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Abstract. This article presents comprehensive technical information about
STRAIGHT and TANDEM-STRAIGHT, a widely used speech modification tool and
its successor. They share the same concept: the periodic excitation found in voiced
sounds is an efficient mechanism for transmitting underlying smooth time–frequency
representation. The tools are also based on the perceptual equivalence of two sets of
independent Gaussian random signals. This equivalence makes it possible to discard
input phase information intentionally and enables flexible manipulation of parameters.

Keywords. Speech analysis; fundamental frequency; speech synthesis; consistent
sampling; periodic signals.

1. Introduction

STRAIGHT, a speech analysis, modification, and synthesis framework (Kawahara et al 1999a),
was originally designed to promote speech perception research by providing a tool to manipulate
naturally sounding speech material in terms of perceptually relevant and precisely controllable
physical parameters (Kawahara 2006). The original STRAIGHT (legacy-STRAIGHT) was used
for a decade and was superseded by TANDEM-STRAIGHT (Kawahara et al 2008), a complete
reformulation and reengineering based on the same underlying concept. This article provides a
comprehensive technical description of TANDEM-STRAIGHT. The following section describes
the first step for solving this problem, spectral envelope estimation. Section 3 addresses its use
of periodicity detection, which is crucial for implementing TANDEM-STRAIGHT. Section 4
discusses other issues of source information representations. The last section gives a summary
and conclusions.

2. Power spectrum of periodic signals

Periodic signals, which are familiar auditory stimuli for humans, can convey rich and detailed
information. They are usually perceived as smooth and comfortable. Voiced sounds are an exam-
ple, but they are not strictly deterministic or stationary. This non-stationarity inevitably leads to
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time–frequency analysis. The commonly used analysis tool in speech applications is a spectro-
gram, a power spectral sequence calculated by short-term Fourier analysis. However, periodic
signals with many time-varying harmonic components are troublesome for short-term Fourier
analysis. The output of a time invariant linear system excited by a periodic pulse train yields
a spectrogram that has periodic interference both in the time and frequency domains, even if
the system and the input are temporally stable and spectrally smooth. This is the major prob-
lem STRAIGHT and TANDEM-STRAIGHT were designed to address. The latest answer is
called TANDEM (Morise et al 2007), a short-term power spectral representation of periodic sig-
nals that does not have a temporally varying component. Introduction of TANDEM completely
reformulated STRAIGHT, as shown in the following section.

2.1 Cancellation of temporal variation

Assume a time-window function adaptively designed for a target signal with fundamental period
T0. The time window is designed to have equivalent transfer function W (ω), which covers up to
two harmonic components of the target signal, and has negligible side lobes. To investigate the
power spectra of the windowed periodic signals, it is general enough to assume signal x(t) that
consists of two sinusoidal components ω0 = 2π/T0 apart:

x(t) = e jkω0t + αe j ((k+1)ω0+β) , (1)

where α and β represent real numbers. Assuming k = 0 for simplicity, power spectrum P(ω, t)
of the windowed signal yields the following:

P(ω, t) = |W (ω)|2 + α2 |W (ω − ω0)|2 + 2αW (ω)W (ω − ω0) cos(ω0t + β) , (2)

where the third term represents the temporal variation to be removed. The power spectrum calcu-
lated at t + T0

2 has a third term with opposite polarity, suggesting that this third term is cancelled

by adding P(ω, t) and P
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2

)
:
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TANDEM spectrum PT(ω, t) is redefined based on this result with a modification to make it
symmetric:
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2

[
P
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)]
. (4)

It should be noted that averaging N power spectra with temporal spacing T0
N also yields a

temporally stable power spectrum. This is a specialized version of the Welch method (Welch
1967) for periodic signals.

2.1a Selection of time-window function: It is pragmatically important to decide which time-
window function to use for calculating the TANDEM spectrum. The requirements for the
window function described in the previous section cannot be fulfilled in a strict sense, because
temporally bounded window function does not have compact support in the frequency domain.
The leakage outside the effective pass band results in temporal variations of the TANDEM
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spectrum made from the original window function. There is a trivial solution for suppressing
temporal variations. The temporal variations of the power spectra obtained using the original
window function are suppressed effectively by increasing the window length because it reduces
their equivalent pass band to cover only one harmonic component. However, this trivial solution
makes the logarithmic power spectra sensitive to background noise.

