
Technical criteria for selecting expert system shells
for engineering applications
Angel Pasqual del Pobil* and Valentín Arroyo**
*Department of Informatics, Jaume-I University, Penyeta Roja
Campus, E-12071 Castellón, Spain, EMail: pobil@inf.uji.es
**E.T.S. Ing. de Caminos, C. y P., University of Cantabria, Av.
de los Castros, s/n, E-39071 Santander, Spain
EMail: valentin@fltq.es

Abstract

A large number of Artificial Intelligence applications in engineering are based on the use of
expert systems. One of the fundamental decisions that should be made initially is the selection
of the most appropriate development shell. The most frequent types of engineering applications
has evolved over the last few years in such a way that it is no longer possible to think of a
single large isolated expert system running on a mainframe or minicomputer; instead, we must
now consider an embedded subsystem subject to new requirements. The existence of more than
a hundred commercial shells currently available on the market makes the problem even more
complicated. The bases for an initial evaluation and selection of these shells for the most
frequent type of engineering problems are presented in this paper. It is intended that the different
aspects involved in the problem will be clarified. To achieve this, a systematic and rigorous
process based on an empirical methodology for expert system shells evaluation and selection
has been followed. In the paper, a general framework for the problem is first presented and then
the identification of the capabilities and characteristics of the required shell are described: user
aspects, technical aspects, cost and vendor. Next, the requirements imposed by the application
type are discussed: eight application types are distinguished, the requirements for reasoning
mode and the problem of fact-base unfeasibility are dealt with. The question of rapid prototype
development is also analyzed. Some capacities that are critical for the success of the project are
identified, such as the support for personal computers, embeddability, backward chaining,
connection to databases, etc. Following the established criteria, details of 31 common shells are
finally included.

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

1 Introduction

Knowledge-based systems or expert systems are, in general, one of the most

successfully applied Artificial Intelligence techniques, especially in engineering.

A firm often considers using an expert system to deal with a particular

engineering problem. An initial and fundamental decision that should be made is

the selection of the most appropriate tool or development shell. The most

frequent type of engineering applications has evolved over the last few years in

such a way that it is no longer possible to think of a single large isolated expert

system; we must now think of a subsystem which becomes embedded in the rest

of the firm’s computer systems. (We shall call this the home system) .

Furthermore, new key requirements for evaluating expert system viability have

appeared.

Since there is a stress on the engineering project’s income-yield capacity and

success, this paper gives an initial evaluation and selection of expert system

development shells or tools. Unlike software evaluation which has been studied

thoroughly by software engineering, in the case of expert systems —due to their

special characteristics— the normal evaluation techniques are not valid, thus

often leading to selections made in an inadequate manner. This paper intends to

clarify the different aspects involved in the problem. To achieve this, a

systematic and rigorous process based on an empirical methodology for expert

system shells evaluation and selection has been followed.

When the feasibility of including Artificial Intelligence techniques is

considered, certain aspects of the problem seem to suggest the necessity of

answering the following questions:

• Is an Expert System viable for the problem in question?

• Which shell would be the most appropriate for its development?

The second question is conditioned by an affirmative answer to the first and it

refers to the selection of the expert system shell. Due to space limitations, this

paper assumes that the problem has been previously analyzed and that the

requirements have already been specified. Likewise, it is supposed that the

viability of an expert system-based solution has been studied. More details about

these points can be found in [19]. This paper deals with the evaluation and

selection of the most appropriate tool or ES shell.

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

2 General Framework for the Problem

Before trying to answer the question of shell selection, it is necessary to define

the fundamental characteristics of the type of problem to be dealt with and the

minimum requirements we must demand to the system. As we shall see, the

nature of the problem will condition the answer to the question which this paper

discusses.

The home system will be based on the massive generation and handling of

information. The Expert System’s mission will be that of a support mechanism

in interpreting this large volume of information in order to help in the decision-

making process by suggesting actions to correct malfunctions.

All computer science projects entail the previous preparation of a

requirements specification document. We can identify some of these objectives

and restrictions:

 • User Profile. The final system user cannot be expected to have a vast

knowledge of the system from a computer science standpoint, although he

will be well-versed in the problem area. The system should be friendly

and easy to use giving extensive information and explanations about its

results.

