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TECHNICAL 

Note 

A NOTE ON OPTIMAL STRATEGIC PRICING OF 
TECHNOLOGICAL INNOVATIONS* 

FRANK M. BASSt AND ALAIN V. BULTEZt 

The experience curve phenomenon of falling marginal costs associated with accumu- 
lated output or production experience has given rise to dynamic pricing models. 
Optimal pricing policies will depend upon the nature of the dynamic demand and cost 
functions. In this note we shall show that the demand function employed by Bass 
(1980) when taken in conjunction with the experience curve cost function leads to a 
multiperiod pricing strategy which is always less than the myopically optimal price. 
Further, we present a dynamic programming algorithm for the multiperiod strategy in 
which we have explored the effects on discounted profits of myopic pricing versus 
multiperiod pricing. The results of this comparison may, to some, be somewhat 
surprising and may have managerial significance. 
(Pricing-Technological Innovations; Diffusion, Experience Curve) 

*Received November 21, 1980. This paper has been with the authors for 3 revisions. 
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School of Management, University of Texas at Dallas, Richardson, Texas 75080. 
Facult6 Universitaire Catholique de Mons (FUCAM, Belgium) and European Institute for 

Advanced Studies in Management, Brussels, Belgium. 
371 

MARKETING SCIENCE 
Vol. 1, No. 4, Fall 1982 0732-2399/82/0104/0371$01.25 

Printed in U.S.A. CoDvrieht ? 1982. The Institute of Management Sciences r . ---, . _ --_wo - 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

10
6.

51
.2

26
.7

] 
on

 0
9 

A
ug

us
t 2

02
2,

 a
t 2

2:
57

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 
Published in Marketing Science on November 01, 1982 as DOI: 10.1287/mksc.1.4.371. 

This article has not been copyedited or formatted. The final version may differ from this version.



FRANK M. BASS AND ALAIN V. BULTEZ 

The Bass (1969) new product growth model of the diffusion of innovations 
has been modified by a number of authors to create a demand function for 
technological innovations which includes decision variables. Among others 
there are papers by Glaister (1974), Robinson and Lakhani (1975), Spremann 
(1975-1978), Horsky and Simon (1981), Dodson and Muller (1978) as well as 
more recently, by Dolan and Jeuland (1981) and Teng and Thompson (1980a, 
1980b). In the Robinson and Lakhani formulation (also used by Dolan and 
Jeuland) the optimal multiperiod price is one which rises at first and later 
declines. Moreover, Robinson and Lakhani show a substantial difference in 
the discounted profit which stems from multiperiod optimization as opposed 
to myopic optimization. In contrast, however, the demand model employed by 
Bass (1980) leads to a myopically optimal price which declines monotonically. 
To complete this work we show in this note that the multiperiod optimal price 
for the demand function employed by Bass is always less than the myopically 
optimal price and is therefore also monotonically declining. Moreover, in 
contrast to the results of Robinson and Lakhani, our studies indicate that 
there are only small differences in discounted profits for this demand function 
when price is chosen myopically as opposed to a multiperiod strategy. 

1. The Components of the Pricing Model 

1.1. The Experience Curve Cost Function 

The marginal cost function, called the experience curve, is 

MC[E(t)] = C,[E(t)]-a (1) 

where 
MC[E(t)] is the cost of producing the Eth unit of output, 
E(t) is the accumulative output at time t, 
C, is a scaling parameter, sometimes referred to as the cost of producing the 

first unit, and 
a is a learning rate parameter, a > 0. 

The current marginal cost depends not only on current output, but also on 
earlier output, or experience. In some applications, such as that by Robinson 
and Lakhani, equation (1) is used in an average cost sense, while Bass used it 
-more appropriately we believe-in a marginal cost sense. However, the 

qualitative results of the analysis will not be influenced by this distinction. 

1.2. The Diffusion Model 

The diffusion model developed by Bass (1969) has as its basic premise that 
the probability of an adoption of a new product at time t given that an 
adoption has not yet taken place is an increasing linear function of the 
number of previous adopters. Thus: 

P(t) =f(t)/(l - F(t)) = a + bF(t), 
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OPTIMAL STRATEGIC PRICING OF TECHNOLOGICAL INNOVATIONS 

where: 
P(t) is the conditional probability of an adoption at time t given that an 

adoption has not yet taken place, 
f(t) is the density function of time to first purchase (i.e., the fraction of the 

total population adopting at time t), 
F(t) is the proportion of the market penetrated at time t, 
a is the coefficient of innovation (i.e., the influence on adoption regardless 

of the number of previous adopters), 
b is the coefficient of imitation (i.e., the impact of previous adopters on the 

probability of adoption at time t). 
If m is the total number of adopters over the life of the product then the 

sales rate during that period in which sales consist entirely on first purchase 
demand will be: 

S(t) = mf(t) = m(a + bF(t))(l - F(t)) 

