
Technical Experiences on a Microservices-oriented Transformation
using Open Source Software

Walter Benitez-Davalos, Fabio López-Pires, David Cabañas, Yessica Bogado-Sarubbi
Itaipu Technological Park Hernandarias, Paraguay

{walter.benitez,fabio.lopez,david.cabanas,yessica.sarubbi}@pti.org.py

Abstract—Adopting emerging computing paradigms such as
cloud applications include challenges associated to transform
legacy software to essential characteristics of the mentioned
computing model, e.g. on-demand self-service, broad network
access, resource pooling, rapid elasticity and measured services.
This paper presents a summary of technical experiences on
applying one of the most popular approaches to address
transformation of legacy software to cloud-native applications:
a microservice-oriented architecture with connections to legacy
systems through anti-corruption layers. Several technical con-
siderations are presented, focusing on Open Source Software to
include particular features on modern development practices as
well as solving issues related to the cloud-native transformation.

Keywords-Micro-services; Cloud-Native Applications; Trans-
formation; Modern Software Architecture; Containers.

I. INTRODUCTION

Cloud computing model presents several advantages for
modern infrastructure, platform and software, which are
provided as services in a pay-as-you-go basis [1]. In this
context, software applications following cloud-native design
principles and architecture guidelines have inherent advan-
tages in fulfilling current user requirements when executed in
complex scheduled environments. These type of applications
are commonly known as Cloud-Native Applications (CNAs).

Considering the mentioned emerging software paradigm,
traditional web-based applications are considered legacy
applications, and transforming them to CNAs include several
challenges that need to be addressed. For this, systematic
methodologies were already proposed [2] including experi-
ences on applications that are still under development [3].

Currently, one of the most popular approaches to address
transformation of legacy software to cloud-native appli-
cations is to consider a microservice-oriented architecture
with connections to legacy systems through anti-corruption
layers. Several technical considerations should be discussed
to include particular features on modern development prac-
tices as well as solving issues related to the cloud-native
transformation process, where Open Source Software present
great alternatives for practical implementations.

This paper presents a summary of technical experiences
on an on-going work for applying mentioned approaches for
the transformation of a legacy Enterprise Resource Planning
(ERP) system considering Open Source alternatives on a
microservice-oriented architecture.

Monolithic Application

Rest API

Mobile and Web Users

Adapters

Desktop and Web Users

Relational Database 
Connection

Non Relational 
Database Connection

1 2 n 1 2 n

Figure 1. A General Monolithic Software Architecture Diagram.

II. TRADITIONAL VERSUS MODERN ARCHITECTURES

In classic software architectures we have top-down de-
pendencies relationships, where software is part of a big
block that work with total dependence between modules
that interconnects within. External modules and clients con-
nect with the software through Application Programming
Interfaces (APIs), and adapters and persistence modules
exists, traditionally, within the application server. Every part
of it is somewhat dependent on other parts. Some degree
of modularization is expected, but in any way software is
served as just one application. Fig. 1 presents a general
diagram of a monolithic application.

On the other hand, in modern software architectures that
are cloud-oriented, we have totally independent modules. In
this case, software is divided in little pieces, everyone of
them with their own domains and data storage. Transactions
between modules are managed by patterns like SAGAS and
code replication is not much of an issue but is recommended
that each module manage different part of the distributed
system and just one process. Fig. 2 presents a general
diagram of a microservice-oriented application.

The following sub-sections detail relevant aspects related
to the legacy ERP system considering a monolithic architec-
ture, as well as transformation approaches for each aspect
towards a microservice-oriented architecture.



OKD - Cluster

Mobile Users

1 2 n

Web Users

1 2 n

External Application Users

1 2 n

Applications and Services
High Availability

App 1 App 2 App n

Svc 1 Svc 2 Svc n

Applications and Services
Medium Availability

App 1 App 2 App n

Svc 1 Svc 2 Svc n

Applications and Services
Low Availability

App 1 App 2 App n

Svc 1 Svc 2 Svc n

Anti-Corruption Layers

AL 1 AL 2 AL n

Figure 2. A General Microservice-oriented Architecture Diagram.

A. Development

The development process of the legacy ERP system
was based in just one Source Code Management (SCM)
repository, i.e. Subversion, where each software developer
should have deep knowledge of the complete source code
to avoid breaking dependencies and crashing the system
in production after changes. Essentially, polymorphism and
modularization is used for avoiding rewriting code.

Modern development follows Conways Laws [4], and in
the proposed microservice-oriented architecture, services are
totally independent and connects to functionalities of other
groups through APIs. Each group has its development, test
and production environments. An agile software develop-
ment approach is considered for taking relations with final
users. It is recommended all functionalities to be stateless
and storage should be used as a service consumed by these
modules.

