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We prove that the portfolio problem with transaction costs is equivalent to three different problems designed

to alleviate the impact of estimation error: a robust portfolio optimization problem, a regularized regression

problem, and a Bayesian portfolio problem. Motivated by these results, we propose a data-driven approach

to portfolio optimization that tackles transaction costs and estimation error simultaneously by treating

the transaction costs as a regularization term to be calibrated. Our empirical results demonstrate that the

data-driven portfolios perform favorably because they strike an optimal trade-off between rebalancing the

portfolio to capture the information in recent historical return data, and avoiding the large transaction costs

and impact of estimation error associated with excessive trading.

Key words : transaction costs; estimation error; robust optimization.

1. Introduction

Markowitz (1952) showed that an investor who cares only about the mean and variance of portfolio

returns should choose a portfolio on the efficient frontier. Mean-variance portfolios continue to be

the workhorse of much of the investment management industry, but two crucial aspects in their

successful implementation are estimation error and transaction costs. Estimation error is important

because to implement the mean-variance portfolios in practice one has to estimate the mean and

the covariance matrix of asset returns, and it is well known that the resulting portfolios often

perform poorly out of sample; see Michaud (1989), Chopra and Ziemba (1993), and DeMiguel

et al. (2009b). A popular approach to alleviate the impact of estimation error is to use robust

portfolio optimization; see, for instance, Goldfarb and Iyengar (2003), Garlappi et al. (2007), and

Lu (2011a,b). This approach captures the uncertainty about the mean and covariance matrix of

asset returns by assuming they may lie anywhere inside the so-called uncertainty sets. The robust

portfolio is the one that maximizes the mean-variance utility with respect to the worst-case mean

and covariance matrix of asset returns.
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Transaction costs are important because they can easily erode the gains from a trading strategy.

Transaction costs can be generally modelled with the p-norm of the portfolio trade vector. For

small trades, which do not impact the market price, the transaction cost is generally assumed to be

proportional to the amount traded, and thus it can be approximated by the 1-norm of the portfolio

trade vector. For larger trades, the literature has traditionally assumed that they have a linear

impact on the market price, and thus they result in quadratic transaction costs that are captured

by the 2-norm. Finally, several authors have recently argued that market impact costs grow as the

square root of the amount traded (Almgren et al. 2005, Frazzini et al. 2015), and thus they are

captured by the p-norm with p= 1.5.

We make a theoretical contribution and an empirical contribution. Theoretically, we show that

the portfolio optimization problem with p-norm transaction costs can be equivalently reformulated

as three different problems designed to alleviate the impact of estimation error: (i) a robust portfolio

optimization problem, (ii) a regularized regression problem, and (iii) a Bayesian portfolio problem.

These results demonstrate that incorporating a p-norm transaction cost term in the mean-variance

portfolio problem may help to reduce the impact of estimation error. This observation motivates

our empirical contribution: we propose a data-driven approach to portfolio selection that consists of

using cross-validation to calibrate the transaction cost parameter from historical data and compute

portfolios that perform well in a realistic scenario with both estimation error and transaction costs.

From a real-world perspective, combating estimation error by calibrating the transaction cost term

has two advantages over the use of robust approaches. First, practitioners are used to incorporating

transaction costs in their portfolio selection frameworks, and thus it may be easier for them to

simply calibrate the transaction cost term instead of using a more sophisticated approach based

on uncertainty sets. Second, a transaction cost term has a natural economic interpretation, and

this facilitates the task of selecting a reasonable range of parameters to calibrate from.

We compare the out-of-sample performance of the proposed data-driven portfolios on five empir-

ical datasets with that of the mean-variance portfolios that ignore transaction costs as well as

mean-variance portfolios that capture the nominal proportional transaction costs. We find that

the proposed data-driven portfolios outperform the traditional portfolios in terms of their out-

of-sample Sharpe ratio net of transaction costs. The data-driven portfolios perform well because

they calibrate the transaction cost parameter to achieve intermediate levels of turnover that strike

an optimal (data-driven) trade-off between two goals: (i) rebalancing the portfolio to capture the

information in recent historical return data, and (ii) avoiding the large transaction costs and impact

of estimation error associated with excessive trading.

The remainder of this manuscript is organized as follows. Section 2 gives our theoretical results

connecting transaction costs and robustness. Section 3 describes the proposed data-driven approach
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and evaluates its out-of-sample performance. The Online Companion contains two appendices:

Appendix A with the proofs of all results and Appendix B with supplementary tables and figures.

2. Transaction costs and robustness

We consider the following mean-variance problem with p-norm transaction costs:

min
w

γ

2
wTΣw−µTw+κ‖Λ(w−w0)‖pp (1)

s.t. wT1N = 1,

where γ ∈R is the risk-aversion parameter, w ∈RN is the portfolio weight vector, Σ∈RN×N is the

estimated covariance matrix of asset returns, µ∈RN is the estimated mean of asset returns, κ∈R

is the transaction cost parameter, Λ ∈ RN×N is the transaction cost matrix, which we assume to

be nonsingular, w0 ∈RN is the starting portfolio, ‖s‖p is the p-norm of vector s, ‖s‖pp =
∑N

i=1 |si|p,

1N ∈ RN is the vector of ones, and the constraint wT1N = 1 requires that the portfolio weights

sum up to one.

The first two terms in the objective function capture the risk-return trade-off: the first term

is the portfolio return variance scaled by the risk-aversion parameter (γ
2
wTΣw) and the second

term is the portfolio return mean (µTw). More importantly for our purposes, the third term in

the objective function is the p-norm transaction cost term, κ‖Λ(w−w0)‖pp. Note that we allow for

the portfolio trade vector (w−w0) to be transformed via a nonsingular transaction cost matrix Λ

before computing the p-norm.