= am + (b - a)E(t)- b/m(E(T))2, (3) 

where E(t) is accumulated sales (output) through period T. 
The differential equation shown in (3) has as its solution: 

E(t) = mF(t) = m[ 1- 
e-(a+b)t]/[(b/a)e-(a+b)t 

+ 11. (4) 

Therefore: 

S(t) = 
mf(t) 

= 
m[(a 

+ 
b)2/a][e-(a+b)/((b/a)e-(a+bt 

+ 
1)2]. (5) 

2. Dynamic Demand Models 

Robinson and Lakhani and Dolan and Jeuland (for durable goods) have 
used the demand model: 

q(p(l), p(2), . . . (t)) = (t 
=e-kP(t)m(a + bF(t))(l - F(t)). (6) 

In this demand model a lower price today will stimulate sales today and will 
also influence demand in the future because future demand will depend, 
through the diffusion process, on accumulated sales. This model, then, implies 
that price will interact with the diffusion process. 
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FRANK M. BASS AND ALAIN V. BULTEZ 

Bass (1980) proposed the following demand model for technological innova- 
tions: 

dE(t) 
dt q(p(t)) = h(t)[p(t)]7' (7) 

where: 
h(t) is a function of time, and 
p(t) is price at time t. 

In equation (7) the elasticity of demand, r7, is constant, but the demand 
function itself is being shifted in time by the function h. In the demand 
function indicated by (7) the diffusion process is exogenous and does not 
interact with price. Dynamic pricing models continue to evolve and it is not 
our purpose here to debate the merits or limitations of (6) as compared with 
(7). Rather, we intend to complete the study of the implications of (7). We will 
comment, however, that one of the nice things about (7) is that, as shown by 
Bass (1980), it leads in the myopically optimal case to closed form solutions as 
functions of time for E, q, and p. The time derivative of price may be 
expressed as a function of these solutions. It is: 

- aq(t)p(t)/E(t), (8) 

indicating the rate of decline in price. Therefore: 
the myopically optimal price will decline monotonically. 

In the following section we derive the multiperiod optimal price for the 
demand function indicated in (7). 

3. The Multiperiod Optimal Price 

Firms facing cost and demand functions behaving according to (1) and (7) 
would maximize their total discounted profits over the finite horizon of T + 1 
periods by choosing the sequence of prices: (PO, Pi ... . PT) that will maxi- 
mize discounted profits. Thus the objective is to maximize: 

T 

nI = p'[,q, - Ct] (9) 
t=0 

with p = 1/(1 + r), r being the rate of discount associated with the product's 
project. The demand function will depend only on the current price and time, 
but the cost function will depend upon past as well as current prices. Thus to 
obtain the necessary condition for a maximum of (9) the partial derivative of 
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OPTIMAL STRATEGIC PRICING OF TECHNOLOGICAL INNOVATIONS 

H with respect to p, is equated to zero: 

aI/ap, = p'[p,aq,t/p, + q,] 

= 
Cpt[E,-' + p(E-i - E,-a ) + p2(E,2 

- 
E-a) 

+ + p T-t(E a' - Er- )]aq,/ap, = 0. (10) 

Substituting - q,t/pt for aq,/lpt, dividing by p'q,, and rearranging the terms 
in the brackets in equation (10) we have: 

- +1 + 1 + 7C[(1 - p)E,- + p( - 
p)E,+- + p2(l - p)E,-+ + ** 

+pT-t-( 
-- 

p)E - + pT-tE-a]/p =0. (11) 

Therefore, the globally optimal price will be: 

p* = [/(1- l)]C,[( 
- 

p)E,-a + p(l - p)E+' + ... 

+ pT-t-(1 
- 

p)ET - + ET -a] (12) 

Noting that (1 - p)tT-- lpt + p T-t = 1, we conclude that the optimal price 
is proportional to a weighted average of (a convex combination of) current 
and future marginal costs. 

From equation (12) discounted marginal cost is: 

T-I 

= (1 - p) E p('-)MC,+ P(T- )MCT, (13) 
r= t 

for t < T- 1. Subtracting p/, from the corresponding expression for ,_ , a 
recurrence equation can then be obtained for discounted marginal cost, i.e., 

_t- I= pyt + (1 - p)MC,_i . (14) 

From equation (14), it is clear that t, declines over time since MC, declines 
over time. Now, note that equation (12) can be written as: 

Pt- 77 - I C t, - 
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FRANK M. BASS AND ALAIN V. BULTEZ 

Since tt declines over time andq is a constant, it follows that p* declines over 
time as well. Hence, we conclude: 

that the globally optimal price will always be less than the myopically optimal 
price ([7q/(7q - 1)]C,Et,-), and it is monotonically decreasing. 

Note that the result does not depend on the particular functional form used 
in this paper to model cost decline. This result is true for any marginal cost 
decline specification. 

