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Abstract 
A balanced panel of data is used to estimate technical efficiency, employing a fixed-effects stochastic frontier 
specification for wool producers in Australia. Both point estimates and confidence intervals for technical efficiency 
are reported. The confidence intervals are constructed using the multiple comparisons with the best (MCB) 
procedure of Horrace and Schmidt (1996, 2000).The confidence intervals make explicit the precision of the 
technical efficiency estimates and underscore the dangers of drawing inferences based solely on point estimates. 
Additionally, they allow identification of wool producers that are statistically efficient and those that are statistically 
inefficient. The data reveal at the 95% level that twenty-one of the twenty-six wool farms analyzed may be efficient. 
 

1. Introduction 
Despite an extensive literature concerning estimation of farm-level efficiency in Australian agriculture (e.g., Coelli, 
1995; Coelli et al., 1998; Fraser and Cordina, 1999), there is a dearth of research devoted to the Australian wool 
industry. The absence of research into farm-level efficiency is somewhat surprising given the size and importance of 
the wool industry to the Australian agricultural sector. The wool industry contributed almost 10% of gross value of 
agricultural production that, in turn, generated $4 billion in export income in 1997–98 (Australian Bureau of 
Agriculture and Resource Economics (ABARE), 1999). 

To date the only studies to address farm-level efficiency in the Australian wool industry are Battese and 
Corra (1977), Lawrence and Hone (1981), Chapman et al. (1999) and Fraser and Hone (2001).Battese and Corra 
estimated frontier production functions for sheep production in the pastoral zone of Australia, i.e., Queensland, New 
South Wales and South Australia. In keeping with other pioneering frontier studies (Aigner et al., 1977; Meeusen 
and van den Broeck, 1977), the results in this paper focus on the difference between average and frontier production 
functions estimates as opposed to farm specific results. Battese and Corra found that constant returns to scale could 
not be rejected. They do, however, indicate that caution is necessary in interpreting their results as the data used in 
this paper pools across diverse production units. Lawrence and Hone estimated technical efficiency for grazing 
properties in the high rainfall zone of New South Wales for 1975–1976 using a restricted profit function. As they 
could not reject absolute allocative efficiency based on size, they did not test for technical efficiency, and as such 
provided only limited insights into the farm-level efficiency of Australian wool producers. Chapman et al. used data 
drawn from ABARE’s 1997–1998 Australia wide specialist wool survey and employed data envelopment analysis 
(DEA) to estimate technical efficiency, focusing on the regional distribution of technical efficiency across Australia. 
Not surprisingly they found technical efficiency to be highly correlated with seasonal weather conditions within 
specified production regions, but they did not report specific farm-level technical efficiency estimates. Fraser and 
Hone (2001) employed DEA to estimate farm level technical efficiency and Malmquist total factor productivity 
(TFP) for an eight-year balanced panel data set derived from the South-Western Victorian Monitor Farm Project 
(SWVMF) (Patterson et al., 1998). They found significant variation in technical efficiency estimates between the 
farms in the sample and no growth in TFP for the farms in the sample. 

However, the results of Fraser and Hone (2001) need to be interpreted cautiously because of limitations 
with the data. The aggregate nature of some of the inputs is a weakness of their paper. In this paper we employ an 
improved version of the data used by Fraser and Hone that overcomes important data weaknesses. By gaining access 
to more detailed farm level records we are able to disaggregate inputs and avoid unnecessary aggregation. For 
example, we include a measure of land used in wool production. Furthermore, we employ an econometric fixed-
effect specification to analyze farm-level technical efficiency explicitly taking account of sampling error in the data. 

Another important contribution of our paper is the construction and interpretation of confidence intervals 
for the point estimates of technical inefficiency for the sample of farms. A weakness of most efficiency studies 
(including Fraser and Hone, 2001) to date has been the lack of application of statistical inference techniques to the 
point estimates derived. In both the parametric and semi-parametric frontier literature there has been a recent burst 
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of research activity that has attempted to address this weakness. In the stochastic frontier literature the possibility of 
conducting inference, although noted, has been implemented very infrequently. Exceptions to this are Simar (1992), 
Battese et al.(2000) , and Horrace and Schmidt (1996, 2000).1 