TANDEM is a procedure that shortens the window length while keeping the power spectra tem-
porally constant and the logarithmic power spectra tolerant to background noise. To quantify these
observations, we introduced measures for the window length, the temporal as well as the frequen-
cy variations of the power spectra, and the temporal variation of the logarithmic power spectra.

Let w(t) represent a window function defined in region − Tw
2 < t < Tw

2 . Effective duration σt

of window w(t) is defined as the the square root of the second moment of squared window. As
the window length is adaptively determined using the F0 information, the normalized version of
the duration is used.

σt = 1

T0

√√√√ 1

Tw

∫ Tw
2

− Tw
2

t2w2(t)dt, where
1

Tw

∫ Tw
2

− Tw
2

w2(t)dt = 1 . (5)

Let P(ω, t) represent the power spectrum calculated by an arbitrary window function.
Normalized temporal variation ηt and frequency variation ηω are defined as follows:
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∣∣∣
2
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∫ ∞
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where P(ω) = 1

T0

∫ T0

0
P(ω, t) dt , P(t) = 1

2π

∫ ∞

−∞
P(ω, t) dω .

Figure 1 summarizes the exemplar test results using a discrete test signal. The figure shows
normalized temporal and frequency variations of the original window functions and their
TANDEM versions. The original window functions used are Hanning, Blackman, Nuttall, and
Kaiser (β = 9) windows (Harris 1978; Nuttall 1981). The test signal is a periodic pulse train
with a fundamental period of 400 samples. Fast Fourier Transform (FFT) buffer length L is set
to L = 2�log2(4LW )�, where LW represents the original window function length in samples. The
horizontal axis shows the normalized effective window length that is calculated by Eq. 5.

It should be noted that the temporal variations of the TANDEM windows reach stable levels
with shorter (about 60% of the original) effective window lengths. The frequency variations of
the TANDEM windows at the beginning of the stable points are about 5 dB smaller than the
original ones.

This difference significantly affects the logarithmic power spectra when background noise
exists. The temporal variations of the logarithmic power spectra represented in terms of dB ηd Bt
are defined below:

ηd Bt =
√〈

1

2πT0

∫ ∞

−∞

∫ T0

0

∣∣∣L(ω, t) − L(ω)
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2
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〉
(7)

where L(ω) =
〈

1

T0

∫ T0

0
L(ω, t) dt

〉
, L(ω, t) = 10 log10 P(ω, t),

where 〈X〉 represents the ensemble average of the random variable X .
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Figure 1. Normalized variations of power spectra for selected window functions: (top left) temporal
variations of original time windows; (top right) temporal variations of TANDEM windows; (bottom left)
frequency variations of original time windows; (bottom right) frequency variations of TANDEM windows.

Figure 2 shows the temporal variations of the logarithmic power spectra for the original and
TANDEM windows under 60, 40, and 20 dB S/N conditions. The background noise is Gaussian
white noise. It should be noted that the temporal variations of the TANDEM windows are around
0.5 dB even under 20 dB S/N, and those for the original windows are around 2 dB. The effective
window length for the smallest temporal variations stay around 0.4T0 for the TANDEM windows
under different S/N conditions. The temporal variations are virtually independent of the window
functions in the 20 dB S/N condition because the side lobes are masked. These suggest that
windows other than Hanning are relevant for applying TANDEM.

Figure 3 shows the actual window lengths of the original and their corresponding TANDEM
windows. The vertical axis represents the normalized version of window length LW (normal-
ized by the fundamental period). A Blackman window with F0 (T0) adaptive length 2.5T0 is
used in the TANDEM-STRAIGHT implementation, because it is the shortest window with rel-
evant behaviour when the effective window length is fixed. This 2.5T0 Blackman window is
special. No power leakage occurs at the harmonic frequencies from other harmonic components,
because zeros of the frequency representation of the 2.5T0 Blackman window coincide with
other harmonic frequencies.