 • System Output. In accordance with the user profile, it should have a

graphic user interface, the possibility of showing results graphically, and

the embeddement in the home system as well as connections with other

systems in a way that is transparent to the user. This person will be able

to ask the system for additional information or explanations about its

functioning. The system will also be able to ask the user for any relevant

information which is not available.

 • Hardware Constraints. The expert system should function on a

distributed network of personal computers (preferably with a client/server

architecture).

 • External Interface Constraints. The expert system should be

completely embedded in the home system and it should have direct access

to the home system’s databases.

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

3 ES Shell Evaluation and Selection

ES shell selection is a critical question: using an inappropriate shell for a

particular application is like walking a great distance wearing shoes that are

several sizes too small. The resulting system would not be effective and would

even make the project fail. Expert system shell evaluation and selection are

difficult due to the lack of industrial standards and the rapid pace at which this

technology is developing. This is made even more difficult by the existence of

over a hundred commercial shells currently available on the market —widely

varied in terms of quality and price— and by the habitual use of inconsistent

terminology in the information provided by vendors.

Shell evaluation and selection must go through the following steps:

1. The identification of the capabilities and characteristics the shell requires.

2. The identification of a reduced set of shell candidates.

3. The evaluation of shell candidates based on identified requirements.

4. The selection of the most appropriate shell.

This paper mainly covers the first two/three stages mentioned above in which

an initial screening is done based on critical requirements. Final evaluation and

selection require dealing with concrete shells for a concrete problem.

Four main sources exist which give us the requirements that we should ask

for in all cases of commercial expert system shells.

•application type • technical environment

•human factors • economic factors

We have already mentioned some human and technical factors when

discussing requirements specification (section 2). We will comment on

application type, given its importance, in section 3.2. The basic criterion for

selection will be to compare the different requirements with the capabilities that

each shell offers. These capabilities can also be grouped in a similar way:

• user aspects • cost

• technical characteristics • vendor

3.1 Expert System Shell Capabilities

Within the four categories stated above we can single out numerous capabilities

[26,27] which we shall briefly comment on in this section. Only the ones

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

considered to be most important to our case have been included. The ones that

are critical for the success of the project —which will be briefly justified— have

been highlighted in bold face.

a) User aspects

• Final user interface. This refers to the capabilities that will have the final

product for its ordinary use.

- Explanation facility - Graphic results

- Tutorial - Windows and menus

- Complete and intelligible documentation

As users will not tend to possess a specialized knowledge of either computer

science or artificial intelligence, it will be critical that the capabilities allow the

user to feel comfortable and to be able to ask the system for additional

explanations.

• Development interface. This refers to the capabilities that the system

offers during its developmental stage. The user is now the knowledge

engineer and his/her team.

- Documentation - Graphics

- Tutorial - Windows and menus

- Explanation facility - Fast prototype development

- Editing and debugging tools: inference trace, etc.

The development team is usually specialized in computer science, but not in

Artificial Intelligence or expert systems. For that reason, the system should be

easy to use and it should not be just for specialists. Helpful assistance for

debugging will be essential in the cycles of system verification/validation. The

capability for rapid prototype development will be discussed further ahead.

b) Technical characteristics

• System interface. These capabilities are relative to the hardware and

language on which the system is implemented.

- Portability - Embeddability

- Support for personal computers

- Support for multiusers

Each shell is available for a limited number of hardware platforms. Support

for PCs will be a critical question. On the other hand, the base language may or

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

may not allow the system to become embedded as part of the complete home

system in such a way that it can co-exist and cooperate with it. This will be

generally impossible if the base language is Lisp.

• Inference Engine. This refers to the heart of the expert system, that which

does the reasoning. Shells usually offer one of the two possible chaining

modes or control strategies:

- Forward chaining - Backward chaining

Other factors that should be kept in mind are:

- Rule priority assignment - Certainty factors

We base the justification for the need of backward chaining on the application

type. This will be analyzed in section 3.2.