Inference (construction of confidence intervals) on point estimates of technical efficiency differs based on 
the assumptions that one is willing to impose on the model. With strong (and often arbitrary) parametric 
assumptions on the distribution (shape) of technical efficiency, inference follows in a straight-forward, although 
nonstandard, way.2 With no distributional assumptions on technical efficiency Schmidt and Sickles (1984) introduce 
a fixed-effect frontier specification and point estimates based on the difference of the maximal value of the fixed-
effects (the frontier) and the other effects in the sample. While the lack of a specific distributional assumption on 
technical efficiency may be appealing for point estimation, confidence interval construction becomes non-trivial due 
to the bias created by the ‘‘max’’ operation, and, until recently, has rarely been performed.3 When a fixed-effects 
specification is applicable, confidence intervals are constructed using a technique called Multiple Comparisons with 
the Best (MCB) introduced by Horrace and Schmidt (1996, 2000). MCB allows construction of joint confidence 
intervals for all differences from the unknown maximal fixed-effect and the other effects. In the context of a fixed-
effect frontier model, this is the vector of differences between the intercept of the most efficient farm and those of 
the rest, the usual estimate of technical efficiency. MCB can tell the researcher, for a pre-specified level of 
confidence, which farms may be technically efficient, and it also provides upper and lower bounds on the deviations 
of all estimates from the maximal value. 

In this paper we use MCB (and other multiple comparison techniques) to construct confidence intervals for 
point estimates of technical efficiency for the Australian wool industry between 1991 and 1998.We estimate and 
rank point estimates of technical efficiency for a sample of twenty-six wool farms. MCB confidence intervals reveal 
that only six of the farms may be relatively inefficient at the 95% confidence level, and the most efficient farm in the 
sample may have technical efficiency as low as 86.4% of the maximal efficiency in the population. Point estimates 
alone are incapable of uncovering this type of statistical detail and, indeed, suggest that all but the single best farm 
in the sample are technically inefficient. Addition ally, we perform alternative inference experiments, called multiple 
comparisons with a control (MCC) and marginal comparisons with the best (MgCB) on technical efficiency 
estimates to disentangle the sources of statistical uncertainty that confound the point estimates. 

This paper is organized as follows. The next section discusses technical efficiency point estimation using a 
fixed-effects specification. Section 3 introduces MCB, MCC and MgCB for the construction of confidence intervals 
for technical efficiency. Section 4 describes the data for the empirical analysis. Section 5 presents the findings. 
Section 6 summarizes and concludes. 
 

2. Fixed-E ffects Stochastic Frontier Estimation 
The stochastic frontier literature is based on Aigner et al.(1977) and Meeusen and van den Broeck (1977), where the 
stochastic frontier contains an error term that is composed of two elements: a random error  and a one-sided, non-
negative error , representing technical inefficiency. By decomposing the error term into these two 
components the frontier production function can be expressed as 

 
where  1; 2; . . . ;N.  is the logarithm of productive output and  is a 1  vector of factors of production. 
Here, i indexes farms and  and  are parameters to be estimated. The v are i.i.d. random variates with mean zero, 
and are assumed to be independent of u and the X. The u are non-negative i.i.d. random variates, which are 
independent of v and X. To fully identify the parameters in this model, a truncated normal or exponential 
distributional assumption is typically imposed on the u. 

The stochastic frontier of equation (1) was extended to accommodate panel data by Pitt and Lee (1981) and 
Schmidt and Sickles (1984).For a more recent treatment of panel data models see Cornwell and Schmidt (1995) and 
Greene (1997).The form of panel data model to be estimated in this paper is 

 
where 1; 2; . . . ;N and  1; 2; . . . ; T. T is the number of observed time periods. Thus,  denotes the logarithm 
of output for the ith farm in the tth time period.  is a  vector of inputs,  are random errors as previously 
defined, and  is a time invariant measure of technical inefficiency. 

For the logarithmic stochastic frontier described by equation (2), technical efficiency of the ith farm is 
defined as  so that technical inefficiency is  When  is small,  is approximately equal to 

 so that  is frequently used as a measure of technical inefficiency. 
Assuming that the u are fixed (non-random) and letting , equation (2) becomes the standard 

panel data model with time-invariant individual effects (fixed-effects),  
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It follows from  that   and . Interest centers on the technical inefficiency rankings. Let the rank 
order of the  be 

 
so that  is the index of the farm with the largest  in the population. Given that  it follows 
that we can then write ui in the opposite ranked order 

 
Clearly,  and farm  has the largest  (smallest  for all  1; . . . ;N. 

`Equation (3) can be estimated using either the so-called ‘‘within’’ or ‘‘least squares dummy variable’’ 
estimator, yielding parameter estimates 

 
Notice that the  will be constrained non-negative and the  are bound on the unit interval. The  are relative 
measures of inefficiency (efficiency) which are consistent as N and T . Schmidt and Sickles (1984) note that in 
finite samples (small T)  is likely to be biased upward, which implies that efficiency is underestimated. This bias is 
larger when T is small relative to N, and is caused by the ‘‘max’’ operator in equation (6). 

Fixed-effects estimation in this context is a semiparametric estimator insofar as the  are non-random and 
do not require a distributional assumption to be characterized. Additionally, it is not necessary to assume that the 
inputs to the production process  are uncorrelated with technical inefficiency . Consequently, this is a 
particularly appealing specification for point estimates of technical efficiency . For a rigorous treatment of the 
econometric properties of the fixed-effects model see Park and Simar (1994). 