2.2 Spectral envelope recovery

The next step is to remove the spectral variations due to periodicity. It is worthwhile to revisit
the signal periodicity role here and interpret it in terms of the analogue to discrete conversion
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Figure 2. Temporal variation of logarithmic power spectra under different S/N: (left) original time
windows; (right) TANDEM windows; S/Ns are 60, 40, and 20 dB SN from top to bottom.

problem. A new formulation of sampling theory, called consistent sampling (Unser 2000),
provides the basis for this process.

The periodic excitation of a linear time invariant system in the time domain is periodic
sampling of the corresponding transfer function in the frequency domain. This is a simplified
description of voiced sounds. The TANDEM spectrum is a low-pass filtered (in the frequency
domain) version of this sampled spectrum, where the impulse response of this low-pass filter is
the frequency domain representation of the time-window function. In other words, spectral enve-
lope recovery is an analogue to discrete conversion followed by a discrete to analogue conver-
sion in the frequency domain. In this interpretation, this low-pass filter is found to be a poorly
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Figure 3. Normalized effective window length and actual window length.

designed anti-aliasing filter in the latter stage, because it does not have enough attenuation at
the sampling frequency. Consequently, the filtered output (smoothed spectrum) still has fre-
quency variations due to harmonic structure (in other words, periodic sampling in the frequency
domain).

The former STRAIGHT uses F0 adaptive triangular smoothing function h1(ω) as an addi-
tional anti-aliasing filter impulse response to eliminate this leakage. The base length is set to
2ω0 in this case. TANDEM-STRAIGHT uses F0 adaptive rectangular function h2(ω) instead.
Its base length is set to ω0. Smoothing function h1(ω) is obtained by the convolution of h2(ω)

with itself. Functions h1(ω) and h2(ω) are also the basis functions of the cardinal B-spline fam-
ily. Smoothing TANDEM spectra using this anti-aliasing smoother selectively removes spectral
variations due to periodicity. However, at the same time, it smears the spectral levels at each har-
monic frequency. Consistent sampling provides a solution that recovers each spectral level while
suppressing the spectral variations due to periodicity.

2.2a Spectral level recovery at harmonic frequencies: Figure 4 shows a schematic diagram of
the spectral envelope recovery process. The ‘original spectral envelope’ box corresponds to a
hypothetical smooth spectral envelope behind the observed voiced speech, and ‘recovered spec-
tral envelope’ box represents the desired goal of this process. The ‘sampling by periodicity’ box

Original
spectral
envelope

Sampling by
periodicity

Sampling by
periodicity

Smoother
by time

windowing

Anti-
aliasing

smoother

Compensating
digital filter

Recovered
spectral
envelope

Figure 4. Spectral envelope recovery by consistent sampling.
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represents the equivalent spectral sampling due to the periodic excitation of voiced sounds. The
output of box ‘smoother by time windowing’ is the TANDEM spectrum. The ‘anti-aliasing
smoother’ uses h2(ω) in TANDEM-STRAIGHT. The output of this anti-aliasing smoother is the
smeared version of the desired spectral envelope.

The spectral levels of this smeared spectrum are compensated at the harmonic frequencies to
recover their original levels. The ‘compensating digital filter’ box is designed for this recovery.
The sampling interval of this digital filter is ω0. Consistent sampling provides a procedure to
design this compensating digital filter. Instead of requiring a complete recovery of the original
spectrum, consistent sampling only requires the resampled values to be recovered. The values at
A and B in the figure must be identical. The procedure for designing the digital filter to fulfill
this requirement is given below.

Recovered spectral envelope PST(ω, t) is calculated using compensation digital filter coeffi-
cients qk and the anti-aliasing smoother by the following equation:

PST(ω, t) =
∞∑

k=−∞
qk PS(ω − kω0, t) , (8)

where PS(ω, t) =
∫ ∞

−∞
h(λ)PT(ω − λ, t)dλ . (9)

Using anti-aliasing smoother h(ω) and equivalent spectral smoother W (ω), which is the fre-
quency domain representation of the time window function, the z-transform of compensating
digital filter Q(z) is calculated by the following equation.

