50) and η
it
 is a random error, gave a t-ratio of 3.0518 for the null 

hypothesis θ = 0, providing confirming evidence of first-order serial correlation. The first 
observation was retained in the serial correlation correction. 
 
45 Allowing for technical change that is non-constant (giving the additional term t 2) or 
interacting with E

t
 and/or S

t
 (adding the terms E

t
t,S

t
t ) and a full translog model, gave 

implausible and in some instances statistically insignificant results due to the introduced 
multicollinearity. 
 
46 The Durbin Watson value was 0 .798669. The regression 

  

 
ν 
it

= ρ
 
ν 
it−1 + η

it
, where 

  

 
ν 
it
,
 
ν 
it−1

 are the current and lagged one-period residuals from Equation (51) and η
it
 is a 

random error, gave a t-ratio of 11.9617 for the null hypothesis θ = 0, providing 
confirming evidence of first-order serial correlation. The first observation was retained in 
the serial correlation correction. 
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47 Industry experts confirmed this comparatively high rate of technical change as 
reasonable. The high rate is due to increased understanding of ocean conditions allowing 
forecasting of fish locations through temperature sensing devices reinforced by satellites, 
improvements in interpretation, and GPS, all of which give information about the overall 
distribution of albacore, dramatically reduces searching, and eases finding schools below 
the surface. Improved communications allows sharing of information among members of 
code groups, reducing search time, and increasing catch rates. Acoustic devices, such as 
sounders, are also increasingly sophisticated. The gear itself remained static. Improved 
weather forecasts extend the end of the fishing season. 
 
48

 The Durbin Watson value was 0 .117511. The regression 
  

 
ν 
it

= ρ
 
ν 
it−1 + η

it
, where 

  

 
ν 
it
,
 
ν 
it−1

 are the current and lagged one-period residuals from Equation (51) and η
it
 is a 

random error, gave a t-ratio of 13.9036 for the null hypothesis θ = 0, providing 
confirming evidence of first-order serial correlation. The first observation was retained in 
the serial correlation correction. 
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