We now introduce some basic definitions and facts. For a given vector norm ‖ · ‖, its dual norm

‖ · ‖∗ is ‖x‖∗ = max‖y‖≤1 y
Tx. It is easy to show that the dual norm of the p-norm is the q-norm,

where 1/p+ 1/q= 1; see Higham (2002, Section 6.1). Let Λ be a nonsingular matrix, we define the

(p,Λ)-norm of vector x as ‖x‖p,Λ := ‖Λx‖p. It is also easy to show that ‖ · ‖p,Λ is indeed a vector

norm and ‖ · ‖q,Λ−T is its dual norm.

The following proposition gives our main results.

Proposition 1. For every risk-aversion parameter γ > 0 and transaction cost parameter κ ≥ 0,

there exist δ,κ′ ≥ 0, α > 0 and µ0 such that the mean-variance problem with p-norm transaction

costs, Problem (1), is equivalent to:

(i) a robust portfolio problem:

min
w

γ

2
wTΣw−µTw+ max

µ̂∈U(δ)
(µ− µ̂)T (w−w0), (2)

s.t. wT1N = 1,

where the uncertainty set for mean asset returns is U(δ) = {µ̂ : ‖µ− µ̂‖q,Λ−T ≤ δ},
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(ii) a regularized linear regression problem:

min
w

‖1T −Rw‖22 +κ′‖Λ(w−w0)‖pp, (3)

s.t wTµ= µ0,

wT1N = 1,

where R ∈ RT×N is the matrix whose columns contain the historical returns for each of the N

assets,

(iii) a Bayesian portfolio problem, where the investor believes a priori that the variance of the

mean-variance portfolio return has an independent distribution π(σ2), that asset returns are nor-

mally distributed, and that the mean-variance portfolio weights are jointly distributed as an Multi-

variate Exponential Power distribution, with probability density function:

π(w) =
pN |Λ|

2NαNΓ(1/p)N
e−
‖Λ(w−w0)‖pp

αp , (4)

where α is the scale parameter and Γ(·) is the gamma function.

A few comments are in order. Proposition 1(i) shows that the portfolio optimization problem

with p-norm transaction costs is equivalent to a robust portfolio optimization problem where the

mean of asset returns can take any value in an uncertainty set defined by the q-norm, where

1/p+ 1/q= 1. For instance, a mean-variance portfolio problem with proportional transaction costs

can be equivalently rewritten as a robust portfolio optimization problem where the mean can

take any value in an uncertainty set defined by a box centered at the nominal mean return. This

theoretical result provides theoretical justification for the well-known empirical observation that

robust portfolio policies often result in low turnover; see Fabozzi et al. (2007). Essentially, solving

a robust portfolio optimization problem is equivalent to introducing a transaction cost on any

trades. Therefore, in addition to alleviating the impact of estimation error, robustifying a portfolio

optimization problem is also likely to reduce portfolio turnover.

Proposition 1(i) also provides compelling statistical motivation for the use of quadratic trans-

action cost terms to combat estimation error. To see this, note that the portfolio problem with

quadratic transaction costs for the case with Λ = Σ1/2, which Gârleanu and Pedersen (2013) argue

is realistic, is equivalent to a robust portfolio problem with ellipsoidal uncertainty set for mean

returns given by ‖µ − µ̂‖2,Σ−1/2 ≤ δ. Reassuringly, this ellipsoidal uncertainty set actually coin-

cides with the statistical confidence region for the sample estimator of mean returns under the

assumption that returns are independent and identically distributed as a Normal distribution with

covariance matrix Σ; see Goldfarb and Iyengar (2003).
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In addition, Proposition 1(i) shows that the p-norm transaction cost can be interpreted as the

maximum regret the investor may experience (in terms of expected return) by trading from the

starting portfolio w0 to portfolio w, assuming the true mean belongs to the uncertainty set U(δ),

which is defined in terms of the dual q-norm. To see this, note that Proposition 1(i) essentially

shows that the transaction cost term can be rewritten as

κ‖Λ(w−w0)‖pp = κ‖w−w0‖pp,Λ = max
µ̂:‖µ−µ̂‖

q,Λ−T ≤δ
(µ− µ̂)T (w−w0),

where µ is the estimated mean asset return vector, and µ̂ is the worst-case mean asset return vector

for the given portfolio w.

Proposition 1(ii) shows that the portfolio optimization problem with p-norm transaction costs

is equivalent to a robust regression formulation of the mean-variance problem. It is well known

that the mean-variance portfolio optimization problem can be equivalently reformulated as a linear

regression problem; see, for instance, Britten-Jones (1999). We extend this result by showing that

the transaction cost term κ′‖w−w0‖pp in a mean-variance portfolio can be interpreted as a regu-

larization term that reduces the impact of estimation error on the linear regression. In particular,

for p = 1 this transaction cost term resembles a lasso regularization term, and for p = 2 a ridge

regularization term; see (James et al. 2013, Chapter 6) for a discussion of regularization techniques

in linear regression.