• Knowledge base. This refers to the way of representing knowledge

according to different possible techniques:

- Production Rules - Frames

- Partitioning rules into sets - Inheritance mechanisms

For an initial application the usual production rules may be enough, although

the different shells vary a great deal in the richness and flexibility of rules. The

use of frames and inheritance would be left for a later stage of system extension.

• Data interface. This is relative to the system’s capability to access external

software and to permit its interaction with other systems that make up the

firm’s computer environment.

- Connection to databases - Access to support language

- Connection to special purpose software: spreadsheets, etc.

This is a fundamental capability that many shells do not offer. It allows the

incorporation of capabilities that the shell does not include by accessing directly

to them: for example, for showing spreadsheet data in the form of a graph, etc.

In the home system, it is usual to find all relevant information stored in the

databases; thus, access to them will be of critical importance. It will be

necessary, therefore, to know the home system’s concrete databases before

making the final shell selection.

c) Cost

The prices of expert system development shells range from $0 (public domain

software) to $120,000 (for large mainframes). The prices for personal

computers range from $100 to $5,000. The size of the computer on which the

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

shell functions will naturally tend to make the price go up. Nevertheless,

sometimes there does not seem to exist any logical relationship between quality

and price for comparable hardware platforms.

d) Vendor

Vendor support is important: for example, if the vendor offers training and

consulting. Moreover, the firm’s experience in the expert system market or

computer market in general will allow it to assess the course of development of

previous products that have or have not been successful.

3.2 Requirements Imposed by the Application Type

In specialized literature it is widely agreed that different application types require

different capability types for expert system shells [5, 7, 10, 12, 23]. In a study

done by the University of North Carolina [28], 36 different application types

were distinguished. Among these applications, the following are relevant to our

case:

• Monitoring. To observe a system while it is functioning and to give a

warning when it behaves in an unexpected or unusual way according to the

foreseen model.

• Interpretation. To select a hypothesis based on data obtained from

measurements and information deduced from them.

• Diagnosis. To determine the causes of a system’s incorrect behavior by

means of observable symptoms

• Prediction. To infer the probable consequences of a given situation or of

any change in the situation.

• Design. To make a configuration of a system under certain constraints

along the basis of a set of possible alternatives.

• Planning. To design plans; that is, sets of actions.

• Repairing. To execute plans for administering foreseen remedies.

• Control. To monitor, diagnose, foresee and repair a system’s behavior.

Now we should ask ourselves which of these application types mentioned

above fit our system. As it is impossible to analyze all of the cases, we will

consider a very frequent situation in industry in which the home system monitors

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

the functioning and triggers a warning when it detects an error. A final

hypothetical expert system could serve as a support for the complete control,

including the diagnosis of the causes of incorrect functioning, the determination

of actions to be applied as remedies (prescriptions), its application and the

follow-up of its effects. Logically, we should begin little by little, and an initial

expert system would only be applied to those aspects close to monitoring; in

other words,

the determination of a hypothesis for identifying the original causes that have

given rise to a system’s incorrect behavior which has been observed by

warnings.

A system defined in this way must clearly be classified as a diagnostic- or

interpretation-type expert system. This type of systems is very well known, they

have been studied thoroughly and they were among the first to be recognized as

successful: The MYCIN expert system [25], for example, diagnoses an

infectious disease working from the set of symptoms that the patient is suffering

from, his clinical history and the results of clinical analyses. Diagnosis and

interpretation systems have been applied in very diverse fields other than

medicine. Such is the case of PROSPECTOR [4], a consultant system that

diagnoses the type of mineral bed found in a particular area using geological

information observable on the surface. In the general case which concerns us,

the symptoms would be the warnings and it would have to diagnose what was

the cause or “disease” that brought it on.

a) Requirements Relative to the Reasoning Mode

Diagnostic-type applications give rise to a requirement of critical importance to

the development shell, as the studies of a number of experts have corroborated

[1, 3, 6, 11, 26]. This requirement is as follows:

"A diagnostic system must use backward chaining as the control strategy

of its inference engine."

