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Technical Notes

An Equivalence Between Continuous and
Discrete Time Markov Decision Processes

RICHARD F. SERFOZO
Bell Laboratories, Holmdel, New Jersey
(Received December 1976; accepted May 1978)

A continuous time Markov decision process with uniformly bounded transition
rates is shown to be equivalent to a simpler discrete time Markov decision
process for both the discounted and average reward criteria on an infinite
horizon. This result clarifies some earlier work in this area.

HE EQUIVALENCE we shall discuss for Markov decision processes

is based on the following well known equivalence for Markov proc-
esses. Let Y = {Y(¢): t = 0} be a continuous time Markov process with a
countable state space whose jumps are determined by transition proba-
bilities Q(i, j), and whose sojourns in state i have an exponential distri-
bution with parameter 0 < A, < © (A, = 0 means that i is an absorbing
state). See Cinlar [1] or Gihman and Skorohod [2]. The infinitesimal
generator of Y is given by

Con d . _ o _ |-\ ifi=j

where p, = 1 — Q(i, ). Assume that ¢ = sup,p.A, < o, that is, the transition
rates of Y are bounded. Now consider another continuous time Markov
process Y’ = {Y'(t): ¢ = 0} with transition matrix

v o J1=DpMN/c ifi=]
Qe = {A,Q(i,j)/c if Q4
and the exponential sojourn parameters A,/ = ¢ for all ¢.

An easy check shows that the infinitesimal generator of Y is the same
as that for Y. From this it follows that Y is equal in distribution to Y.
That is, their finite dimensional distributions are equal when they have
the same initial distribution. This equivalence between Y and Y" is useful
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for simplifying certain computations for Y, see [1]: the Y’ is a Markov
chain subordinated to a Poisson process and is more tractable than Y.

The above equivalence was used by Howard [4] and Veinott [11] to
obtain an equivalence between continuous and discrete time Markov
decision processes. They considered continuous time processes with finite
state spaces and discounted rewards, where rewards are received contin-
uously over time. Two related works concerning algorithms are Porteus
[8] and Schweitzer [9].

Lippman [6] apparently was the first to recognize the usefulness of this
equivalence for establishing the existence of optimal control policies with
certain monotonicity properties. He considers queuing processes with
countable state spaces and discounted rewards, where lump rewards are
received at transition times as well as continuously over time. In his
general discussion, Lippman states that the one-step reward functions
are the same for the two equivalent processes. This is true for continuous
rewards, but it is not true when there are lump rewards. His specific
applications are correct, however, since he adjusts the rewards implicitly
in his analyses.

In this article we present a formal description of this equivalence which
clarifies the form of the one-step reward functions for the two equivalent
processes. We consider average rewards as well as discounted rewards.
We also consider processes that may take bogus jumps from a state back
to itself and may have absorbing states. The results herein are used in
Serfozo [9] to analyze controlled birth and death processes and queues in
terms of equivalent random walks.

THE EQUIVALENCE

We shall consider a continuous time Markov decision process which
moves as follows (see [4], [5] and [7]). Upon arriving at a state i € S, an
action a € A is chosen, and a reward r(i, a) is received. For simplicity we
take the sets S and A to be countable (our results readily extend, with
appropriate measurability conditions to more general spaces, as in [3]).
The process remains in state i for a random sojourn time which is
exponentially distributed with parameter A(i, @) = 0, and then it jumps
to state j € S with probability p(i, a, j). This series of events is repeated
indefinitely. Note that A(i, @) = 0 means that i is an absorbing state under
action a. Also we allow p(i, a, {) > 0, which means that the process may
take a “bogus” jump from i back to itself.

We let f denote the stationary policy which chooses action f(i) when
the process is in state i. We assume that the discounted and average
rewards under f exist. We denote these by W; (i) = E;(Qr-0 e ™ r(Y,,
a,) | Yo = i), where 8 > 0 is a discount factor, and ¥,(i) =
lim, ... Ef (¢! Y% r(Yn, ax) | Yo = i). Here the controlled Markov process

Copyright © 2001 All Rights Reserved
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Y = {Y(#): t = 0} is described by Y(¢) = Y, if T\, < ¢t < Th+1, where T, is
the time of the nth jump of Y which is to state Y,, the a, = f(Y,), and N,
= max {n: T < t} is the number of jumps that occur in time ¢. We use
the convention that T» = o for 2= n + 1 when Y is absorbed in state Y.
We shall denote this controlled Markov process by Y = (S, A, r, A, p, ).

Note that we are considering r(i, @) as a lump reward received at the
beginning of a sojourn in state i when action a is taken: it is a composite
reward associated with the sojourn and the next jump. In typical appli-
cations, the r is of the form r(i, a) = Ef(oo(i, Y1) + [ e Pp:(i, Y1)dt +
e *hpy(i, Y1)| Yo = i) = ¥, p(i, @, )) [poli, )) + (013, )) + p2(i, DAG, @)/ (B
+ A(Z, a))] where a = f(i). Here po(i, /) and p:(i, j) are lump rewards
received at the beginning and end of a sojourn in state i, and p.(i, /) is the
reward rate received during the sojourn when the next state is j.