The semi-parametric nature of the fixed-effect specification leads to fairly serious complications for the 
construction of confidence intervals on the  With no ex ante distributional assumption on the u, no ex post 
distribution for the purposes of inference is readily available. Additionally, the estimator  is biased, so confidence 
interval construction necessarily involves some type of bias correction. Finally, the estimation of  in equation (6) 
hinges on the implicit rankings of equations (4) and (5), which are multiple statements about the relative rankings. 
As such, any inference on these parameters of interest will necessarily be multivariate, involving N simultaneous 
probability statements. These types of multivariate inference problems can be overcome with MCB, as described in 
the next section. 
 

3. Multiple Comparisons with the Best 
MCB was originally developed by Edwards and Hsu (1983).Horrace and Schmidt (2000) discuss MCB for 
econometric applications and provide a rigorous treatment of the stochastic frontier model. Horrace and Schmidt 
used MCB to construct confidence intervals for estimates of technical efficiency derived from panel data employing 
a fixed-effects specification. That is, MCB facilitates the construction of simultaneous confidence intervals for  

, which can be monotonically transformed to confidence intervals for . 
The confidence intervals that are constructed by the MCB algorithm are unique in 

three respects: 
 
1. The confidence intervals do not presume that the most technically efficient farm in the sample is known, which 

is implicitly presumed in the point estimate  in equation (6). 
2. The confidence intervals are derived simultaneously and thus provide joint statements about which farms are 

efficient and which can be eliminated from contention for efficiency at a given confidence level. 
3. As MCB is based on a fixed-effect (within estimates) panel specification, we do not require distributional 

assumptions about  to be made. 
 
The MCB intervals reveal information about population ranking of the farms. If, for a single farm, the upper and 
lower bounds on  are 0 (alternatively the lower and upper bounds of  are 1), then that farm is most efficient (best) 
at the pre-specified confidence level. However, the inference can also reveal that several (or all) farms are best (on 
the efficient frontier), which the point estimates of technical efficiency cannot. Point estimates from the fixed-effect 
specification imply that all but one farm are inefficient, assuming no ties for the best in the sample. Indeed, the 
notion that only one producer is operating efficiently in a large market seems to contradict the fundamental results of 
microeconomic analysis. Moreover, the inference can also reveal those farms that are not on the frontier at the pre-
specified confidence level. 
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A thorough discussion of MCB can be found in Horrace and Schmidt (2000). Here, we summarize the 
salient features of their notation. We begin with a discussion of confidence intervals called MCC, which are the 
basis of the MCB intervals that are discussed in the sequel. Let  be the estimated variance-covariance matrix of the 
vector parameter estimates , with typical element, . Define the following notation 

 
where i; j ¼ 1; . . . ;N, and where , and  is the solution to 

 
Here, z is an  1 dimensional random vector distributed as a multivariate t-distribution with covariance  and 

 degrees of freedom, and . All the difficulty in constructing the MCC intervals arises from 
the determination of the multivariate critical value, , which captures the multiplicity inherent in the max 
‘‘operator’’ (i.e., the max operator implies a ranking of the population parameters of interest which implies that 
multiple comparisons must be made). Fortunately, for economic applications where replications of empirical studies 
are not critical (vis  vis applications in medicine), the critical values can be simulated. Such a simulation algorithm 
can be found in Horrace and Schmidt (2000). Tabulations of this critical value for special cases of  are in Horrace 
(1998). 

We can select any index as the control , but for the purposes of frontier estimation it makes sense to 
select the control index as the farm with the largest , then the MCC intervals can be interpreted as intervals on . 
When we do this, we have made the ex ante assumption that the estimation has revealed the most efficient farm with 
certainty. MCB intervals, on the other hand, relax this ex ante assumption and are, hence, less ‘‘parametric’’ and 
wider in general than their MCC counterparts. In doing so, MCB intervals recognize that uncertainty over the 
identity of the most efficient farm exists while MCC intervals do not. 

The  100% MCB intervals on the   follow directly. Define the additional notation 

 
Then we have the MCB result:  and  That is: 
 

With probability at least  the technical inefficiency of the ith farm lies between  and , when the 
true identity of the efficient farm  is not known with certainty. 