This is a highly important technical question that conditions the selection of

the appropriate shell. In backward chaining, the inference engine begins working

from one or several objectives or hypotheses and tries to justify them by means

of rules that match these hypotheses. These rules will generate, in turn, new

subhypotheses until the available data permit us to establish the certainty of

successive subhypotheses and, therefore, the certainty of some of the initial

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

hypotheses. These systems are said to be objective-driven. In this way, in the

case of medical diagnosis, symptoms give rise to hypotheses that are relative to

the patient’s illness. In order to corroborate these hypotheses, new

subhypotheses are generated so as to provide the necessary clinical data, which

give rise to analyses, tests, etc. This is the strategy used by practically all of the

classic diagnostic/prescription systems [6]: MYCIN (EMCYN, the shell which

descended from it), M.1 (Teknowledge), Personal Consultant (Texas

Instruments), KES (Software A&E).

In forward chaining, all rules try to be successively triggered by matching all

of the data the system knows to the antecedents of each rule. Triggered rules

establish new data or facts. The process continues until no new rules can be

triggered. The system is said to be data-driven. This is typically used in expert

systems for design/planning-type applications, in which a constructive problem-

solving technique must be applied. The solution is obtained by successively

adding elements (actions, parts, ...) until obtaining a design that complies with

the imposed restrictions. The classic example is the OPS5 shell used to develop

the R1, XCON, XSEL, and PTRANS systems in order to design the

configuration of DEC computer systems.

The control of forward-chaining systems is more complex than that of

backward chaining: the former will habitually need rule-priority assignment

techniques and the partition of rules into sets, which requires a greater amount of

experience on the knowledge engineer’s part. To be efficient, a forward system

requires the use of sophisticated control techniques (Rete type). As the

implementation of these techniques is complex, it is much easier to construct an

efficient shell with backward chaining that with forward chaining [11]. Proof of

this statement is the number of backward-chaining shells available on small

computers with limited memory and CPU, as opposed to the scarcity of

forward-chaining shells for these same platforms.

Vendors often affirm that their shells use a hybrid bi-directional chaining with

forward as well as backward chaining. In other cases, the user is offered the

possibility of selecting one mode or the other, even using two different inference

engines. A tool that gives a similar quality for both types of control strategies

would be desirable. Experience obtained from the evaluation of concrete systems

shows that this is seldom possible in practice. In this way, for example, the

comparative analysis carried out by Dr. W. Mettrey of Bell-Northern Research

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

[11] concludes by affirming that "decisions that must be made during the initial

design of a tool frequently result in strong support of one control strategy at the

expense of the other".

b) Fact Base Unfeasibility

In addition to the reasons noted in favor of backward-chaining motivated by

application type, there exist others that are purely technical. In the usual expert

system, the data or facts that make the rules trigger forward are found in the Fact

Base. If this base is large, control and efficiency problems arise due to the fact

that all of these data must be compared with the rule’s antecedents; this situation

is improved by the use of sophisticated algorithms (like Rete).

Habitually, it will not be possible to use a conventional fact base since there

exists a great deal of data to be found in the home system’s databases. A forward

reasoning driven by such an amount of data with no control would inevitably

make the system collapse. Selecting some data and temporarily transferring them

to the fact base could be considered, but the selection criterion is not at all clear

and would condition a priori the solutions that could be found.

In the case of backward chaining, the solution is immediate as we only need

to compare the necessary data in order to validate successive hypotheses and

subhypotheses. To achieve this, instead of asking the user questions —as

MYCIN or PROSPECTOR did— the database is asked directly. The philosophy

behind this would be that of a classic diagnostic system substituting the question

generator in natural language for a direct query generator for the databases in

their specific query language (thus, the importance of this requirement for the

shell).

3.3 Rapid Prototype Development

Among the capabilities linked to shell development interface, rapid prototype

development was mentioned. This capability requires a more detailed study. The

development life cycle of an expert system is based on the incremental

development technique with a three-stage repetitive cycle: 1-Design adjustments,

2-Implementation, 3-Verification and Validation.

The justification for this methodology is to be able to assess the following

aspects in an early stage of the project:

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

• To evaluate the decisions made in the design stage which are relative to:

problem conceptualization, knowledge representation, reasoning mode, etc.