B. Deployment

For the deployment of the considered legacy ERP system,
packaging was mainly considered. This is automatically
obtained through deployments platforms like Jenkins or
manually managed by software developers. After this pro-
cess, infrastructure admins deploy the software in a test
environment, mainly as a virtual machine, that is relative
similar to the production environment. Software developers
test the system manually. Finally the system is deployed
in the production environment finishing the, mostly non-
automated, software deployment cycle.

In the proposed transformation, and considering that de-
velopment follows an agile approach, deployment is totally
automated as each repository has its own script for their
test, development and production environments that automat-
ically triggers when a push is made. Infrastructure admins
just manage the automation process, and leave the rest to
software developers, adopting this way a DevOps role.

C. Obstacles

The legacy ERP system presents some obstacles, con-
sidering a monolithic approach, we have that is slow for
iterations between software changes, it has almost non-
existent elasticity because of the waste of resource in the
escalation of the application, high dependence on developer
teams that are working on the software and poor testing that
eventually leads to problems in the production environment.

With the proposed transformation, transaction between
modules is hard because the complete Atomicity, Consis-
tency, Isolation, Durability (ACID) properties are not achiev-
able. Explicitly, consistency is lost because each module
has its own domain. Here, message-brokers and SAGAS [5]
patterns could help to resolve this issue, but it is harder
to resolve in monolithic applications. Also, documentation
should be a must in this type of architecture, because of the
independence between groups of work.

III. TRANSFORMATION EXPERIENCES

As previously mentioned, technical experiences of the
transformation of a legacy ERP system into a cloud-native
one is summarized in this work. In the following sub-
sections, technical aspects related to infrastructure, as well
as software development aspects are presented, including
main considerations. Additionally, Table I summarizes the
proposed transformation open source software tools with the
corresponding advantages on implementing them.

First technical decisions include issues related to the orig-
inal legacy infrastructure, taking into account that was too
complex (and large) to be totally migrated in a short period
of time. Additionally, there were so many dependencies to
handle and it was currently being frequently used. Then
a migration of the old infrastructure was totally out of
question.

Secondly, there were budget limitation to work with
private software. This was not a very difficult issue to solve,
considering the broad alternatives of open-source platforms
with the appropriate features to work in the transformation.
To adopt the proposed changes, we should analyze how
the original infrastructure works and what is the correct
strategy to deal with an hybrid architecture that brings the
best of a microservice-oriented one but without the hustles
of changing the original legacy one.

A. Infrastructure

The legacy ERP system considers a pure monolithic web
application wrote in Java, served in a Wildfly 10 application
server with a Postgresql 8 Database System. The connection
to the database was via configuration files in the application
server, and the application was deployed within a war
packaging format. Changes were done manually on each
deployment and tests were executed in development environ-
ments. Security was handled through security layers divided
by VLANs, where different layers divide networks and each



Development Aspects In Legacy ERP In Transformation
Legacy Tools Proposed Tools Advantages

Source Code Management Subversion git
Centralized vs. Decentralized allows devel-
opers to work offline and then merge in the
external repository.

Code Analysis Non existent Sonarqube Added a measurement of quality in the
code.

Continuous Integration Non existent Use of pipeline with GitLab Runner Faster integration between modules and
testing.

Continuous Deployment Non existent Use of GitLab Runner and OKD templates Faster iterations and deployments to produc-
tion.

Deployment Manual in VM Automatic in pods and containers in the OKD clusters Faster deployment and monitoring is reas-
sured with health checks in containers.

Architecture Monolithic Hybrid (Microservices + Legacy Systems)
More robustness to the system, in the sense
that each module is domain independent and
is assumed a domain driven design.

Table I
SUMMARY OF TRANSFORMATION ASPECTS AND PROPOSED OPEN SOURCE TOOLS.

virtual machine connects to each other. The infrastructure
was handled by KVM virtualization running in a Peacemaker
cluster of physical machines.

The proposed infrastructure is deployed over the old one,
i.e. the peacemaker cluster will be used to deploy virtual
machines that will be the core of the application platform.
In this case, the technology used will be Openshift Origin
or OKD as is currently called. OKD is an open source
platform given by the company Red Hat that works on
top of Kubernetes and priorities security in containerized
applications as it is made for the industry. Internally OKD
will manage its own Software-defined Networks (SDNs),
where it will automatically deploy PODs in different nodes
as Kubernetes. These nodes are:

• Master Node: The master node is the host of hosts,
it will manage nodes in its Kubernetes cluster and
schedules pods to run on nodes.

• Infrastructure Node:Is a node that runs the infrastruc-
ture services and allows a high availability cluster if the
compute nodes are down.

• Compute Node: The compute node is the one that host
the applications and handles all the computation load.