Proposition 1(iii) shows that the portfolio optimization problem with p-norm transaction costs

is equivalent to a Bayesian portfolio problem where the investor has a prior belief over the portfolio

weights. This result generalizes the results by DeMiguel et al. (2009a), who provide a Bayesian

interpretation for the 1-norm, 2-norm and A-norm constrained portfolios. We extend their result

to the portfolio problem with (p,Λ)-norm transaction cost, with p ∈ [1,2], by defining a new dis-

tribution, which we term the Multivariate Exponential Power (MEP) distribution. The MEP prior

distribution includes as particular cases the Multivariate Normal prior distribution for p= 2 and

Λ = Σ1/2, which corresponds to the quadratic transaction cost of Gârleanu and Pedersen (2013),

and the Laplace prior distribution for p = 1 and Λ = I, where I is the identity matrix, which

corresponds to proportional transaction costs.

Finally, it is easy to see that all three parts of Proposition 1 also hold for the case where there are

additional constraints to the mean-variance problem with p-norm transaction costs by just adding

these constraints to the robust portfolio problem, the regularized linear regression problem, and

the Bayesian portfolio problem.
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3. Data-driven portfolios

We now propose a data-driven approach to portfolio selection that consists of treating the trans-

action cost term as a regularization term, and using cross validation to calibrate the transaction

cost parameter κ of Problem (1) as if it were the penalty parameter in a regularization term.

We assume the investor faces proportional transaction costs of 50 basis points, an assumption

that is consistent with the existing literature; see Balduzzi and Lynch (1999). We compare the

out-of-sample performance of the data-driven portfolios with that of the portfolios that ignore

transaction costs, and the portfolios that consider the nominal proportional transaction costs of

50 basis points.1

We consider five empirical datasets with US stock monthly return data, similar to those used

in the literature; see DeMiguel et al. (2009a). Specifically, we consider four datasets downloaded

from Ken French’s website, covering the period from July 1963 to December 2013: the 10 industry-

portfolio dataset (10Ind), the 48 industry-portfolio dataset (48Ind), the six portfolios of stock

sorted by size and book-to-market (6FF), and the 25 portfolios of firms sorted by size and book-to-

market (25FF). Finally, we consider a dataset with returns on individual stocks downloaded from

the CRSP database covering the period from April 1968 to April 2005. This dataset is constructed

as in DeMiguel et al. (2009a): in April of each year we randomly select 25 assets among all assets

in the CRSP dataset for which there is return data for the previous 120 months as well as for

the next 12 months. These randomly selected 25 assets become our asset universe for the next 12

months period.2

3.1. Description of the portfolios

We compare the performance of four different types of portfolios defined in terms of how they cap-

ture transaction costs. First, portfolios that ignore transaction costs, which are computed by solving

Problem (1) with transaction cost parameter κ= 0. Second, portfolios that capture the nominal

proportional transaction costs of 50 basis points, which are computed by solving Problem (1) with

κ= 0.005, p= 1, and Λ = I; that is, with transaction cost term 0.005‖∆w‖1, where ∆w =w−w0.

Finally, portfolios with calibrated transaction costs, which are computed by solving Problem (1)

with transaction cost (or penalty) parameter κ= κcv calibrated with 10-fold cross-validation, which

we explain in detail later. We consider two types of calibrated transaction costs. First, propor-

tional transaction costs (p = 1, Λ = I), which result in a transaction cost term κcv‖∆w‖1, and

1 Note that all portfolio policies are evaluated in terms of their out-of-sample returns net of the nominal propor-
tional transaction costs of 50 basis points, even though the data-driven portfolios are computed using a calibrated
proportional or quadratic transaction cost term.

2 We have also considered the cases with N = 50 and N = 100 stocks and we find that the relative performance of the
different portfolios is robust to changing the number of CRSP stocks.
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second, quadratic transaction costs (p = 2, Λ = Σ1/2), which result in a transaction cost term

κcv‖Σ1/2∆w‖22. For each of these four different types of transaction costs, we compute four dif-

ferent portfolios: minimum-variance portfolio, shortsale-constrained minimum-variance portfolio,

mean-variance portfolio, and shortsale-constrained mean-variance portfolio.

A few comments are in order. First, why consider data-driven portfolios with calibrated quadratic

transaction costs when the nominal transaction costs are proportional? The answer is the data-

driven portfolios are designed to address not only transaction costs, but also estimation error, and

Section 2 argues that a quadratic transaction cost term is well suited to address estimation error.

Second, note that the penalties κcv corresponding to the data-driven portfolios with proportional

versus quadratic costs are not easy to compare. Fortunately, the data-driven portfolios with pro-

portional transaction costs can be equivalently calibrated in terms of trading volume or turnover,

‖w −w0‖1 ≤ τ . Moreover, Kourtis (2015) shows that the optimal portfolio for a mean-variance

investor with quadratic transaction costs is a convex combination of the starting portfolio and the

mean-variance portfolio in the absence of transaction costs. Consequently, for these portfolios one

can also calibrate the trading volume τ instead of the transaction cost parameter κ. Summarizing,

to facilitate the comparison between the two types of data-driven portfolios (with proportional and

quadratic costs), we calibrate these portfolios by selecting their trading volume.3

Third, we calibrate the data-driven portfolios using the bootstrap methodology of 10-fold cross-

validation; Efron and Gong (1983). Specifically, we divide the estimation window of M returns

into ten intervals of M/10 returns each. For j from 1 to 10, we remove the jth-interval from the

estimation window, and use the remaining sample returns to compute the data-driven portfolio for

each value of the trading volume τ from 0%, 0.5%, 1%, 2.5%, 5% and 10%. We then evaluate the

return of the resulting portfolios (net of transaction costs of 50 basis points) on the jth-interval.