• To evaluate the scope and validity of knowledge extracted from the expert

system as well as the magnitude and complexity of the project.

• To serve as a demonstration in order to persuade the firm’s management in

favor of the project.

So that the prototype fulfills these objectives, it should be a small system yet

it should possess the final system’s main characteristics and should allow for the

identification of aspects not considered in the initial design in order to redesign

and re-implement. To achieve this, selecting a flexible and powerful shell

which allows for the creation of a rapid prototype that works is a critical

requirement.

4 Common Expert System Shells

In this section we give details about 31 common expert system shells. The

comments about these shells are focused mainly on the critical aspects that have

been considered above for the kind of applications this paper is concerned with.

In general, the data about the shells analyzed in this section correspond to the

versions that were available in the first trimester of 1995, some later versions

may include further improvements or changes that are not included below. When

the shells do not satisfy some of the critical aspects, these are only briefly

mentioned; otherwise, a longer description of their capabilities is included. This

by no means implies that the first shells would not be of great interest for

applications other that those considered in this paper. The information

summarized below is been taken from three main sources: in some cases from

the data provided by vendors, in other it is based on recently published analysis,

and also from the evaluation by the authors of this paper themselves. The

available information may substantially vary for different shells.

• EXSYS (EXSYS, Inc.). User interface is not powerful, limited base

language, production rules are not flexible and with limited capabilities, rule

priority assignment is not flexible.

• KEE (IntelliCorp). Available on Unix platforms only under X-Windows.

Base language is Lisp.

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

• Kappa and ProKappa (IntelliCorp). Available only for Sun and HP Unix

platforms.

• ACQUIRE and ACQUIRE-SDK.(Acquired Intelligence Inc.). The

vendor lacks a previous trajectory in AI products. The inference engine

seems oriented towards forward chaining but it does not include the Rete

algorithm. The cost is reasonable for PC ($995). It includes a software

development kit for application integration, but information about the base

language is lacking. User interface seems adequate.

• RTworks (Talarian). Only available for Unix and VMS platforms. 16Mb of

RAM are recommended. Oriented towards applications that require real-time

data acquisition with client/server architectures.

• ART-IM and ART*Enterprise (Inference Corporation). These shells

have been superseded by other products (Eclipse and Rete++) developed by

their own creators who left Inference Corporation to establish their own

company. Moreover, they only allow for forward chaining, do not offer

database access and are slower and more expensive that their competence.

• KnowledgeWorks (Harlequin). Since it is based on CLOS (Common Lisp

Object System), it is only available for Unix workstations.

• C-PRS (ACS Technologies). This is not an expert system shell based on

production rules, but rather it is based on procedural reasoning [8]. It is

thought for applications requiring real-time response and it is not available

for PCs.

• GBB (Blackboard Technology). This is an expensive product ($6500) for

blackboard-type systems combining technologies such as expert systems,

traditional procedures, neural networks, etc. It goes beyond the needs of an

average expert system application. Its use requires experience in AI.

• G2 (Gensym). This is a very expensive shell: two developer versions exist:

—off line and on-line— with prices of $19,559 and $31,050 for PC. This

cost is justified by their high performance qualities in terms of: real-time

execution for on-line applications, a data sever that manages

communications that are simultaneous to concurrent reasoning, executions

with no stops, distributed systems integration, and a multiserver

client/server architecture. It goes beyond the needs of an average expert

system application.

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

• ILOG RULES (ILOG). Extension of OPS5 written in C++. Like its

predecessor it only incorporates forward chaining. The information

provided by the vendor does not permit a minimal assessment of this shell's

capabilities.

• KOOL 4x4 (Bull). This shell is based on objects and can be compiled as a C

language module. Each rule is declared to be used with forward, backward

or mixed chaining. It only runs on platforms of the DPX/20 family. The

developer version costs $15,000.

• Personal Consultant Plus (Texas Instruments). This tool is oriented

towards backward chaining and it is written in a dialect of Lisp. It is

intended to serve as a quick introduction into expert systems on PC. Its

weakest point is that it does not offer capabilities for embeddability or

connection to databases.