Connectivity to the legacy ERP system is done via what
is currently called anti-corruption layers. The idea of this
is to create a legacy domain-specific application that com-
municates with new applications. This could be done via
a facade inside the application itself or in a total different
application that connects directly with the database or with
some communication systems of the application.

The deployment of the platform is made via virtualization
in bare metals, it is used peacemaker to create a cluster
of machines that could deploy the VMs used to host the
platform. This is made to facilitate the migration to another
infrastructure if needed, as shown in Fig. 3.

Figure 3. Legacy and Proposed Infrastructure.

B. Continuous Integration and Deployment (CI/CD)

Source Code Management (SCM), and version control, is
proposed to be done via git repositories, considering three
branches of code (i.e. dev, test and master). On each push
operation, to any of these branches, automated tests and
deployment is activated. For this, gitlab, gitlab-runner and
pipelines are used, as described in Table I. For efficiency
reasons, a code analyzer called Sonarqube is used and
gives a report on each push operation of the dev branch
as presented in Fig. 4.

IV. CONCLUSION AND FUTURE DIRECTIONS

Main identified conclusions and future directions to con-
tinue research of the present work are summarized next.

In this on-going work, we presented an initial transforma-
tion of a set of legacy software with a monolithic architecture
to a hybrid legacy + microservice-oriented architecture,
mainly using a set of open source tools and platforms.



Figure 4. CI/CD pipeline process for the proposed transformation.

As we saw in Section I, the use of decentralized code
management as git, a code analyzer as Sonarqube and
decentralized platforms to deploy PODs and containers in a
secure way as in OKD provide us with the enough flexibility
to integrate legacy software architectures without removing
them and also give us the tool to make a gentle migration
without hurting the software operation. Additionally, in a
direct association with the Conways Law, we could deliver
software in a total independent way as we grow our team.

Future work will also include a serverless platform for
serving and deploying functions into our ecosystem, as well
as data-oriented applications, analytic mobile applications
and others, that would feed a future data-warehouse.

Additionally, the presented transformation process would
open some fields on possible research as:

• extend the transformation to Platform as a Service
(PaaS) service model,

• include an experimental evaluation for integration of
PaaS service providers [6],

Finally, several future directions may include formal sys-
tematic definitions of a general-purpose (no application-
specific) methodology for transformation of legacy software
architecture into modern ones, such as those based on micro-
services or serverless architectures.

• problems associated with continuous use of serverless
functions in an infrastructure,and how to plan accord-
ingly when to use pods and/or containers instead of
them,

• how to implement a Function Hub into our current
transformation ecosystem [7],

• how to define an optimal granularity of services or what
measures we can take on each service [8].

REFERENCES

[1] R. Buyya, C. S. Yeo, and S. Venugopal, “Market-oriented cloud
computing: Vision, hype, and reality for delivering it services
as computing utilities,” in High Performance Computing and
Communications, 2008. HPCC’08. 10th IEEE International
Conference on. Ieee, 2008, pp. 5–13.

[2] G. Toffetti, S. Brunner, M. Blöchlinger, J. Spillner, and
T. M. Bohnert, “Self-managing cloud applications: design,
implementation, and experience,” Future Generation Computer
Systems, vol. 72, pp. 165–179, July 2017.

[3] J. Spillner, Y. Bogado, W. Benítez, and F. López-Pires, “Co-
transformation to cloud-native applications: development expe-
riences and experimental evaluation,” in 8th International Con-
ference on Cloud Computing and Services Science (CLOSER),
19-21 March 2018, Funchal, Madeira. Scitepress, 2018.

[4] J. D. Herbsleb and R. E. Grinter, “Splitting the organization and
integrating the code: Conway’s law revisited,” in Proceedings
of the 1999 International Conference on Software Engineering
(IEEE Cat. No. 99CB37002). IEEE, 1999, pp. 85–95.

[5] C. Richardson, “Microservices pattern: Sagas.” [Online].
Available: https://microservices.io/patterns/data/saga.html

[6] J. M. Pintos, C. N. Castillo, and F. López-Pires, “Evalua-
tion and comparison framework for platform as a service
providers,” in 2016 XLII Latin American Computing Confer-
ence (CLEI). IEEE, 2016, pp. 1–11.

[7] Y. Bogado-Sarubbi, W. Benitez-Davalos, J. Spillner, and
F. Lopez-Pires, “Towards sustainable ecosystems for cloud
functions,” in ESSCA, Zurich, Switzerland, December 21, 2018.
CEUR-WS, 2019, pp. 18–24.

[8] M. R. López and J. Spillner, “Towards quantifiable boundaries
for elastic horizontal scaling of microservices,” in Companion
Proceedings of the10th International Conference on Utility and
Cloud Computing. ACM, 2017, pp. 35–40.