We shall also consider a discrete time controlled Markov chain, that
moves as follows. Upon arriving at a state { € S, an action a € A is taken,
a reward r(i, a) is received, and then the process jumps to a state j € S
with probability p(i, a, 7). This series of events is repeated indefinitely.
As above, we let f denote a stationary policy and we assume that the
discounted and average rewards under f exist. We denote these by V(i)
= E; (3 -0 &"'r(X,, a,)|Xo = i) where 0 < a < 1 is a discount factor, and
®; (1) = limp Ef(n™! Y526 r(Xs, az)|Xo = i). Here X, is the nth state of
the process and a, = f(X,) is the nth action taken. We shall denote this
controlled Markov chain by X = (S, A4, r, p, ).

The following result asserts that if a controlled Markov process has
uniformly bounded transition rates, then one can construct a controlled
Markov chain which is equivalent to it.

THEOREM. Let Y = (S, A, 7, A, p, B) be a controlled Markov process with
1 -pG,a )G, a)<c<xforallaandi.Let Y = (S, A, 1, A, p, B) be
a controlled Markov process where

i, a)(B + A, @))/(B + c), when considering
R discounted rewards Q)
7@, a)A(i, a)/c, when considering
average rewards,

Pl a,J) = {X(i, a)pG, a, j)/c, if i #J,

and Ai, a) = cforall a and i. Let X = (S, A, r, p, ¢/(8 + f:)) be a
controlled Markouv chain, where r and p are defined by (1).IfY,Y and
X are controlled by a stationary policy f, then Wy = W;= V; and ¥, =
V= cbr.

Remark. Suppose that each of the decision processes Y, Y and X has
a stationary discounted optimal policy within its respective class of

r(i, a) =

SopTrigittS-2004tmidRigreeseTred
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randomized nonstationary policies. This is true, for example, when A is
finite and 7 is bounded. Of course ¥ and Y have a larger class of policies
than X, but all three have the same class of (deterministic) stationary
policies. From the above result, it follows that if a stationary policy f is
discounted optimal for any one of the Y, Y or X, then it is discounted
optimal for the other two. A similar comment applies to average optimal
policies, e-discounted or e-average optimal policies, etc. In this sense, the
Y, Y and X are equivalent decision processes.

Proof. Under the policy f the Y is a Markov process with exponential
sojourn parameters A, = A(j, f(1)), and transition probabilities Q(i, =
P, f(i), J). Similarly, Y is a Markov process with parameters A, = ¢ and
transition probabilities

Q. ) = pli, fi), ) = {iQ(fS e BT
Clearly Y and Y have the same infinitesimal generator, and so they are
equal in distribution (when they have the same initial distribution). Then
in order to prove W;= W;, it suffices to show that the expected discounted
rewards associated with ¥ and Y for an “actual” sojourn in a state i are
equal for each i.

Consider an actual sojourn in a state i by the process Y. The Y may
take a bogus jump from i back to itself with probability Q(i, ). Conse-
quently, the number » of bogus jumps from i to itself, before a new state
is reached, is a geometric random variable with P(y = n) = QU "1 -
Q(, 1)) for n = 0. Here » = 0 when Q(;, i) = 0, and » = © when QU i) =
1. Then the expected reward received by Y for an actual sojourn in state
lis

EY e, f)) = r(, f0)E XY =16 f)/1 -G ). (3)

Here 7, denotes the time of the nth bogus jump in state i it has a gamma
distribution with parameters y = ¢/(8 + ¢) and n, and it is independent
of v.

i By a similar argument, it follows that the expected reward received by
Y for an actual sojourn in i is

E ¥ e 7, f) = 7, ) /(1 - 7.0, i) )
where 7, has a gamma distribution with parameters y, = A,/(8 + A.) and
n. Using (1) and (2) in the last term in (3), one can see that the rewards
given in (3) and (4) are equal. Thus we have W; = W;. Furthermore, by
an obvious use of conditional expectations in W}, it follows that W= V5.

Now consider the average rewards ¥;, ¥; and ®; under ffor ¥, Y and
X, respectively. By a well known Abelian theorem [12, p. 182], ¥, (i) =
limg 0 BW;(i) = limg .o BW; (i) = ¥/(i) for all i. Furthermore, using

Copyright © 2001 All Rights Reserved



Downloaded from informs.org by [106.51.226.7] on 04 August 2022, at 22:48 . For personal use only, all rights reserved.

~ Published in Operations Research on June 01, 1979 as DOI: 10.1287/opre.27.3.616.
This article has not been copyedited or formatted. The final version may differ from this version.

620 Technical Notes

Abelian theorems for sums and integrals, ¥Ai) = limg .o BWHi) = limg .0
BE; (X0 (c/(B + ¢)"r(Xn, X)) Xo = &) = lime, ca™'(1 — @) Ef(r-o
o"r(Xn, X)) | Xo = i) = @ (2).
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