• Smart Elements and NEXPERT OBJECT (Neuron Data). NEXPERT

OBJECT is a very popular shell based on rules and objects. It incorporates

forward and backward chaining integrated in the same rule format, together

with automatic goal generation (opportunistic reasoning). This shell is now

commercialized within a product called Smart Elements, which is an

environment for intelligent applications development with a client/server

architecture. Its architecture is based on elements, including: a Graphic User

Interface (as part of Open Interface Elements), an element for data

access and NEXPERT OBJECT. These elements can be integrated in a

simple and portable fashion. This product offers complete portability over

35 hardware platforms, extendibility, as well as database and spreadsheet

connectivity in a transparent way by means of built-in bridges (dBase III

Plus, Excel, Lotus) or external bridges (Oracle, Ingres, Informix, DB2,

SQL). Smart Elements supports and incorporates API´s for most current

tools, the generated applications can be easily integrated within other type of

applications or even third-party tools or libraries. The kernel of NEXPERT

can be accessed as a C library. It allows for the implementation of friendly

user interfaces in any native window system, this fact can be improved by

the use of the module called Open Interface Elements. In addition, the

product called C/S Elements is a powerful tool for portable client/server

applications. As a whole, the system offers a great extendibility and

scalability. The cost of Smart Elements is $1,900 for PC (for universities).

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

• M.4 version 3.0 (Teknowledge Corporation). M.4 is a descendant of M.1,

which appeared in 1984 and has been successfully applied in hundreds of

expert systems. It was based on EMYCIN and conceived as a small but

powerful tool on a PC. M.4 is written in C and adds new functionalities

while still being easy to use and learn. It is based on backward chaining,

incorporating procedural control and objects. Its strongest point is its

flexibility and capacity to be embedded in other applications [13, 24] by

means of its Kernel Library —which can be used as an executable file— or

by DLL or VBX. All this is described in a 400-page Embedder's Reference

Guide. It includes a DDE server for communications under Windows, as

well as other interfaces for Visual Basic, Visual C++ and TTY. It also

incorporates a connection with dBase III which is transparent for the

knowledge engineer. In addition, it offers very convenient user interfaces,

certainty factors, etc. There only exists a version for PC under DOS or

Windows. M.4 VB is a specific product for integrating M.4 within Visual

Basic with the possibility of accessing databases with ODBC.

• Eclipse, The Easy Reasoner and VBXpert (The Haley Enterprise).

Eclipse was developed by the creators of the well-known ART shell, but it

is implemented in C language (ART was written in Lisp: it was expensive

and neither portable nor embeddable). It is based on the Rete algorithm but

—like ART— in addition to forward chaining it supports opportunistic

backward chaining. The main drawback is that this technique requires an

experienced knowledge engineer. Eclipse is smaller and faster than CLIPS

or ART, it offers automatic integration with databases, a powerful

development environment and support for windows by means of DLLs. Its

price is $999 for PC. The Easy Reasoner ($499) and VBXpert ($99) offer

extensions for case-based reasoning and its use with Visual Basic.

• Rete++ (The Haley Enterprise). This is an extended version of Eclipse

based on C++. Therefore, it adds objects to Eclipse's functionalities. Its

price for PC is $1,999.

• Flex (Logic Programming Associates). This shell is oriented towards

forward chaining, though it supports especial rules for backward chaining.

It uses frames and inheritance. Its base language seems to be Prolog, this

fact limits its embeddability. According to the vendor's information, C

procedures can be accessed from Prolog, it supports DLL and DDE under

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

Windows, as well as interfaces with databases: DBase III, Q+E library or

others via ODBC.

• GoldWorks III (Gold Hill Inc.). This product is integrated in Windows 3.

The company was one of the first to developed —some ten years ago— an

implementation of Lisp (GCLISP) for PC. Good GUIs are offered as well

as developer interfaces, tutorials, etc. It supports frames and multiple

inheritance too. The publicity states that it works forwards, backwards or in

a bi-directional mode. It includes and explanation facility and certainty

factors. Though it is built on GCLisp, the vendor states that —through

DDE— data can be transferred to or received from other applications, such

as spreadsheets, databases, etc., as well as external calls to C functions. Its

main drawback can be its lack of embeddability, since its base language is

Lisp. The prices of this company's products are usually competitive.

