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A Polynomial Simplex Method for the
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We present a polynomial primal simplex algorithm for the assignment problem.
For an n X n assignment problem with integer cost coefficients, the algorithm
generates at most n’In A bases prior to reach the optimal basis, where A is
the difference in objective value between an initial extreme point and the
optimal extreme point.

E PRESENT a primal simplex algorithm which solves an (n X n)
assignment problem with integer cost coefficients in at most
n’In A basis exchanges (pivots), where A is the difference in the objective
value between a starting feasible solution and the optimal solution. By a
primal simplex algorithm for the assignment problem, we mean a method
that proceeds from one feasible basis to another, each obtained from the
previous one by the addition of a nonbasic variable and the removal of a
basic variable. Primal simplex algorithms differ from each other in the
rules for selecting the entering variables and for selecting the leaving
variables. Aside from the issue of cycling, certain rules for selecting
entering variables have been shown to lead to exponentially long se-
quences of pivots for general linear programs (see Klee and Minty [1972]
and Goldfarb and Sit [1979)), even for network flow problems (Zadeh
[1973] and Cunningham [1979]).
The algorithm presented here represents one of the first evidences of
the positive kind. By using two commonly known rules for selecting
entering variables, the algorithm requires at most (n — 1)® degenerate

Subject classification: 484 polynomial simplex algorithm for the assignment problem.
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pivots at an extreme point and visits at most n In A extreme points before
finding the optimal solution.

1. THE ASSIGNMENT PROBLEM
Consider the (n X n) assignment problem
Minimize C(x) = Yies ¥ jeu CyXy
st.YesXy=LIi€ELYerx,=1,jEJ;x,=0,i€ I, jE J.

where I = {1, - .., n} is the set of origin nodes and J = {1, ... , n} is the
set of destination nodes. For the purposes of this paper, we assume that
each ¢, is an integer and that the network is fully dense in the sense that
there is an arc for each pair of (i, j).

An extreme point solution to the assignment problem consists of n
variables, each having a value of one and corresponding to an arc from a
distinct origin to a distinct destination. A basis consists of the r positive
variables and n — 1 degenerate variables which together form a spanning
tree over the assignment network. On the basis tree, we designate one
node as the root. Using the notation in Cunningham [1976], we let
R(T, e) be the node set of the subtree containing the root if basic arc e
were to be removed from the basis tree T. A basic arc e = (i, j) is said to
be “directed toward the root” if its destination node j € R(T, e) and is
said to be “directed away from the root” otherwise. A basis is called an
“alternating path basis” (A-P basis) by Barr et al. [1977] or a “strongly
feasible basis” by Cunningham [1976] if the root is an origin node and
every degenerate basic arc is directed toward the root. A distinct feature
of an A-P basis is that there is one degenerate basic arc from every origin
node, except the root.

Let u, for i € I and v, for j € J be the associated dual variables of the
assignment problem. In this paper, we will always let origin 1 be the root
and set u; = 0. Then the other dual variables are uniquely determined by
the following equation: w:.(T) + u(T) = ¢, if (i, j) € T for any basis T.
Once the dual variables are determined, the “reduced cost” for arc e =
(G, j)iscc=cc— u,— v,

A primal simplex algorithm for the assignment problem was developed
by Barr et al. and can be summarized as follows:

Step 1: Let Ty be the current A-P basis tree. Select a nonbasic arc e* =
(i*, j*) with ¢.-(To) < 0 to enter the basis. If ¢.(Ty) = 0 for every
arc e, the current basis is optimal.

Step 2: Add e* to Ty to form a unique circuit with arc set ®(7To, e*).
Then there is exactly one arc & = (i*, j), j # j* such that e €
®(T,, e*). The arc e will become nonbasic in the new basis 7. If
x:To) = 0, then x.-(Th) = 0. If x=(T,) = 1, then change every




Downloaded from informs.org by [106.51.226.7] on 04 August 2022, at 10:43 . For personal use only, all rights reserved.

Published in Operations Research on June 01, 1983 as DOI: 10.1287/opre.31.3.595.
This article has not been copyedited or formatted. The final version may differ from this version.

Hung 597

positive arc in ®(T, e*) to a degenerate arc and every degenerate
arc into a positive arc, and let x.-(Ty) = 1.