After completing this process for each of the 10 intervals, we have the M “out-of-sample” portfolio

returns for each value of τ . Finally, we compute the variance of these out-of-sample returns and

select the value of τ that corresponds to the portfolio with smallest variance.4

3.2. Out-of-sample performance

We use a rolling-horizon methodology similar to that used in DeMiguel et al. (2009b) and DeMiguel

et al. (2009a) to compare the performance of the different portfolios. We use an estimation window

3 Kourtis’ observation applies only to the unconstrained mean-variance portfolio. For computational convenience,
however, we also approximate the shortsale-constrained mean-variance and the shortsale-constrained and uncon-
strained minimum-variance data-driven portfolios with quadratic transaction costs by taking a convex combination
of the starting portfolio and the target portfolio in the absence of transaction costs.

4 We have also tried using the Sharpe ratio of returns net of transaction costs as the calibration criterion. In addition,
we have used 10-fold cross-validation and generalized cross-validation as defined by Fu (1998, Section 5) to calibrate
simultaneously the transaction cost parameter (κ) and the type of transaction cost (proportional or quadratic).
However, we find that the results are qualitatively similar, and thus we do not report them to conserve space.
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of M = 120 monthly returns. To test the statistical significance of the differences between the out-

of-sample Sharpe ratio of the different portfolios with those of the minimum-variance portfolio that

ignores transaction costs, we use the bootstrap methodology employed by DeMiguel et al. (2009a),

which is based on the work by Ledoit and Wolf (2008).

Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Portfolios that ignore transaction costs, κ= 0

Minimum-variance, shortsale unconstrained 0.3007 0.1167 0.3480 0.3124 0.3781

Minimum-variance, shortsale constrained 0.2953 0.2452* 0.2493* 0.2390** 0.3974

Mean-variance, shortsale unconstrained 0.0686* −0.0890* 0.2142* −0.0076* −0.0091*

Mean-variance, shortsale constrained 0.2128** 0.1782 0.2502* 0.2382*** 0.2194**

Panel B. Portfolios with nominal transaction costs, 0.005‖∆w‖1

Minimum-variance, shortsale unconstrained 0.2959 0.0955 0.3026** 0.3063 0.3987

Minimum-variance, shortsale constrained 0.2420*** 0.2601* 0.2374* 0.2318** 0.3925

Mean-variance, shortsale unconstrained 0.2074** −0.0523* 0.2631** −0.0467* 0.1005*

Mean-variance, shortsale constrained 0.2214** 0.2018** 0.2505* 0.2588 0.2681

Panel C. Data-driven portfolios with calibrated proportional transaction costs, κcv‖∆w‖1

Minimum-variance, shortsale unconstrained 0.3281*** 0.1505 0.3284 0.3745** 0.3977

Minimum-variance, shortsale constrained 0.3006 0.2925* 0.2479* 0.2563*** 0.3929

Mean-variance, shortsale unconstrained 0.2443 0.0039** 0.2436** −0.0442* 0.1161*

Mean-variance, shortsale constrained 0.2693 0.2248** 0.2477* 0.2442*** 0.2613***

Panel D. Data-driven portfolios with calibrated quadratic transaction costs, κcv‖Σ1/2∆w‖22

Minimum-variance, shortsale unconstrained 0.3234*** 0.2349* 0.3481 0.3761* 0.3995

Minimum-variance, shortsale constrained 0.2983 0.2762* 0.2446* 0.2460*** 0.3930

Mean-variance, shortsale unconstrained 0.2565 0.0105*** 0.2424** 0.0464* 0.1193*

Mean-variance, shortsale constrained 0.2748 0.2561* 0.2497* 0.2514*** 0.2579***

Table 1 Sharpe ratios

This table reports the monthly out-of-sample Sharpe ratio and the corresponding p-value that the Sharpe ratio

for each of the portfolios is different from that for the minimum-variance portfolio. We assign three/two/one

asterisks (*) to those portfolios whose p-values, indicating whether the differences with the benchmark minimum-

variance portfolio are significant, are lower than 0.01/0.05/0.1, respectively. The highest Sharpe ratio for each

dataset is highlighted in bold face.

Table 1 reports the out-of-sample Sharpe ratio for each of the 16 portfolio policies considered.

Panel A reports the Sharpe ratios for the portfolios that ignore transaction costs. This panel shows

that minimum-variance portfolios generally outperform mean-variance portfolios. This is explained

by the well-known difficulties associated with estimating mean returns from historical data. Impos-

ing shortsale constraints on the minimum-variance portfolio helps only for two of the datasets with
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largest number of assets (48Ind and CRSP). This makes sense as estimating the covariance matrix

of asset returns is harder for datasets with many assets, and under these circumstances the short-

sale constraints will help to alleviate the impact of estimation error. Imposing shortsale constraints

on the mean-variance portfolio helps for every dataset because the unconstrained mean-variance

portfolio is very sensitive to estimation error.5

Panel B shows that capturing nominal proportional transaction costs of 50 basis points generally

helps to improve the performance of the mean-variance portfolios, but it only helps to improve the

minimum-variance portfolio for the CRSP dataset in the shortsale-unconstrained case and the 25FF

in the shortsale-constrained case. The reason for this is that the nominal transaction cost term helps

to combat estimation error to a certain extent, and this is helpful for mean-variance portfolios,

which are very sensitive to estimation error. Minimum-variance portfolios, on the other hand, are

more resilient to estimation error, and a nominal transaction cost parameter is too conservative

to strike the right balance between estimation error and transaction costs. This seems to indicate

that using a data-driven approach to calibrate the transaction cost (or penalty) parameter may

help to improve the performance.

We conclude that the shortsale-unconstrained minimum-variance portfolio that ignores transac-

tion costs is the best of the portfolios in Panels A and B and thus we consider it as the benchmark

portfolio for the data-driven portfolios in Panels C and D.