Q(z) = 1

R(z)
= 1

∞∑
k=−∞

rk z−k

=
∞∑

k=−∞
qk z−k , (10)

where rk =
∫ ∞

−∞
h(ω − kω0) |W (−ω)|2 dω .

It should be noted that the time-window function used for the TANDEM spectrum calculation
is designed to cover only two harmonic components; only three of the coefficients rk are different
from zero ideally. In other words, R(z) has three terms. Its reciprocal Q(z) has an infinite number
of terms. However, the absolute value of the k-th term vanishes very rapidly, and only some
coefficients qk are significantly different from zero. Figure 5 illustrates such behaviour.

Figure 5 shows the correlation coefficients (left plots) and digital compensation filter’s coef-
ficients (right plots) for a Blackman window with TANDEM. The horizontal axis represents the
normalized effective window length in terms of T0. The top two plots are meant for anti-aliasing
smoother h1(ω) and the bottom two plots are meant for anti-aliasing smoother h2(ω).

2.2b Implementation by cepstrum liftering: Figure 6 suggests a problem in implementing this
procedure: violation of positivity. The figure shows smoothed and recovered version of a line
spectrum. The recovered spectra (for h1(ω) and h2(ω)) have zeros at harmonic frequencies,
indicating that compensation is successfully implemented. However, between the harmonic fre-
quencies, the recovered spectra have negative values. The recovered spectra are not always
positive semidefinite and cannot be proper power spectra.
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Figure 5. Correlation coefficients (left plots) for Blackman window and smoothers (top plots) h1(ω) and
(bottom plots) h2(ω) and compensating digital filter coefficients (right plots). Absolute values are used to
display the compensating coefficients. The normalized effective length of 2.5T0 Blackman window is 0.388.

The recovered spectra are made positive definite when digital compensation filtering is applied
on the logarithmic power spectra and converted back to the power spectrum using an exponential
function. Considering that logarithmic conversion has a unit bias, log(1 + x), is closely approx-
imated by x when |x | � 1, the logarithmic conversion of the smoothed TANDEM spectra is
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Figure 6. Smoothed line spectrum and recovered smoothed line spectrum using Blackman window and
smoothers h1(ω), h2(ω).



Technical foundations of TANDEM-STRAIGHT 721

closely approximated by the smoothed result of the logarithmic conversion of the TANDEM
spectra. This approximation of Eq. 8 is given below.

PST(ω, t) ≈ exp

( ∞∑
k=−∞

qk log(PS(ω − kω0, t))

)
. (11)

Figure 7 illustrates examples of this approximation. The green line in each plot represents
the target model spectrum, and the blue and red lines show smoothed and recovered model
spectra, respectively. It should be noted that the recovered spectra closely match the target at each
harmonic frequency even though this is an approximation. This convolution in the frequency
domain can also be implemented using cepstrum liftering.

PST(ω, t) ≈ exp

(
F−1

[(
q0 + 2

∞∑
k=1

qk cos

(
2πkτ

T0

))
CS(τ )

])
, (12)

where CS(τ ) represents the cepstrum of the smoothed power spectrum and τ represents the
frequency. Symbolic notation F−1[ ] is also used to represent the inverse Fourier transform for
simplicity.

Further approximation is introduced for calculating CS(τ ). First, instead of calculating the
convolution of a power spectrum, the convolution of a logarithmic spectrum is calculated and
then Fourier transformed.

CS(τ ) = F
[

log

(∫ ∞

−∞
h(λ)PT(ω − λ, t)dλ

)]

≈ F
[∫ ∞

−∞
h(λ) log(PT(ω − λ, t))dλ

]
= g(τ )CT(τ ), (13)

where g(τ ) represents the Fourier transform of anti-aliasing smoothing function h(ω) and CT(τ )

represents a cepstrum of TANDEM spectrum PT(ω, t). Finally, these yield the following.