 
(Notice the notational difference between the MCC bounds  and the MCB bounds  The set S contains 
the index of the efficient farm with probability at least . To see this, one need only recognize that the set S 
contains only those indices of farms with all positive MCC upper bounds,  (all farms that have statistically large 
).When S is a singleton it will contain only the index of the farm with the largest , and we can conclude that the 
estimation has revealed the identity of the efficient farm with probability at least . In this case, the MCB 
intervals reduce to MCC intervals with the farm with the largest  as the control (as described above). Also, any 
farm that has  > 0, is inefficient with probability at least . That is, the lower bound of difference of the best 
farm and the ith farm is positive (different from zero), implying that this difference (technical inefficiency) is 
statistically meaningful. These are powerful inference statements that can only be made through confidence interval 
construction. Finally, the MCB and MCC confidence intervals and inference can be transformed into those for . In 
this case the probability statement becomes:  and  and all inferences 
change accordingly. 

One potential shortcoming of the MCB and MCC intervals is that they are simultaneous, which causes 
them to be wider than intervals associated with a single inference statement (think of the effects of multiplicity on 
the Bonferroni inequality). Interest may center on a marginal inference statement: a statement about the technical 
inefficiency of a single farm. In a recent paper Kim and Schmidt (1999) develop marginal confidence intervals for 
comparison with best: intervals for , for a single i. These MgCB intervals remove interval width associated 
with the multiplicity of the probability statement. The MgCB intervals still account for uncertainty over the true 
population best farm (like the MCBs and unlike the MCCs) and, as such, tend to be wider when there are many 
farms near the efficient frontier. The intervals are constructed around the elements in set S, thereby accounting for 
uncertainty over the best firm in the population, but use the usual univariate t-statistic,  where  is the solution to 
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and z is the random variable of equation (8) but with dimensionality 1.Then the  MgCB confidence 
intervals are 

 
The MCC, MCB, and MgCB confidence intervals imply different inference statements that complement 

each other well. Together they provide information about any particular data set that the individual confidence 
intervals cannot provide themselves. The MCB intervals can be thought of as capturing multiplicity, uncertainty 
over , and sampling variability. The MCC intervals with the index of  as the control index capture only 
multiplicity and sampling variability, so differences between the MCB and MCC intervals ‘‘quantify’’ uncertainty 
over . The MgCB intervals capture uncertainty over  and sampling variability, so differences between the 
MgCB and MCB intervals are due to multiplicity. Differences between the MgCB and the MCC are due to 
multiplicity and uncertainty over . By making comparisons across the various intervals we are able to provide a 
complete picture of the nature of the uncertainty of the point estimates of technical efficiency. 
 

4. Data and Functional Form 
The data are a balanced panel of wool producers drawn from the SWVMFP survey (Patterson et al., 1998). To 
conduct the analysis we constructed a balanced panel covering eight years  from 1990–1991 up to 1997–
1998, for  26 farms. The survey focuses on wool farms with the average farm size being 895 hectares and 
carrying 5,712 sheep. The data available for each farm in each period are output (wool) and inputs (land, number of 
animals, contract labor, pasture costs, selling costs, and supplementary feed costs).Where appropriate the data are 
deflated using the CPI with 1990–1991 as the base year. Some of the farms in the sample are multiple output 
producers. For example, in addition to wool, some of the farms also produce lamb, beef and crops, and this product 
mix varies across time and across farms. In 1998 the average of wool revenues as a percentage of total revenues was 
83%, while in 1991 wool represented 90% of revenues on average. However, in these years most farms in the 
sample produced only wool (i.e., the mode of wool percentage was 100%). 

An attractive feature of the SWVMFP survey is that all the farms are drawn from a homogenous 
geographical region. Hence the sample of farms will be subject to relatively similar weather and agronomic 
conditions i.e., soils, digestible vegetation and weeds. Another strength of the data set is that it provides output-
specific information. That is, for each output (e.g., wool), specific input use is recorded. Specifically, contract labor, 
pasture costs, selling costs, and supplementary feed costs are reported in total dollars spent. Land used in wool 
production is measured in hectares and the number of animals is measured in dry sheep equivalents (dse).We use dse 
to normalize for the age and the weight distribution of sheep in flocks. For example, a dry sheep, that is a ewe that is 
not pregnant or lactating or a weaned lamb, with body weight of 40 kilograms is given a dse rating of 0.8, whereas a 
ewe with body weight 50 kilograms is given a dse rating of 1.0. 

For output, to cope with difference in wool quality (i.e., micron size) we employ the total dollar value of 
the wool clip (instead of kilograms).The micron size of the wool determines its potential uses, and as such the price 
paid for the wool reflects the derived demand for the various micron sizes. Hence, the producers’ choice of micron 
size is an important variable influencing the economic performance of the farm, and it is necessary to incorporate 
this information into the analysis. Within the sample, there are differences in the wool micron size produced and 
concomitant differences in the wool price across micron sizes (i.e., 18.5 to 28). However, it should be noted that 
wool price fluctuations over time (1990–1998) are similar across wool sizes. That is, macroeconomic effects on 
wool prices are common across producers (regardless of wool size) and should not necessarily distort production 
estimates in this study. It should also be noted that with output measured in this way, the estimates of technical 
efficiency are interpreted as ‘‘total economic efficiency’’ (Coelli and Battese, 1996).A summary of the data used in 
the analysis is presented in Table 1. 