Panel C shows that the data-driven approach based on proportional transaction costs gener-

ally helps to improve the performance of the traditional portfolios. Specifically, the data-driven

shortsale-unconstrained minimum-variance portfolio outperforms the benchmark portfolio for every

dataset except 6FF, with an improvement in Sharpe ratio that ranges from 5% to 29% for the

different datasets, and is statistically significant for two of the five datasets.

Panel D shows that the data-driven approach based on quadratic transaction costs also helps

to improve the performance of the traditional portfolios. Specifically, the data-driven shortsale-

unconstrained minimum-variance portfolio with calibrated quadratic transaction costs outperforms

the benchmark portfolio for every dataset except 6FF, with an improvement in Sharpe ratio that

ranges from 5% to 101%, and is statistically significant for three out of five datasets.6

5 This is illustrated by Figure 1 in Appendix B of the Online Companion, which shows the out-of-sample monthly
returns of the different types of shortsale-unconstrained mean-variance portfolios and shortsale-constrained mean-
variance portfolios. While the shortsale-unconstrained mean-variance portfolios are very sensitive to estimation error
and consequently their returns may be quite extreme in some months, the shortsale-constrained mean-variance port-
folios are more resilient to estimation error and thus result in more stable out-of-sample returns.

6 From the out-of-sample mean and variance for the different portfolios, reported in Tables 3 and 4 of Appendix B in
the Online Companion, we observe that considering transaction costs generally does not help to reduce the variance
of portfolio returns, but it helps to increase the mean. Thus the gains from using the proposed data-driven approaches
are obtained from improvements in out-of-sample means, rather than variances. Moreover, from Tables 5 and 6 of
Appendix B in the Online Companion, we find that the relative performance of the different portfolios in terms of tail
risk as measured by value at risk and kurtosis is similar to that in terms of standard risk as measured by variance.
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Finally, comparing Panels C and D, we observe that the data-driven minimum-variance portfo-

lios based on quadratic transaction costs outperform the data-driven minimum-variance portfolios

based on proportional transaction costs on every dataset except 10Ind. This result suggests that a

quadratic cost term may be better suited to address estimation error than a proportional transac-

tion cost.

Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Portfolios that ignore transaction costs, κ= 0

Minimum-variance, shortsale unconstrained 0.1566 0.7881 0.2310 0.8084 0.1801

Minimum-variance, shortsale constrained 0.0424 0.1157 0.0492 0.0915 0.0773

Mean-variance, shortsale unconstrained 1.0660 64.7887 1.8394 11.7604 1.5782

Mean-variance, shortsale constrained 0.1507 0.2434 0.1142 0.2447 0.1770

Panel B. Portfolios with nominal transaction costs, 0.005‖∆w‖1

Minimum-variance, shortsale unconstrained 0.0000 0.0401 0.0000 0.0008 0.0002

Minimum-variance, shortsale constrained 0.0003 0.0027 0.0000 0.0007 0.0007

Mean-variance, shortsale unconstrained 0.0118 16.3364 0.0319 5.2762 0.0967

Mean-variance, shortsale constrained 0.0045 0.0112 0.0000 0.0001 0.0032

Panel C. Data-driven portfolios with calibrated proportional transaction costs, κcv‖∆w‖1

Minimum-variance, shortsale unconstrained 0.0117 0.0213 0.0155 0.0154 0.0015

Minimum-variance, shortsale constrained 0.0091 0.0090 0.0118 0.0082 0.0017

Mean-variance, shortsale unconstrained 0.0117 0.0716 0.0241 0.0217 0.0271

Mean-variance, shortsale constrained 0.0051 0.0098 0.0086 0.0124 0.0120

Panel D. Data-driven portfolios with calibrated quadratic transaction costs, κcv‖Σ1/2∆w‖22

Minimum-variance, shortsale unconstrained 0.0203 0.0591 0.0314 0.0644 0.0022

Minimum-variance, shortsale constrained 0.0103 0.0144 0.0127 0.0113 0.0006

Mean-variance, shortsale unconstrained 0.0176 0.0905 0.0467 0.0666 0.0288

Mean-variance, shortsale constrained 0.0076 0.0063 0.0110 0.0138 0.0186

Table 2 Turnover

This table reports the monthly turnover of the different portfolios. Turnover is the average percentage of wealth
traded in each period and is equal to the sum of the absolute value of the rebalancing trades across the N
available assets and over the T −M − 1 trading dates, normalized by the total number of trading dates.

Table 2 reports the turnovers for the different portfolio policies. The table shows that taking

transaction costs into account helps to reduce turnover. For instance, for the 25FF dataset, the

monthly turnover of the shortsale-unconstrained minimum-variance portfolio is 80.84%. Including

a calibrated quadratic transaction cost term reduces this turnover to 6.44%, including a calibrated

proportional transaction cost term to 1.54%, and including a nominal proportional transaction cost

term to 0.08%.
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Comparing the turnover of the portfolios with nominal proportional transaction costs (Panel B)

with that of the data-driven portfolios with calibrated proportional transaction costs (Panel C), we

observe that the nominal transaction cost term induces an all-or-nothing trading pattern, whereas

the data-driven portfolios are associated with intermediate levels of turnovers. For instance, the

unconstrained mean-variance portfolio with nominal costs has huge turnovers of 528% for the

25FF dataset and 1634% for the 48Ind dataset, whereas the counterpart data-driven portfolios

with calibrated proportional costs have reasonable turnovers ranging between 1.17% and 7.16%.