The A-P basis structure is automatically maintained by the unique
determination of the leaving arc. It is also easy to anticipate whether the
ensuing pivot is degenerate (i.e., x.-(T1) = 0) or not. Relative to an A-P
basis tree To, Barr et al. call a nonbasic arc e = (i, j) an “upward” arc if
node j is on the path from node i to the root; they refer to the arc as a
“downward” arc if node { is on the path from node j to the root. Otherwise
arc e is a “cross” arc. The ensuing pivot is nondegenerate if and only if e*
is a downward arc on T,. If the pivot that forms T from T} is degenerate,
then u,(T1) = w.(To), v(Ty) = v;i(To) for (i, j) € R(T,, €) and u;(T) =
u(To) + Ce(To), v, (T1) = v,(To) — C.o(To) for (i, j) & R(T,, €). Hence
ui(T1) =< w,(To) and the strict inequality holds for at least one i € I.

2. THE POLYNOMIAL SIMPLEX ALGORITHM

The simplex algorithm to be presented below specifies that in selecting
the entering arcs, those arcs that are upward or cross are to be chosen
first. In other words, one is to perform the degenerate pivots at an
extreme point until a basis, called “degenerate-pivot-free,” is found. An
A-P basis is degenerate-pivot-free if every upward or cross nonbasic arc
has a nonnegative reduced cost. Once a degenerate-pivot-free basis is
found, one then chooses the nonbasic arc with the most negative reduced
cost to enter the basis and moves to a new extreme point.

One of the entering-arc selection rules used in the algorithm is the
“Modified Row Most Negative” (MRMN) rule which can be described as
follows: Let € = (i1, j) be the entering arc that gives rise to the current
A-P basis T. Select e* = (i1 + 1, j*) as the next entering arc if
€.«(T) <0, e* an upward or cross arc on T, and &.-(T) = Min &.(T) over
all arcs e = (i1 + 1, j), j € J, that are upward or cross on T. If every cross
or upward nonbasic arc in row i, + 1 has a nonnegative reduced cost,
thengoontorow i, + 2,51+ 3, ---,n,2, 83, --., ii. Row 1 need not be
scanned because origin 1 is the root and every arc on row 1 is a downward
arc on any A-P tree.

A Polynomial Simplex Algorithm for the Assignment Problem

Step 1 (entering variable selection):
la: Use the MRMN rule to determine whether degenerate pivots are
possible on the current A-P basis. If so, let the entering arc be e*
and go to Step 2. Otherwise, go to Step 1b.
1b: Choose the entering arc e* with ¢,» = Min & over all arcs e.
If ¢.- = 0, terminate the algorithm; the optimal basis has been
found. Otherwise go to Step 2.

Copyright © 2001 All Rights Reserved
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Step 2 (basis exchange): Same as Step 2 in Section 1. Then return to
Step 1a.

Since the choice of the leaving arc is the same as before, this procedure
preserves the A-P basis structure. To prove that the algorithm is poly-
nomial, we need to show that the number of bases encountered at an
extreme point and the number of extreme points generated in the se-
quence of pivots are polynomial. The former is proved below.

THEOREM 1. Let To, T4, --- , T be a sequence of A-P bases chosen by
the simplex method at an extreme point x° of an (n X n) assignment
problem, where T,, is a degenerate-pivot-free basis. If the modified row
most negative rule is used, then m < (n — 1)~

Proof. This proof is modeled closely after the argument of Cun-
ningham’s Theorem 4 [1979].

We first prove the claim that if the path on T, from origin i* to the
root has % degenerate arcs, and k(n — 1) < m, then u,«(Trn-1) = ui+(Tn).
The claim is clearly true for £ = 0. Assume it is true forall 2 < ¢, ¢ = 1.
If it is not true for k2 = ¢, then there is a path from node i* to the root
such that the path has ¢ degenerate arcs and u,~(Tyn—1) > t.+(Tr). Let
e* = (i*, j*) € T, be the degenerate arc on row t*. Then by the induc-
tion assumption, v,+(T¢-1¢-1)) = U+(Tw) since u(Ti-1in-1) = UlTr)
where e = (i, j*) is the positive arc on x°. Therefore, for (¢ — 1)(n — 1)
=g=tn—1), Ty = cer — u(Ty) — v,+(Ty) = cer — U (Tin—)) —
U «(Tr) < Ce+ — t+(Tw) — 1;+(Tr) = 0. So e* was not a basic variable in
this sequence of n bases even though it was either a cross or an upward
arc. It follows, then, from the MRMN rule that there was an arc é =
(i*, ) with a larger (or equal) negative reduced cost than e* at the time
the algorithm scanned row i *. Then by selecting é to enter, the algorithm
would have reduced u,- to a level smaller than (or equal to) u,-(T), and
would not have chosen e* to enter the subsequent bases. This is a
contradiction. Therefore no such node i* could exist and the claim is
proved.