In this paper the most flexible functional form of the stochastic frontier examined is the translogarithmic 
function allowing for non-neutral technical change 

 
where  and the subscripts i and t represent the ith farm and the tth 
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year. Furthermore, Y represents the total value of the wool clip,  is the logarithm of land,  is the logarithm of 
pasture cost,  is the logarithm of contract labor,  is the logarithm of additional feed,  is the logarithm of 
selling cost,  the logarithm of the number of animals and T is a time trend. 

With equation (15) it is possible to model neutral technical change if the interaction terms between the 
various inputs and time are set equal to zero, i.e.,  We can also model no technical change if all coefficients 
involving time are set equal to zero, i.e., . Finally, the Cobb-Douglas production function is a special 
case of the translog frontier in which all the second-order terms are equal to zero i.e.,  0. 
 

5. Results 
5.1. Point Estimates of Technical Efficiency 

Given the data described in the previous section we estimated equation (15) using ordinary least squares and a 
‘‘within’’ transformation of the data. To derive our preferred functional form we estimated ten specifications. The 
fixed-effect regression results are reported in Table 2.Models 1 to 5 are variable returns to scale specifications and 
models 6 to 10 are constant returns to scale. To impose constant returns to scale we divided throughout by land. 
Models 1, 3, 6 and 7 are Cobb-Douglas functional forms and all the others are Translog. Models 1, 2, 7 and 9 
include a time trend to capture technical change. Models 3, 4, 6 and 8 do not include the time trend. Finally, the 
translog models 5 and 10 allow for non-neutral technical change. 

In Table 2 we see that many of the marginal effects in the translog specifications are statistically 
insignificant. However, given the choice of functional form, it is highly likely that our data are collinear. This is 
revealed by the fact that although the Cobb-Douglas specifications yielded significantly lower log-likelihood 
estimates many of the parameter estimates were statistically significant. 

Employing a generalized log likelihood ratio test, which is distributed , where J is the number of 
restrictions under the null hypothesis, we were able to identify our statistically preferred functional form. First , we 
were unable to reject Model 3 in favor of Model 1 or Model 6 in favor of Model 7, that is with a Cobb-Douglas 
specification we were able to reject the null hypothesis of no technical change, i.e., . However, for the 
Translog we rejected Model 4 in favor of Model 2 and Model 8 in favor of Model 9, that is we were able to reject 
the null hypothesis of no technical change, i.e., .Second, we were able to reject Model 1 in favor of 
Model 2, and Model 7 in favor of Model 9 that is the null hypothesis that a Cobb-Douglas production function is an 
adequate representation of the data was rejected i.e., .Third, we were able to reject Model 2 in favor of 
Model 5, and Model 9 in favor of Model 10, that is the null hypothesis of non-neutral technical change, i.e., 

. However, we were not able to reject Model 10 in favor of Model 5, that is the null hypothesis of constant 
returns to scale i.e.,  
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 (Kim, 1992).Thus, our statistically preferred functional form is a translog with 
constant returns to scale imposed and non-neutral technical change (Model 10).4 

Interestingly, the marginal effect estimate for average annual technical progress in Model 10 is negative 
and statistically significant. However, because Model 10 incorporates non-neutral technical change it is necessary to 
estimate technical progress as follows: 

 
The rate of technical change for Model 10 when evaluated at the sample means yields an estimate of . This 
estimate implies that there has been technical regress over the sample period. This result is in keeping with the 
findings of Fraser and Hone (2001). This is not altogether surprising given that our data are for the period 
immediately after the collapse of the wool Reserve Price Scheme (RPS).5 The collapse of the RPS brought about a 
very difficult financial period for wool producers. It is therefore of little surprise to find that during such a period the 
industry suffered technical regress. 

Next we report the estimates of the fixed-effect estimates for our preferred specification (Model 10). These 
results are contained in Table 3.In Table 3 we see that all fixed-effect estimates were significantly different from 
zero. Although the significance of the  provides a guide to the precision of the individual parameter estimates, it is 
of little use in understanding the precision of estimates of the differences of the  that are used in the estimation of 

 and ultimately the calculation of the MCB, MCC and MgCB intervals. The rank-order point estimates of 
technical efficiency  are also presented in Table 3. 
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The results show that the distribution of technical efficiency estimates is quite dispersed. These estimates 
seem to suggest that for this sample of wool producers there exist opportunities for improvements in technical 
efficiency. However, one might have anticipated that wool producers would be efficient. As noted, the industry 
experienced a significant period of turmoil as a result of the collapse of the RPS in 1991.Real wool prices fluctuated 
around record low levels and, consequently, wool production contracted significantly. In 1989, 1,031 kilotons of 
wool were cut; this had fallen to 650 kilotons by 1997 (ABARE, 1999).Over a period of major adjustment such as 
this, it might be anticipated that the remaining wool producers would likely be those that are efficient. The spread of 
point estimates for technical efficiency derived here contradicts this conjecture and indicates that significant gains in 
technical efficiency still exist for wool producers. As we find, however, when we examine the MCB confidence 
intervals, we have to be far less strident in terms of the conclusions that we draw concerning the lack of efficiency of 
the industry. 