This result can be explained intuitively in the following manner: the 
globally optimal price will be less than the myopically optimal price because 
an additional price reduction from the myopically optimal price will be 
justified by future cost benefits which accrue with a multiperiod planning 
horizon. These future benefits assure that the prices and costs in the mul- 
tiperiod case will be less than those in the myopic case. 

4. An Evaluation of Optimal and Myopic Pricing Policies 

The discretized version of equation (7) with f(t) in (5) used for h(t) is as 
follows: 

q,t= @Sp-" and o0 = F(1), O, = F(t + 1)- F(t), (15) 

where e,S is the discretized version of f(t) and where F(t) is the solution to 
the diffusion differential equation (3), i.e., 

F(t) = (1 - g(t))/( + (b/a)g(t)) and g(t) = exp(-(a + b)t). 

Substituting (13) and (14) into (12), optimal prices can be determined 
without any major difficulty, by solving the following system recursively, 

Pt = yrl/(l - 1), (16) 

p =[(l-p)MCt+PYt+,I]7l/(7q-1), for t=0,1, ...,T-1. 

An algorithm yielding the solution to system (16) is available upon request 
from the authors. We have employed the algorithm to explore, and compare 
for different parameter values of the demand and cost functions, the effects on 
discounted profits of multiperiod versus myopic pricing strategies. 

Table 1 shows a comparison of price ranges and discounted profits for the 
two types of policies for different sets of parameters. The most notable feature 
of Table 1 is the fact that there are relatively small differences in discounted 
profits between the two policies. The parameter values shown in Table 1 are, 
we believe, typical and reasonably plausible. Although other parameter values 
have been used in simulations, we cannot guarantee insensitivity of discounted 
profit in every case. For example, if we had used a real discount rate of, say, 
10% (i.e., r = 0.10 instead of r = 0.30, as was used for the results reported in 
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OPTIMAL STRATEGIC PRICING OF TECHNOLOGICAL INNOVATIONS 

TABLE 1 

Comparative Evaluation of Optimal and Myopic Pricing Rules 

Parameters Optimal Price-Sequence MyopicBehavior 

= 1.5 Po = 48.4422 3,464.387 po = 52.2802 3,462.091 

P20 = 44.9575 P20 = 45.0356 
a =0.05 = 2.0 po = 34.3611 522.586 Po = 37.1888 521.611 

P2o = 31.8648 P2o = 31.9421 
= 2.5 po = 30.8421 83.262 po = 33.4803 82.953 

P2o = 28.5783 P20 = 28.6691 

= 1.5 Po = 37.5997 3,899.627 Po = 44.4601 3,887.813 

P2o = 32.1374 P20 = 32.3922 
a =0.10 7 = 2.0 Po = 28.3160 623.177 Po = 33.9511 617.510 

P20 = 24.1157 P20 = 24.3973 
= 2.5 po = 27.6441 95.457 Po = 33.6773 93.619 

P20 = 23.4535 P2o = 23.8340 

= 1.5 po = 27.7273 4,494.824 Po = 36.6425 4,459.426 

P20 = 21.6276 P2o = 22.0737 
a =0.15 = 2.0 Po = 21.9698 785.532 Po = 30.1992 765.583 

P20o= 16.9746 P20= 17.5266 
X = 2.5 po = 23.5021 117.366 Po = 33.9551 110.564 

P2 = 17.9704 P2 = 18.8504 

= 1.5 Po = 19.1008 5,347.297 po = 28.9735 5,259.699 
P20= 13.4459 P20 = 14.0261 

a = 0.20 7 = 2.0 Po = 15.5494 1,078.194 Po = 25.8335 1,016.420 

P2o = 10.7283 P2 = 11.5261 
= 2.5 po = 18.1489 164.245 Po = 34.3761 140.879 

P2 = 12.2356 P2o = 13.7780 

Legend: Parameters: S = 100,000. a = 0.05; b = 0.40. 
Cl = 20. 
T = 20; r = 0.30. 

Table 1), we may well have found the optimal pricing policy to result in 
greater discounted profits related to the myopic policy. Nevertheless, at least 
over the range of parameter values we have simulated, we have found only 
small differences in the discounted profits when comparisons are made 
between multiperiod and myopic pricing strategies. These results are in sharp 
contrast to the results of Robinson and Lakhani who found that when 
demand equation (6) was employed there are large differences in discounted 
profits between multiperiod and myopic pricing strategies. Clearly, the nature 
of the demand function may have a bearing on profit differences between 
multiperiod and myopic strategies. 

5. Summary 

In this note we have shown that the multiperiod optimal price, when the 
dynamic demand function indicated in euqation (7) is taken in conjunction 
with the experience curve cost function, is always less than the myopically 
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FRANK M. BASS AND ALAIN V. BULTEZ 

optimal price. Both types of prices decline monotonically. In addition, our 
simulation studies indicate that discounted profits under myopic pricing are 
only slightly less than those under multiperiod pricing for the particular 
demand function we have examined, a result that may have managerial 
significance. 
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