Since every path on T, has at most n — 1 degenerate arcs, the validity
of the theorem follows.

The following provides a bound on the objective value of the optimal
extreme point solution.

THEOREM 2. Let x° and x* be, respectively, the current and the optimal
extreme point solutions to the assignment problem. Let T be a basis (not
necessarily A-P) for x°. Then

C(x% — C(x*) = 8 = —Y.es Mine, (T)).

Proof. It is well known that subtractions of scalars from the cost

B Copyright © 2001 All Rights Reserved —
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coefficients (c,) do not change the relative objective function values of
feasible solutions to the assignment problem. That is, if ¢, = ¢, — a. ~ b,
then C(x!) — €(x?) = C(x') — C(x?) for any feasible solutions x' and x°.
Therefore, consider the case where é;, = ¢, — u.(T) — v,(T) —r.and r; =
Minje €, (T). Then é, = 0. Since C(x°% = —Y.er r, = 8 and C(x*) = 0, we
have C(x%) — C(x*) = C(x°) — C(x*) = &.

THEOREM 3. Let To(x%), ---, Th(x*) be the sequence of A-P bases
generated by the algorithm, where Ti(x*) is the optimal basis. Then,
k< nln A where A = C(x°) — C(x*).

Proof. We first claim that 2 < (n — 1)%(1 + [log A/log((n — 1)/(n —
2))1) for n = 3, where [a] denotes the least integer = a. (The assignment
problem with n < 2 is trivial.) The term (n — 1)? in this expression
corresponds to the maximum number of bases that the algorithm en-
counters at an extreme point, which has been proved in Theorem 1. The
other term accounts for the maximum number of extreme points that the
sequence may include.

Let Tn(x°) be the degenerate-pivot-free basis at x° and & =
=Y. Min,¢, (Tw,)). Since by Step 1b the entering variable e* has the most
negative reduced costs at Tn, and the last origin node of any
path on T, has no downward nonbasic arcs, it follows that ¢.«(Tn») =<
—(1/(n — 1))do.

Let x' be the next extreme point. Then C(x') = C(x°) + G (Twm,)
and C(x") — C(x*) = C(x%) — C(x*) + G+ (Twm) =< A — (1/(n — 1)) =
((n — 2)/(n — 1))A. The last inequality follows from Theorem 2. Simi-
larly for the next extreme point x2, C(x? — C(x*) = C(x') — C(x*) —
1/(n — DICEYH — C(x*) = ((n — 2)/(n — 1))°A. Hence C(x’) —
C(x*) = ((n — 2)/(n — 1))A for ¢t = 0. Since the cost coefficients are
integers, x' = x* if C(x*) — C(x*) < 1, which implies that ¢ is the least
integer satisfying ¢ > log(x-1)/(:—2pA = log A/log((n — 1)/(n — 2)) for any
base for the logarithm. The truth of the claim thus follows.

Finally, since e* > 1 + a for a # 0 and e the base of the natural
logarithm, In A/In((n — 1)/(n — 2)) < (n — )Iln A. Thus 2 < (n — 1)*
(1 + (n — 1)In A). Further, for In A = % (implying A = 2), (n — 1)*[1 +
(n — 1)In A] < n°ln A.

It is clear that A =< Y.c; (max,c, — min,c,). Thus the number of bases
generated by the algorithm is polynomial in the problem size and the
encoding of the problem data. Moreover, the number of arithmetic
operations needed for constructing a new basis is at most O(n?). Checking
whether a nonbasic arc e = (i, j) is a downward arc or not can be done by
tracing the path from destination node j to the root on the basis tree 7.
A path on T has at most 2n — 1 arcs. So the number of comparisons
needed is of order O(n). One has to scan at most n(n — 1) arcs in Step 1a,

Copyright © 2001 All Rights Reserved
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hence it requires O(n®) arithmetic operations. Steps 1b and 2 require at
worst O(n?) operations.

3. CONCLUSION

By combining rules for selecting the entering variables, the simplex
algorithm presented here achieves polynomial convergence for solving
the assignment problem. The algorithm’s worse case bound is worse than
some nonprimal algorithms (see Hung and Rom [1980]). Further, the
algorithm is probably less efficient than the primal simplex algorithm of
Barr et al. Nevertheless, the results here present a constructive first step
in the development of theoretically efficient simplex algorithms.
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