PST(ω, t) ≈ exp

(
F−1

[(
q0 + 2

∞∑
k=1

qk cos

(
2πkτ

T0

))
g(τ )CT(τ )

])
. (14)
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Figure 7. Smoothed model spectrum and approximately recovered smoothed model spectrum using
Blackman window and smoothers (left plot) h1(ω), (right plot) h2(ω) with Eq. 11. Target model spectrum
is shown using a green line.
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Figure 8. Smoothed model spectrum and approximately recovered smoothed model spectrum using
Blackman window and smoother h2(ω) with Eq. 14. Target model spectrum and TANDEM spectrum are
shown using green and black lines.

Figure 8 shows the results using Eq. 14. Observe that the approximation yields better recovery
than the original equation. However, this is not surprising because periodicity and windowing
effects in the frequency domain are both periodic and multiplicative.

Table 1 shows the distances from the target spectrum in terms of the root mean squared (rms)
error. The first column of the table shows the rms error result of the original TANDEM spectrum.
The next four columns show the results using two smoother functions h1(ω) and h2(ω), and their
recovered versions. The last two columns show the results using logarithmic TANDEM spectrum
instead of directly using the power spectrum. It should be noted that the rectangular smoother
on the logarithmic power spectra yields better approximation than all cases using direct power
spectral smoothing.

Taking these into account, TANDEM-STRAIGHT spectrum PTST(ω) (STRAIGHT spectrum)
is currently defined by the following equation.

PTST(ω) = exp

(
F−1

[(
q̃0 + 2q̃1 cos

(
2πτ

T0

))
g2(τ )CT(τ )

])
, (15)

where g2(τ ) = sin(π f0τ)

π f0τ
= F[h2(ω)], (16)

Table 1. Root mean squared dB distance from target spectrum. ‘Logarithmic’ indicates that smoothing
and compensatory digital filtering are both applied to logarithmic TANDEM spectrum. (smth: smoothed
spectrum, rcvr: recovered spectrum).

logarithmic

TANDEM h1 smth h2 smth h1 rcvr h2 rcvr h2 smth h2 rcvr

1.46 0.13 0.13 0.11 0.13 0.06 0.04
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Figure 9. Real speech examples: (left) from short-term Fourier transform to TANDEM spectrogram tran-
sition and (right) from TANDEM spectrogram to STRAIGHT spectrogram transition. Transition from
Japanese /a/ to /i/ spoken by a male speaker is analysed.

where q̃0 and q̃1 are truncated and adjusted versions of the compensating digital filter coeffi-
cients. Lifter g2(τ ) is the representation of rectangular smoother h2(ω) in the quefrency domain.
In the current implementation, q̃0 = 1.1 and q̃1 = −0.05 are used based on preliminary
simulations.

2.2c Natural speech examples: Figure 9 shows three-dimensional displays of natural speech
examples. The speech example is an excerpt of a Japanese vowel sequence /aiueo/ spoken by
a male. The signal was sampled at 22025 Hz with 16-bit resolution. The analysis frame rate is
set at 1 ms for illustration. The figure shows the transition from /a/ to /i/. Each figure shows two
spectral representations transformed in the middle. The left figure shows the transition from a
short-term Fourier transform (shown on the back side) to the TANDEM spectrogram (shown on
the front side). The right figure shows the transition from the TANDEM spectrogram (shown on
the back side) to the STRAIGHT spectrogram (shown on the front side). The grid-like structure
in the short-term Fourier transform is systematically removed temporally and then spectrally.