Before examining confidence intervals of our point estimates of technical efficiency it is sensible to check 
the robustness of our technical efficiency results. First, an examination of all sets of technical efficiency estimates 
reveals that regardless of functional form the technical efficiency results are very dispersed. Moreover, the 
difference between the most efficient farm and the second most efficient farm is similar across model specifications. 
Finally, the technical efficiency estimate for the least efficient farm is similar regardless of model specification. 

Second, a simple test of whether the rank of farms for Model 10 is robust to different model specifications 
is to estimate the Spearman Rank Correlation coefficient  between the various models (i.e., 1 to 10). We 
estimated technical efficiency  for all the models and derived the rank of the farms. Then,  was estimated for all 
pairs of models; the results are reported in Table 4.6 

As we can see from the estimates in Table 4, there is a very strong positive relationship across all the 
models estimated. Thus, despite there being a statistically significant difference between the different model 
specifications, we are able to reject the null hypothesis that the rank of farms are mutually exclusive and instead 
assume 
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that the order of efficient/inefficient farms tends to be the same across models. Hence, technical efficiency rankings 
are fairly robust to model specification for this particular data set. These results are consistent with the observations 
of Kumbhakar and Lovell (2000) in relation to existing findings in the frontier literature. 

Finally, as was noted in Section 2, the fixed-effect specification assumes that technical efficiency is time-
invariant. Give n that the data set spans eight years there may have been technological improvements and the 
assumption of time-invariant technical efficiency is not plausible. Again an effective statistical test of whether the 
technical efficiency estimates are time varying is to estimate the Spearman Rank Correlation coefficient  for 
various pairs of subsets of the data. We estimated technical efficiency  for the time periods 1991–1994, 1993–
1996 and 1995–1998 (n ¼ 104 in all cases) with Model 10. For each of the time periods the rank of the farms was 
derived (i.e., most efficient to least efficient) and  was then calculated for the three pairs of data. For 1991–1994 
and 1993–1996, =0:472, for 1991–1994 and 1995–1998, =0:554, and for 1993–1996 and 1995–1998, = 
0:577.The critical value for a 5% significance level is 0.33 (See Glasser and Winter, 1961). Hence, in all cases we 
are able to reject the null hypothesis that the rank of farms are mutually exclusive and instead assume that the order 
of efficient/inefficient farms in one subset tends to be the same as the other subset. This result is in keeping with the 
findings of Fraser and Hone (2001) who also concluded that the farms in this sample exhibited time-invariant 
technical efficiency. 

 
5.2. Confidence Interval Estimates 

Having estimated the  and their  variance-covariance matrix, , MCB, MCC and MgCB intervals can be 
constructed for a given confidence level, : To show how the choice of the confidence level impacts the width 
of the confidence intervals, we present results for  equal to 0.95 and 0.75. A very different interpretation of the 
estimation results is forthcoming when we examine the confidence interval estimates for technical efficiency. We 
begin by examining MCB, MCC and MgCB at the 95% confidence level. These results are presented in Table 5. 
The 95% critical values  for MCC and MCB ranged from 2.430 to 3.069. For MgCB the critical value  was 
2.240. The 95% confidence intervals (MCB, MCC and MgCB) presented in Table 5 tell a very different story than 
the point estimates reported in Table 3.Conside r the MCB confidence intervals (columns 3 and 4 in Table 5).In 
general the MCB confidence intervals for the technical efficiency estimates show that we need to be far more 
conservative about the interpretation we place upon point estimates. For example, although for farm 9 the MCB 
confidence interval is fairly narrow , for farm 20 the confidence interval is very wide  The confidence 
intervals are just as wide for farm 25, the farm with the lowest estimate of technical efficiency . Wide 
confidence intervals are not atypical of these types of MCB analyzes. For example see Horrace and Schmidt (1996, 
2000). 
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Although the MCB confidence interval results in Table 5 are wide, we are able to divide the sample of 
farms in three distinct groups: 
1.   Efficient farms in the set S (** in the first column of Table 5). 
2.   Farms with an MCB upper bound of 1 that are not in the Subset S. 
3.   Inefficient farms with an MCB upper bound less than 1 (* in the first column of Table 5). 
In Table 5, the set S (farms with **) consists of farms 2, 7, 9, 13, 14, 16, 17, and 21. The precise interpretation is 
that one of these farms is most efficient with probability of at least 0.95; for all practical purposes these farms are all 
statistically efficient. In terms of MCB they all have an upper bound equal to one. The lowest lower bound for this 
group is 0.499 (farm 21). The fact that we were not able to identify a single best farm can partly be traced to the 
dimensions of the data set. As Horrace and Schmidt (2000) note, a single best farm is more likely to emerge when 
the number of time periods is long and the set of farms is small. 