• OPS/83 version 4.0 (Production Systems Technologies). This is a

successor of the well-known system OPS5. It is written in C and

incorporates a combination of C, traditional procedural code, and improved

control strategies. It uses ReteII algorithm —an improved version of Rete—

resulting in a speed 5 to 7 times better than CLIPS. Previous versions were

based on forward chaining, while this version introduces the so-called

generalized forward chaining, which —according to its creators—

"integrates the capabilities of forward chaining with the essential

characteristics of backward chaining, but it is more flexible and easier to use

than both of them". Its cost for PC is $1,950.

• RAL (Production Systems Technologies). It is defined as a third generation

system which, due to technical improvements, it allows for a seamless

integration of rules and objects in programs written in C language in such a

way that it may surpass other shells such as CLIPS. It is thought of as a

syntactic extension of C language. It also uses ReteII algorithm and

generalized forward chaining. Its cost for PC is $1,950.

• CLIPS (Public domain). This shell was developed by NASA as an internal

training tool for PC. They cloned the syntax and functionality of ART

implementing it in C language. Since 1986 it is public domain. It has

become rather popular in the last years, mainly due to its access at no cost.

However, it presents serious drawbacks when compared with some of the

above-mentioned commercial products: it is not a professional system, it has

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

been superseded by other commercial shells, and it only incorporates

forward chaining. It does not offer good interfaces, vendor's support or

help facilities. As its base language is C, it can be embedded in other C

systems, but the developer must do it from scratch in C code: no interfaces

to other applications or databases are offered. Other drawbacks are: rules in

CLIPS cannot deal with arbitrary data types in C, CLIPS does not use C

conventions for passing arguments to functions or returning values from

functions. Trying to emulate backward chaining in CLIPS is very complex

and without good results [11]. Eclipse or ART-IM —just to mention two—

are clearly better that CLIPS. Its main interest is its use as a first

introduction into expert system based on forward chaining rules.

• ES Expert System, MIKE and RT-Expert (Public domain). These are

public domain shells. In general, public domain products are the result of

experimental projects in universities or obsolete versions of commercial

products. They may be technically correct, but they obviously lack the

facilities of a commercial product: adequate graphic interfaces,

documentation, edition and debugging tools, embeddability, external

connections, etc. They can serve as a first contact with expert systems

technology, but with the risk that this first impression may be negative. No

vendor support can be expected. ES Expert System can be recommended as

a useful shell for getting acquainted with the problems involved in the

development of a knowledge base, it allows the user to practice the art of

knowledge-base design. MIKE was developed by The Open University and

is an adequate tool for instruction purposes, it comes with a reasonably

well-developed environment and rather complete documentation. Real-Time

Intelligent Systems Corporation offers an almost-free version of the their

product RT-Expert ($64). There also exists a professional version. It is

aimed at applications with strict constraints in terms of response times. It is

conceived to be embedded in other applications, since the rules are finally

converted into C modules.

5 Conclusions

In concluding this paper, we can affirm that the current engineering necessities

call for expert systems embedded in the firm’s other systems, with the

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

possibility of access to the databases in an efficient way, with a shell that permits

a rapid prototype development, with a friendly graphic interface whose software

connects with other applications, and with clear advantages for an inference

mechanism based on backward chaining.

Acknowledgments

The authors thank the students Soledad García Valls and Gabriel Recatalá for

evaluating the ES Expert System, MIKE and RT-Expert shells.

Key words. Evaluation & selection, AI tools, implementation & integration

strategies, knowledge-based sytems, expert systems.

References

1. Barry, R., "Expert Systems in Prolog", PC AI, Summer 1987, pp. 23-26.

2. Cervera, E., del Pobil, A.P., "A Hybrid Qualitative-Connectionist

Approach to Robotic Spatial Planning", Workshop on Spatial and

Temporal Reasoning, International Joint Conference on Artificial

Intelligence (IJCAI-95), Montreal, Canada, 1995.