3. Periodicity detection

The spectral envelope estimation procedure introduced in the previous section relies on F0
information, although the required precision is not very strict. Owing to this reliance, legacy-
STRAIGHT and TANDEM-STRAIGHT inevitably embody F0 detection procedures. Four types
of F0 extractors have been developed for this purpose. The first is based on the instantaneous
frequency of the fundamental component (Kawahara et al 1999a). The second is based on a
fixed-point calculation of the frequency to instantaneous frequency mapping using wavelet trans-
form and an instantaneous frequency-based refinement procedure (Kawahara et al 1999b). The
third integrates instantaneous frequency-based and autocorrelation-based methods with heavy
post-processing (Kawahara et al 2005). The latest one, which was developed for TANDEM-
STRAIGHT, is based on spectral division and an instantaneous frequency-based refinement
procedure (Kawahara et al 2008). It also has a unique feature that enables excitation structure
analysis. Owing to this feature, the latest is called the extraction structure extractor: XSX. The
following sections introduces its details.
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3.1 Specialized periodicity detector

STRAIGHT spectrum only consists of spectral envelope information. The TANDEM spectrum
consists of both spectral envelope and periodicity information in a multiplicative manner. Divid-
ing the TANDEM spectrum by the STRAIGHT spectrum yields the periodicity information
and bias. By removing this bias, the following equation defines the spectral representation of
periodicity information PP(ω).

PP(ω) = PT(ω)

PTST(ω)
− 1 , (17)

where the constant 1 on the right hand side is the bias.
The next step represents the dominant periodic component as a salient peak. When the anal-

ysed signal is periodic and consists of all harmonic components, the inverse Fourier transform
of PP(ω) has a unique peak at the fundamental frequency. The height of this peak represents the
salience of the periodicity.

The actual voiced sounds are not strictly periodic. They consist of Frequency Modulation
(FM) and Amplitude Modulation (AM) as well as random fluctuations. They yield modulation
of the periodic variation of PP(ω) in the higher frequency region and result in split peaks of the
inverse Fourier transform. Frequency weighting function wB(ω) is introduced to manage this
problem by suppressing the higher harmonic components. Consequently, periodicity salience
function rA(τ ) is defined as a function of lag τ and is calculated using the following equation.

rA(τ ) =
∫ ∞

−∞
wB(ω)PP(ω)e jωτ dω, (18)

where wB(ω) =
{

cB

(
1 + cos( πω

Nω0
)
)

|ω| ≤ Nω0

0 |ω| > Nω0
,

where parameter N determines the range of harmonic components used to calculate the period-
icity salience. Normalization constant cB makes

∫ ∞
−∞ wB(τ )dτ = 1. As this salience function

is designed by assuming a specific fundamental frequency, it is better to explicitly represent the
assumed frequency using fc instead of f0. Therefore, notation rA(τ ; fc) is used to represent the
periodicity salience function designed using fc.

Refined salience function r(τ ; fc) is defined by introducing a symmetric weighting function
on the logarithmic frequency.

r(τ ; fc) = wL(τ ; fc)rA(τ ; fc), (19)

where wL(τ ; fc) =
{

1 + cos(πu(τ )) |u(τ )| ≤ 1
0 |u(τ )| > 1

,

u(τ ) = bw log2(τ fc), (20)

where bw represents a parameter that determines the sharpness of the salience function around
assumed periodicity fc.

3.2 Integrated salience function

The salience functions defined above have an identical shape on the logarithmic frequency (as
well as the logarithmic lag) axes. By placing assumed fundamental frequency fc evenly on the
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logarithmic frequency axis, the overlap of each salience function with neighbouring functions
is kept constant regardless of fc. This makes summation of logarithmically allocated salience
functions r(τ ; fc) yield integrated salience function rI (τ ) that covers a wide frequency range.

rI (τ ) = c0

∑
fc∈Fc

r(τ ; fc), (21)

where Fc represents the set of assumed frequencies for specialized detectors. Normalization
constant c0 is defined so that the salience value for periodic pulse trains yield one. In our
implementation, assumed frequency fc(k) of the k-th detector is defined below:

fc(k) = fL2
k−1

L , (22)

where L represents the density of the specialized detectors in terms of the number of detectors
in one octave and fL represents the assumed frequency of the detector that covers the lowest end
of the periodicity detection frequency range. The total number of detectors M is determined by
the following equation:

M = �L(log2( fU) − log2( fL)) + 1, (23)

where �x rounds x towards positive infinity and fU represents the assumed frequency of the
detector that covers the highest end of the periodicity detection frequency range.