On the other hand, the unconstrained minimum-variance portfolio with nominal transaction costs

is effectively a buy-and-hold portfolio (with almost zero turnover) for every dataset except 48Ind,

whereas the counterpart data-driven portfolios with calibrated proportional costs have reasonable

monthly turnovers ranging between 0.15% and 2.13% for the different datasets.

The mathematical intuition behind why the nominal transaction cost term induces an all-or-

nothing trading pattern is that the proportional transaction cost term is a piecewise linear term,

which when combined in the objective function with the linear-quadratic mean-variance objective,

results in policies that advise either large trading or no trading. This all-or-nothing trading pattern

is indeed optimal in the absence of estimation error. Constantinides (1986), Davis and Norman

(1990), and Muthuraman and Kumar (2006), amongst others, show that the optimal portfolio

policy in the presence of proportional transaction costs is characterized by a no-trade region: if the

portfolio is inside this region, then it is optimal not to trade, and if it is outside, then it is optimal

to trade to the boundary of this region.

The Sharpe ratio results in Table 1, however, show that this all-or-nothing trading pattern leads

to poor performance when in addition to transaction costs the investor is also facing estimation

error. All trading leads to poor performance because the resulting portfolio policies are too sensi-

tive to recent historical data, which leads to large transaction costs and sensitivity to estimation

error. No trading results in poor performance because buy-and-hold policies essentially ignore the

information available in recent historical data—they stick to the portfolio weights obtained from

the earliest estimation window. The data-driven portfolios, on the other hand, allow reasonable

amounts of turnover that strike an optimal trade-off between incorporating the information in

recent historical return data, and avoiding the large transaction costs and impact of estimation

error associated with large turnovers. Therefore, although one would expect that the data-driven

portfolios would always result in smaller turnover compared to the portfolios that capture nominal

transaction costs, our results show that from a data-driven perspective, it is optimal to calibrate

the transaction cost parameter to achieve intermediate levels of turnover.
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Online Companion

Appendix A: Proof of Proposition 1

Part (i)

This part of the proof is related to Proposition 1 in Gotoh and Takeda (2011), which provides a similar

result for the case without transaction costs. We adapt their result and provide interpretation for the case

with transaction costs. Our result is also related to that by Bertsimas et al. (2004), who in a generic linear

optimization context show that a robust linear optimization problem with uncertainty sets described by a

norm can be rewritten as a convex problem involving the dual norm.

It is easy to show that the third term in the objective function of Problem (2) can be rewritten as :

max
µ̂:‖µ−µ̂‖

q,Λ−T ≤δ
(µ− µ̂)T (w−w0) = δ‖w−w0‖p,Λ.

This implies that Problem (2) is equivalent to the following problem:

min
w

γ

2
wTΣw−µTw+ δ‖Λ(w−w0)‖p, (5)

s.t. wT1N = 1.

Note, however, that the p-norm transaction cost term in Problem (1) is raised to the power of p. It is easy

to show, however, that for any κ≥ 0, there exists δ≥ 0 such that Problem (5) is equivalent to Problem (1).

Part (ii)

Britten-Jones (1999, Theorem 1) showed that the tangency mean-variance portfolio is the scaled solution

of the regression problem minw ‖1T − Rw‖22, where R ∈ RT×N is the matrix whose columns contain the

historical returns for each of the N assets. We now show how Britten-Jones’ result can be extended to rewrite

the general mean-variance portfolio problem with transaction costs as a linear regression problem with a

regularization term. The regularized regression problem (3) can be rewritten as

min
w

1TT1T +wTΣw+wTµµTw− 2 ·T ·µTw+κ′‖Λ(w−w0)‖pp,

s.t. wTµ= µ0,

wT1N = 1.

Moreover, because wTµ is constant in the feasible region, this problem is equivalent to

min
w

wTΣw+κ′‖Λ(w−w0)‖pp,

s.t. wTµ= µ0,

wT1N = 1.

It is easy to show that for any γ > 0 and κ ≥ 0, there exists a µ0 and κ′ ≥ 0 such that this problem is

equivalent to Problem (1).

Part (iii)

This part of the proof generalizes the results by DeMiguel et al. (2009a), who provide a Bayesian interpre-

tation for the 1-norm, 2-norm and A-norm constrained portfolios. We generalize their result to the general
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case with (p,Λ)-norm, where p can take any value in the closed interval [1,2]. Our generalization covers the

important case with p= 1.5, which empirical research has recently shown to be realistic in financial markets

as explained in the introduction.

To be able to show the result for general p, we define a new distribution, which we term the Multivariate

Exponential Power distribution (MEP). Therefore, in order to prove this result, we first need to prove that

the MEP is indeed a distribution. To do this we rely on results from mathematical analysis; see Schwartz

(1954). After this first step we will proceed to show that the mean-variance portfolio weights with (p,Λ)-norm

transaction cost are the mode of the posterior distribution.

Step 1: Expression (4) is the probability density function of a distribution.

To see this, note that if the portfolio weights were independently distributed as an Exponential Power

distribution, the joint prior distribution for a portfolio w would be

π′(w) =

N∏
i=1

π′0(wi) =

N∏
i=1

p

2αΓ(1/p)
e−
|wi−wi0|

p

α =
pN

2NαNΓ(1/p)N
e−
‖w−w0‖

p
p

αp ,

and thus we know that ∫
RN

pN

2NαNΓ(1/p)N
e−
‖w−w0‖

p
p

αp dw = 1.