Notice in Table 5 that farm 16 and farm 23 have the same estimates of technical efficiency , but 
farm 16 is in the set S while farm 23 is not. This is because for farm 16: , but for farm 23: 0, so 
farm 23 is excluded from S. Surprisingly, it is also the case that the variance estimates for  and  are also 
identical: . Therefore, the difference in the two farms’ membership in the set S 
is strictly a function of the difference in the critical values for each farm (  = 3:067 and  = 3:031).The smaller 

 makes for sharper inference on farm 23, so we can conclude with 95% certainty that farm 23 is not in the set of 
best farms. Again the width of the confidence interval means that we really need to be extremely careful when 
attempting to interpret the point estimates of technical efficiency. 

The farms in the second group are those with MCB upper bound equal to 1 but not in the set S. These farms 
may be efficient at the 95% level. Again the confidence intervals derived are large. The farms in the second group 
are interpreted in a conventional manner with regard to the confidence interval. That is, they will be technically 
efficient 95 times out of 100. Notice, in Table 5, that despite having the lowest estimate of technical efficiency, farm 
25 has an MCB upper bound equal to 1. In contrast, farm 18 has a better efficiency score but has an MCB upper 
bound equal to 0.886, and does not fall into this second group of farms. This can be attributed to the fact that for 
farm  tends to be small, making  relatively large, so inferences on farm 25 are less sharp than 
for other farms in the sample. 

The third and final group of farms, are those that are technically inefficient at the 95% level (identified by a 
single asterisk, *, in Table 5).Since the upper bound of the confidence interval for this group does not include one, 
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these farms are deemed inefficient at the 95% level. The inefficient farms at this confidence level are 1, 6, 12, 10, 
and 18.Again the size of the confidence intervals is such that we need to interpret the point estimates of technical 
inefficiency very carefully. 

The second set of confidence bounds presented in Table 5, are the MCC confidence intervals (columns 5 
and 6). These estimates are derived by assuming that farm 9 is efficient  and using farm 9 as the control 
index, j. Consequently, we constrain the MCC upper bound for  to be no greater than 1, since farm 9 has the largest 

 by assumption. The MCC results reduce the upper bound for a large number of the farms in the sample. (Notice 
that there are fewer upper bounds equal to 1 for MCC than for MCB.) This, in turn, produces a narrowing of the 
confidence intervals. For example, for farm 20 the confidence interval is now .This represents a reduction 
of about a quarter in the size of the interval. This narrower intervals derived using MCC represent a reduction in the 
noise associated with uncertainty over which farm is the best (we just assume farm 9 is best). 

The remaining width of the MCC intervals demonstrates that estimation error and/or multiplicity are 
important sources of the width of the MCB intervals. The effect of multiplicity on the width of the MCB intervals 
can be eliminated by examining the MgCB intervals (columns 7 and 8 in Table 5). When comparing MCB and 
MgCB we find that the confidence intervals have only narrowed minimally (e.g., for farm 20, the MCB width is 
0.611 and the MgCB width is 0.561.) From this we can conclude that the impact of multiplicity on the confidence 
intervals is small. When we compare MCC and MgCB we find that MCC yields narrower confidence intervals, 
showing that uncertainty over  (the frontier) is more important than multiplicity in terms of confidence interval 
width. 

To see how the confidence level can impact the confidence intervals derived, we present Table 6 results for 
a 75% confidence level. 
 

 
 

The 75% critical values  for MCC and MCB ranged from 1.623 to 2.403, and that for MgCB  was 
1.535. It is, therefore, not surprising that the MCB confidence intervals are narrower. For example, for farm 9 the 
confidence interval is now  and for farm 20 it is . In both cases the lower bound has increased. 

The 75% level of significance also reduces the number of farms in the subset S to three: farms 2, 9 and 17 
(farms with a double asterisk, **, in Table 6).In addition, the number of inefficient farms (identified with a single 
asterisk, *, in Table 6) has increased by one (farm 26 now has an upper bound less than 1).The impact on the MCC 
confidence intervals is also obvious. Take for example, farm 20: its MCC confidence interval is  which 
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represents a 20% reduction in the width from the 95% MCC intervals. Finally, the MgCB confidence intervals are 
all slightly narrower than the MCB but still the impact of multiplicity on the results is minimal. 