3.3 Implementation of periodicity detector

Several factors must be considered for designing the proposed periodicity detector. The first
design decision addresses the length of the time window, which was designed in two steps. The
first step checks the shape of individual salience function rA(τ ; fc) to the periodic pulse input.

Figure 10 shows raw response rA(τ ; fc) of an individual detector with different base-
bandwidth Ns. The time window is Blackman, and the length is set to 4T0. Setting the length to
4T0 gives rA(τ ; fc) a dominant peak at τ = 1/ fc. The horizontal axis is normalized by assumed

S
al

ie
nc

e

Normalized lag (semitones)

Random

Pulse train

Figure 10. Response rA(τ ; fc) to a periodic pulse train and noise input.
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Figure 11. Probability of each salience peak to exceed values indicated by the horizontal axis.

fundamental period Tc = 1/ fc. Deviation is represented in terms of semitones. It should be noted
that the period selectivity is sharper when a larger base-bandwidth N is used.

This response to a periodic signal should have a conspicuous distinctive value from the back-
ground peak levels due to random noise. Figure 10 also shows the averaged response to the
random Gaussian noise. This averaged response is approximately flat in the vicinity of assumed
period fc. If this averaged response has a constant value, sharpness parameter bw is uniquely
determined as bw = 1/L , where L represents the density of the individual detectors defined in
Eq. 20. Owing to the slightly peaky shape of the averaged response, actual sharpness parame-
ter bw used in the implementation is slightly larger than 1/L . For example, bw = 0.28 is used
instead of ideal case value 0.25 = 1/4, (L = 4) in the current implementation. Figure 11 shows
the integrated salience values for a white Gaussian noise input and clearly indicates that periodic
signals have a conspicuous distinctive value 1.

4. Other source-related information

Natural voiced sounds are not strictly periodic. Instantaneous frequency as well as instantaneous
amplitude always fluctuate. They also consist of random components especially in the higher
frequency range. Pathological voices such as diplophonia introduce irregularity in repetition and
complex hierarchical vibration structures. These deviations from pure periodicity are represented
in the aperiodicity information in the TANDEM-STRAIGHT implementation. The aperiodicity
information is represented as a time–frequency map of the random to the deterministic power
ratios. They are extracted by a pitch-range octave-band linear prediction on the original time axis
and the time-warped time axis that gives the apparent fundamental frequency a predetermined
constant value.

The current implementation of aperiodicity in TANDEM-STRAIGHT provides reasonably
high-quality synthetic speech, but it sometimes produces artifacts that can be detected by
experts in careful listening tests using headphones. Scope for improvement exists in terms of
concept, algorithm and implementation. For example, the extraction and representation of the
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temporal distribution of random components inside one pitch period is crucial for aperiodicity
representation, especially for low-pitched male voices.

5. Conclusions

The technical details of a speech analysis, modification, and resynthesis framework called
TANDEM-STRAIGHT, which is a completely reformulated version of STRAIGHT are pre-
sented here. Its conceptually simple decomposition, which separates the periodicity and response
information almost perfectly, makes TANDEM-STRAIGHT a flexible tool for speech perception
research. TANDEM itself, the temporally stable power spectral representation of periodic sig-
nals, is useful for other general speech processing applications, such as cepstrum-based methods,
speech synthesis, enhancement and speech recognition. TANDEM-STRAIGHT keeps updat-
ing by introducing advances in signal processing theories and refinements on speech signal
representations.

The authors appreciate the users who participated in the evolution of STRAIGHT and
TANDEM-STRAIGHT. Without such participation, this evolution would not have been possible.
The support of the following agencies was also indispensable: Advanced Telecommunication
Research Institute International (ATRI), Japan Society for the Promotion of Science (JSPS),
Japan Science and Technology agency (JST) and Wakayama University. Currently, this research
is partly supported by Grants-in-Aid for Scientific Research (A) 19200017 and 22650042 by
JSPS and the CrestMuse project by JST.
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