The difference between the distribution π′(w) and the distribution in Equation (4) is simply a linear

transformation of the variables h(w−w0) = Λ(w−w0). Then, by a well-known elementary analysis theorem,

see Schwartz (1954), we have that:∫
RN

pN |Λ|
2NαNΓ(1/p)N

e−
‖Λ(w−w0)‖pp

αp dw =

∫
RN

pN

2NαNΓ(1/p)N
e−
‖w−w0‖

p
p

αp dw = 1.

Step 2: Mean-variance portfolio weights are mode of posterior distribution.

Bayes theorem guarantees that the posterior distribution of the portfolio weights and portfolio return variance

conditional on the observed sample returns is

π(w, σ2|{rt}Tt=1) =
π(w)π(σ2)L(w, σ2|{rt}Tt=1)∫

w,σ2 π(w)π(σ2)L(w, σ2|{rt}Tt=1)dwdσ2
,

where L(w, σ2|{rt}Tt=1) stands for the likelihood function of w and σ2 given the observed sample returns

{rt}Tt=1:

L(w, σ2|{rt}Tt=1) =
1

σN
√

2NπN
e
−

∑T
t=1(wT rt−wT µ̂)2

2σ2 .

Hence

π(w, σ2|{rt}Tt=1)∝ π(w)π(σ2)L(w, σ2|{rt}Tt=1);

that is,

π(w, σ2|{rt}Tt=1)∝ π(σ2)

σN
e
−

∑T
t=1(wT rt−wT µ̂)2

2σ2 −
‖Λ(w−w0)‖pp

αp . (6)

From (6), it is straightforward to show that for a given portfolio return variance σ2, there exist µ0 such that

the portfolio that maximizes the posterior distribution of the mean-variance portfolio weights subject to the

condition that the portfolio weights add up to one, is the solution to the following optimization problem

min
w

wTΣw+κ‖Λ(w−w0)‖pp,

s.t. wT1N = 1,

µTw≥ µ0,

where κ= 2σ2/αp(T − 1).
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Appendix B: Tables and figures

Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Portfolios that ignore transaction costs, κ= 0

Minimum-variance, shortsale unconstrained 0.0106 0.0048 0.0136 0.0119 0.0139

Minimum-variance, shortsale constrained 0.0105 0.0101 0.0109 0.0103 0.0132

Mean-variance, shortsale unconstrained 0.0050 −0.2975 0.0179 −0.0014 −0.0012

Mean-variance, shortsale constrained 0.0101 0.0099 0.0123 0.0116 0.0108

Panel B. Portfolios with nominal transaction costs, 0.005‖∆w‖1

Minimum-variance, shortsale unconstrained 0.0119 0.0063 0.0132 0.0130 0.0153

Minimum-variance, shortsale constrained 0.0105 0.0111 0.0106 0.0103 0.0132

Mean-variance, shortsale unconstrained 0.0115 −0.1498 0.0150 −0.0132 0.0122

Mean-variance, shortsale constrained 0.0099 0.0106 0.0117 0.0122 0.0128

Panel C. Data-driven portfolios with calibrated proportional transaction costs, κcv‖∆w‖1

Minimum-variance, shortsale unconstrained 0.0120 0.0083 0.0138 0.0143 0.0152

Minimum-variance, shortsale constrained 0.0110 0.0113 0.0111 0.0111 0.0132

Mean-variance, shortsale unconstrained 0.0118 0.0046 0.0184 −0.1394 0.0146

Mean-variance, shortsale constrained 0.0107 0.0107 0.0114 0.0113 0.0125

Panel D. Data-driven portfolios with calibrated quadratic transaction costs, κcv‖Σ1/2∆w‖22

Minimum-variance, shortsale unconstrained 0.0118 0.0097 0.0144 0.0149 0.0154

Minimum-variance, shortsale constrained 0.0108 0.0109 0.0110 0.0108 0.0132

Mean-variance, shortsale unconstrained 0.0114 0.0259 0.0203 0.0286 0.0151

Mean-variance, shortsale constrained 0.0108 0.0110 0.0115 0.0116 0.0122

Table 3 Mean

This table reports the monthly out-of-sample means. The best mean for each dataset is highlighted in bold face.
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Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Portfolios that ignore transaction costs, κ= 0

Minimum-variance, shortsale unconstrained 0.0012 0.0017 0.0015 0.0015 0.0014

Minimum-variance, shortsale constrained 0.0013 0.0017 0.0019 0.0019 0.0011

Mean-variance, shortsale unconstrained 0.0053 11.1889 0.0069 0.0329 0.0168

Mean-variance, shortsale constrained 0.0023 0.0031 0.0024 0.0024 0.0024

Panel B. Portfolios with nominal transaction costs, 0.005‖∆w‖1

Minimum-variance, shortsale unconstrained 0.0016 0.0044 0.0019 0.0018 0.0015

Minimum-variance, shortsale constrained 0.0019 0.0018 0.0020 0.0020 0.0011

Mean-variance, shortsale unconstrained 0.0031 8.1876 0.0032 0.0795 0.0147

Mean-variance, shortsale constrained 0.0020 0.0027 0.0022 0.0022 0.0023

Panel C. Data-driven portfolios with calibrated proportional transaction costs, κcv‖∆w‖1

Minimum-variance, shortsale unconstrained 0.0013 0.0031 0.0018 0.0015 0.0015

Minimum-variance, shortsale constrained 0.0013 0.0015 0.0020 0.0019 0.0011

Mean-variance, shortsale unconstrained 0.0023 1.3320 0.0057 9.9690 0.0158

Mean-variance, shortsale constrained 0.0016 0.0023 0.0021 0.0021 0.0023

Panel D. Data-driven portfolios with calibrated quadratic transaction costs, κcv‖Σ1/2∆w‖22