3. Clancey, W.J., "Heuristic Clasification", Artificial Intelligence, Vol. 27,

pp. 289-350, 1985.

4. Duda, R.O. et al. "Development of the PROSPECTOR Consultant System

for Mineral Exploration. Final Report". Artificial Intelligence Center,

Stanford Research Institute, Menlo park, California, 1978.

5. Gevarter, W.B., "The Nature and Evaluation of Commercial Expert

System Building Tools", IEEE Computer, Vol. 20, No. 5, pp. 24-41,

1987.

6. Harmon, P., King, D., Expert Systems: Artificial Intelligence in Business,

New York, Wiley, 1985.

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

7. Hayes-Roth, F., Waterman, D.A., Lenat, D.B., Building Expert Systems,

Massachusetts, Addison-Wesley, 1983.

8. Ingrand, F.F., Georgeff, M.P., "An Architecture for Real-Time

Reasoning and System Control", IEEE Expert, Vol. 7, No. 6, pp. 33-44,

1992.

9. Marcos, M., Moisan, S., del Pobil, A.P., "Verification and Validation of

Knowledge-Based Program Supervision Systems", IEEE International

Conference on Systems, Man and Cybernetics, Vancouver, Canada,1995

(enviado).

10. Martorelli, W.P., "PC-Based Expert Systems Arrive", Datamation, Vol.

34, No. 7, pp. 56-66, 1988.

11. Mettrey, W., "A Comparative Evaluation of Expert System Tools", IEEE

Computer, February 1991.

12. Mettrey, W., "An Assessment of Tools for Building Large Knowledge-

Based Systems", AI Magazine, Vol. 4, No. 8, pp. 81-95, 1987.

13. Murphy, T., "Wil you loan me your M.4", AI Expert, 1993.

15. del Pobil, A.P., Muñoz, C., García, J.L., Bret, A., "Implementation du

Système Expert Iroise dans un contexte multitâche en mode serveur sur

réseau ethernet", A.M.A.I.A. (Architectures, Méthodes, et Applicationes

en Informatique Avancée), Bayonne (Francia), 41 págs., 1988.

19. del Pobil, A.P., “Selection of Experst System Shells”, Tech. Report,

Dept. of Informatics, Universitat Jaume-I, 1995, (in Spanish).

20. del Pobil, A.P., Serna, M.A., "Robot Motion Planning", in Applications

of Artificial Intelligence in Engineering VIII, edited by G. Rzevski, J.

Pastor and R.A. Adey, Elsevier Applied Science, London, pp. 515-537,

1993.

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

21. del Pobil, A.P., Serna, M.A., "Solving the Find-Path Problem by a

Simple Object Model", Proc. 10th European Conference on Artificial

Intelligence (ECAI-92), Vienna, Austria, pp. 656-660, 1992.

22. del Pobil, A.P., Serna, M.A., Spatial Representation and Motion

Planning, Springer-Verlag, 1995.

23. Rothenberg, J. et al., Evaluating Expert Systems Tools: A Framework

and Methodology, RAND Corporation, California, 1987.

24. Schmuller, J., "M.4: Something for Everyone", PC AI, Nov./Dec. 1993.

25. Shortliffe, E.H., Computer-Based Medical Consultation, New York,

American Elsevier, 1976.

26. Stylianou, A.C., Madey, G.R., Smith, R.D., "Selection Criteria for

Expert System Shells: A Socio-Technical Framework", Communications

of the ACM, Vol. 35, No. 10, pp. 30-48, 1992.

27. Stylianou, A.C., Smith, R.D., Madey, G.R., "An Empirical Model for

the Evaluation and Selection of Expert System Shells", Expert Systems

with Applications, Vol. 8, No. 1, pp. 143-155, 1995.

28. Stylianou, A.C., Smith, R.D., Madey, G.R., Expert System Application

Types: An Empirical Classification", Technical Report, The Belk College

of Business Administration, University of North Carolina at Charlotte,

1993.

 Transactions on Information and Communications Technologies vol 16, © 1996 WIT Press, www.witpress.com, ISSN 1743-3517