 
6. Discussion and Conclusions 

In this paper we have estimated technical efficiency for a panel of wool producers in Australia. We found that the 
point estimates of technical efficiency imply that there exists a large degree of variation in farming practice for the 
sample of farms. However, when we constructed MCB, MCC and MgCB confidence intervals, the point estimates 
of technical efficiency were found to be subject to a significant level of statistical uncertainty. 

By comparing the MCB and MgCB confidence intervals we are able to deduce that multiplicity is not 
important in explaining the width of the confidence intervals derived. The narrowing of the confidence intervals 
derived when estimating MCC as opposed to MCB intervals suggests that uncertainty over  (the frontier) is a 
relatively important source of uncertainty. However, the main reason for the width of the confidence intervals is 
statistical noise. We are therefore in agreement with Horrace and Schmidt (1996), in that we suspect that much of 
the apparent variation between firms in terms of technical efficiency estimates derived using stochastic frontier 
models is nothing more than sampling error. These results raise important questions about the usefulness of 
stochastic frontier models, and frontier models in general, for comparative analysis (benchmarking). 

In terms of useful information derived from the study, we can at least be sure that at the 95% confidence 
level for MCB, eight farms are efficient and five farms are inefficient. At the 75% confidence level there are three 
efficient farms and six that are inefficient. 

So what are the agricultural policy implication of these results? We can roughly differentiate between sets 
of farms that are efficient and inefficient, but to rank farms on an individual basis within these groups is, perhaps, a 
vacuous proposition. This still means that with additional farm level information we could investigate reasons for 
differences in performance between the groups. However, to identify one particular farm as best relative to all others 
is unrealistic. 

The Australian wool industry has historically benefited from large expenditures on Research, Development 
and Extension (Kingwell et al., 1999), and yet there is still a group of farms that are inefficient. If we could identify 
the reasons why a group of farms is inefficient it might be tempting to argue for targeted expenditure on extension 
efforts to improve overall farm-level performance for the inefficient producers. 

Alternatively, maybe it is time to consider some radical policy options for the wool industry. One example 
that has different budgetary implications (far less government expenditure) would be to induce the retirement of 
inefficient farms via the use of compensatory financial incentives. This policy option could be linked with 
biodiversity objectives (Hone et al., 1999). Land retirement would have the same effect as an (optimal) export wool 
tax, in that the total supply of wool would be reduced and those producers remaining in the wool sector would be 
better off. The export wool tax argument arises as a result of the fact that Australian wool producers face a 
downward sloping demand curve for their wool because of the market power Australia wields (Edwards, 1997). 

Although the results presented in this paper are relatively pessimistic about the usefulness of farm-level 
efficiency point estimates, we can improve matters. An obvious improvement that could be made with the data set is 
to increase the number of years of data. As Horrace and Schmidt (2000) acknowledge, the size of N relative to T is 
important in determining the strength of the statistical results derived. Although the benefit of this is improved 
statistical robustness for the estimates derived, the assumption of time-invariant technical efficiency becomes an 
issue. 
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Notes 
1.  Bootstrapping has been used to construct confidence intervals for DEA measures of technical efficiency. See 

Simar and Wilson (1998, 2000). There have also been recent Bayesian frontier studies that have examined 
inference results for measures of efficiency. See Koop et al. (1997) and Kleit and Terrell (2001). 
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2.  Battese and Coelli (1988) show that under certain assumptions the conditional, ex post distribution of technical 
efficiency is truncated normal. Horrace and Schmidt (1996) detail confidence interval construction for this 
truncated normal distribution. 

3.  The fixed-effects specification requires that technical efficiency be time-invariant. Time-varying specifications 
are discussed in Kumbhakar (1990), Lee and Schmidt (1993), Coelli et al.(1998), and Kalirajan and Shand 
(1999). 

4.  In the frontier literature a restricted (simplified) translog has been used to try and avoid collinearity problems. 
Following Fan (1991) and Ahmad and Bravo-Ureta (1996) we also estimated this simplified translog which 
assumes that all inputs are separable from each other but not time. Employing the generalized log-likelihood test 
we were able to reject this specification in favor of Models 5 and 10 respectively. 

5.  See Haszler et al. (1996) for a detailed review of the Reserve Price Scheme collapse and policy response. 
6.  Spearman’s correlation is:  where  is the difference in the rankings for the ith farm across 

models. The hypothesis tested is: 
; there is no relationship between the ranks of  across models: 
; there is a relationship between the ranks of   across models: 

     The critical value for this test can be obtained from the Spearman Rank Correlation table (Glasser and Winter, 
1961). 
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