Minimum-variance, shortsale unconstrained 0.0013 0.0017 0.0017 0.0016 0.0015

Minimum-variance, shortsale constrained 0.0013 0.0016 0.0020 0.0019 0.0011

Mean-variance, shortsale unconstrained 0.0020 6.0989 0.0070 0.3784 0.0161

Mean-variance, shortsale constrained 0.0015 0.0018 0.0021 0.0021 0.0023

Table 4 Variance

This table reports the monthly out-of-sample variances. The best variance for each dataset is highlighted in
bold face
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Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Portfolios that ignore transaction costs, κ= 0

Minimum-variance, shortsale unconstrained -0.0818 -0.0947 -0.0942 −0.1072 -0.0724

Minimum-variance, shortsale constrained −0.0909 −0.1146 −0.1155 −0.1142 −0.0840

Mean-variance, shortsale unconstrained −0.2113 −1.9423 −0.2037 −0.4666 −0.3284

Mean-variance, shortsale constrained −0.1288 −0.1810 −0.1410 −0.1441 −0.1237

Panel B. Portfolios with nominal transaction costs, 0.005‖∆w‖1

Minimum-variance, shortsale unconstrained −0.1000 −0.1676 −0.1031 −0.0951 −0.0808

Minimum-variance, shortsale constrained −0.1149 −0.1163 −0.1110 −0.1070 −0.0875

Mean-variance, shortsale unconstrained −0.1282 −0.9507 −0.1707 −1.2520 −0.2685

Mean-variance, shortsale constrained −0.1132 −0.1394 −0.1448 −0.1296 −0.1130

Panel C. Data-driven portfolios with calibrated proportional transaction costs, κcv‖∆w‖1

Minimum-variance, shortsale unconstrained −0.0976 −0.1314 −0.1145 -0.0938 −0.0808

Minimum-variance, shortsale constrained −0.0979 −0.1055 −0.1223 −0.1198 −0.0875

Mean-variance, shortsale unconstrained −0.1218 −2.7480 −0.1797 −0.5865 −0.2685

Mean-variance, shortsale constrained −0.1025 −0.1231 −0.1398 −0.1231 −0.1130

Panel D. Data-driven portfolios with calibrated quadratic transaction costs, κcv‖Σ1/2∆w‖22

Minimum-variance, shortsale unconstrained −0.0923 −0.1085 −0.1056 −0.1178 −0.0808

Minimum-variance, shortsale constrained −0.0963 −0.1071 −0.1238 −0.1248 −0.0875

Mean-variance, shortsale unconstrained −0.1091 −6.0924 −0.1800 −0.5984 −0.2685

Mean-variance, shortsale constrained −0.0996 −0.1136 −0.1420 −0.1260 −0.1134

Table 5 Value at risk

This table reports the monthly value at risk of the different portfolios for a confidence level of 1%. The best
VaR for each dataset is highlighted in bold face
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Strategy 10Ind 48Ind 6FF 25FF CRSP

Panel A. Portfolios that ignore transaction costs, κ= 0

Minimum-variance, shortsale unconstrained 3.7468 4.7145 4.7477 4.8522 3.4585

Minimum-variance, shortsale constrained 3.9438 8.7428 5.5980 5.8600 4.6902

Mean-variance, shortsale unconstrained 4.5280 260.6713 4.8322 4.1617 4.0493

Mean-variance, shortsale constrained 4.9890 5.1898 7.0514 6.2337 6.0823

Panel B. Portfolios with nominal transaction costs, 0.005‖∆w‖1

Minimum-variance, shortsale unconstrained 3.4872 5.4916 5.7466 5.5415 3.5537

Minimum-variance, shortsale constrained 3.9236 4.3366 5.2744 5.2073 4.6954

Mean-variance, shortsale unconstrained 3.3791 399.6804 8.1566 84.0081 4.3499

Mean-variance, shortsale constrained 3.9194 4.6733 6.3228 5.1141 6.9563

Panel C. Data-driven portfolios with calibrated proportional transaction costs, κcv‖∆w‖1

Minimum-variance, shortsale unconstrained 4.2407 6.2381 5.5368 5.0131 3.5706

Minimum-variance, shortsale constrained 4.0061 4.3379 5.5027 5.6622 4.6938

Mean-variance, shortsale unconstrained 3.5086 112.2207 21.5957 404.3720 4.5564

Mean-variance, shortsale constrained 4.1425 4.9611 5.9052 5.4618 6.8807

Panel D. Data-driven portfolios with calibrated quadratic transaction costs, κcv‖Σ1/2∆w‖22

Minimum-variance, shortsale unconstrained 3.9857 3.9538 5.5142 5.4337 3.5646

Minimum-variance, shortsale constrained 4.0325 5.4081 5.5643 5.4747 4.6987

Mean-variance, shortsale unconstrained 3.4827 106.6647 42.4249 246.5576 4.8191

Mean-variance, shortsale constrained 4.3336 4.8007 6.0423 5.4725 6.9713

Table 6 Kurtosis

This table reports the monthly kurtosis of the different portfolios. The best kurtosis for each dataset is highlighted

in bold face
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Panel (a): Shortsale-unconstrained mean-variance

Panel (b): Shortsale-constrained mean-variance

Figure 1 Monthly out-of-sample returns of mean-variance portfolios for the 48Ind dataset.

This figure depicts the monthly out-of-sample returns of the shortsale-unconstrained (Panel (a)) and shortsale-

constrained (Panel (b)) mean-variance portfolios. The vertical axis represents absolute returns; that is, 0.2

corresponds to a 20% percentage return.


